Jasmonic Acid Activates the Fruit-Pedicel Abscission Zone of ‘Thompson Seedless’ Grapes, Especially with Co-Application of 1-Aminocyclopropane-1-carboxylic Acid
Abstract
:1. Introduction
2. Results
2.1. Methyl Jasmonate Versus Jasmonic Acid
2.2. Effects of Jasmonic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, and Days after Treatment
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kou, L.; Luo, Y.; Wu, D.; Liu, X. Effects of Mild Heat Treatment on Microbial Growth and Product Quality of Packaged Fresh-Cut Table Grapes. J. Food Sci. 2007, 72, S567–S573. [Google Scholar] [CrossRef] [PubMed]
- Fidelibus, M.W.; Cathline, K.A.; Burns, J.K. Potential Abscission Agents for Raisin, Table, and Wine Grapes. HortScience 2007, 42, 1626–1630. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, Z.; You, X.; Zhang, Y.; Wei, P.; Zhou, K.; Wang, Y. Relationships between Cell Structure Alterations and Berry Abscission in Table Grapes. Front. Nutr. 2020, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, R.P.; Goodwin, P.B. Factors affecting natural and ethephon-induced grape berry abscission. Am. J. Enol. Vitic. 1980, 31, 109–113. [Google Scholar]
- Meyer, J. Effect of fruit cane severance of grapevines on must and wine yield and composition. Am. J. Enol. Vitic. 1969, 20, 108–117. [Google Scholar]
- Uzquiza, L.; González, R.; Gonzalez, M.; Fidelibus, M.; Martin, P. A preharvest treatment of ethephon and methyl jasmonate affects mechanical harvesting performance and composition of ’Verdejo’ grapes and wines. Eur. J. Hortic. Sci. 2015, 80, 97–102. [Google Scholar] [CrossRef]
- Studer, H.E.; Olmo, H.P. Parameters affecting the quality of machine harvested raisins. Trans. ASAE 1974, 17, 783–786. [Google Scholar] [CrossRef]
- Tranbarger, T.J.; Tadeo, F.R. Diversity and functional dynamics of fleshy fruit abscission zones. Annual. Plant Rev. Online 2020, 3, 1–64. [Google Scholar] [CrossRef]
- Uzquiza, L.; Martin, P.; Sievert, J.R.; Arpaia, M.L.; Fidelibus, M.W.; Keller, M.; Mills, L.J.; Olmstead, M.A. Methyl Jasmonate and 1-Aminocyclopropane-1-Carboxylic Acid Interact to Promote Grape Berry Abscission. Am. J. Enol. Vitic. 2014, 65, 504–509. [Google Scholar] [CrossRef]
- González-Herranz, R.; Cathline, K.A.; Fidelibus, M.W.; Burns, J.K. Potential of Methyl Jasmonate as a Harvest Aid for ‘Thompson Seedless’ Grapes: Concentration and Time Needed for Consistent Berry Loosening. HortScience 2009, 44, 1330–1333. [Google Scholar] [CrossRef] [Green Version]
- El-Zeftawi, B. Effects of ethephon on cluster loosening and berry composition of four wine grape cultivars. J. Hortic. Sci. 1982, 57, 457–463. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.; Pacucci, C.; Trani, A.; Fidelibus, M.W.; Gambacorta, G. Ethephon as a potential abscission agent for table grapes: Effects on pre-harvest abscission, fruit quality, and residue. Front. Plant Sci. 2016, 7, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. Review of the Existing Maximum Residue Levels (MRLs) for Ethephon; Scientific Report; European Food Safety Authority: Parma, Italy, 2009; Volume 7.
- Dutta, S.K.; Gurung, G.; Yadav, A.; Laha, R.; Mishra, V.K. Factors associated with citrus fruit abscission and management strategies developed so far: A review. N. Z. J. Crop Hortic. Sci. 2022, 22, 1–22. [Google Scholar] [CrossRef]
- Environmental Protection Agency; Jasmonate, M. Exemption from the Requirement of a Tolerance. Fed. Reg. 2013, 78, 22789–22794. [Google Scholar]
- Hartmond, U.; Yuan, R.; Burns, J.K.; Grant, A.; Kender, W.J. Citrus Fruit Abscission Induced by Methyl-jasmonate. J. Am. Soc. Hortic. Sci. 2000, 125, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Kender, W.J.; Hartmond, U.; Burns, J.K.; Yuan, R.; Pozo, L. Methyl jasmonate and CMN-pyrazole applied alone and in combination can cause mature orange abscission. Sci. Hortic. 2001, 88, 107–120. [Google Scholar] [CrossRef]
- Fan, X.; Mattheis, J.P.; Fellman, J.K. A role for jasmonates in climacteric fruit ripening. Planta 1998, 204, 444–449. [Google Scholar] [CrossRef]
- Saniewski, M.; Nowacki, J.; Czapski, J.; Lange, E. The effect of methyl jasmonate on ethylene and 1-amlnocyclopropane-l-carboxylic acid production in apple fruits. Biologia. Plantarum. 1987, 29, 199–203. [Google Scholar] [CrossRef]
- Saniewski, M.; Urbanek, H.; Czapski, J. Effects of Methyl Jasmonate on Ethylene Production, Chlorophyll Degradation, and Polygalacturonase Activity in Tomatoes. J. Plant Physiol. 1987, 127, 177–181. [Google Scholar] [CrossRef]
- Mukkun, L.; Singh, Z. Methyl jasmonate plays a role in fruit ripening of ‘Pajaro’ strawberry through stimulation of ethylene biosynthesis. Sci. Hortic. 2009, 123, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Malladi, A.; Vashisth, T.; Johnson, L.K. Ethephon and Methyl Jasmonate Affect Fruit Detachment in Rabbiteye and Southern Highbush Blueberry. HortScience 2012, 47, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Dotson, B.; Rey, C.; Lindsey, J.; Bleecker, A.B.; Binder, B.M.; Patterson, S.E. New Clothes for the Jasmonic Acid Receptor COI1: Delayed Abscission, Meristem Arrest and Apical Dominance. PLoS ONE 2013, 8, e60505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Baldwin, E.A.; Bai, J.; Plotto, A.; Irey, M. Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. Hortic. Res. 2019, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Kucko, A.; de Dios Alche, J.; Tranbarger, T.J.; Wilmowicz, E. The acceleration of yellow lupine flower abscission by jasmonates is accompanied by lipid-related evens in abscission zone cells. Plant Sci. 2022, 316, 111173. [Google Scholar] [CrossRef] [PubMed]
- Fidelibus, M.; Cathline, K. Dose and time dependent effects of methyl jasmonate on abscission of grapes. In Proceedings of the Plant Bioregulators in Fruit Production, Bologna, Italy, 20–24 September 2010; Costa, G., Costa, G., Eds.; ISHS Acta Horticulturae: Leuven, Belgium, 2010; Volume 884, pp. 725–728. [Google Scholar]
- Lavee, S. Physiological aspects of post harvest berry drop in certain grape varieties. Vitis 1959, 2, 34–39. [Google Scholar]
- Christensen, L.P. Raisin Production Manual; University of California Division of Agriculture and Natural Resources: Oakland, CA, USA, 2000. [Google Scholar]
Treatment | Preharvest Berry Abscission (%) | Fruit Detachment Force (N) | Detached Berries with Dry Stem Scars (%) |
---|---|---|---|
Untreated control | 2 c z | 1.27 a | 3 d |
MeJA 2 mM | 3 c | 1.43 a | 13 cd |
MeJA 4 mM | 39 ab | 0.75 b | 53 ab |
MeJA 8 mM | 25 b | 0.94 b | 28 bcd |
JA 2 mM | 29 b | 1.22 a | 29 bcd |
JA 4 mM | 50 a | 0.79 b | 60 a |
JA 8 mM | 24 b | 1.18 a | 37 abc |
Jasmonic Acid (mM) | Cumulative Preharvest Berry Abscission (%) | ||
---|---|---|---|
Days after Treatment | |||
1 | 2 | 3 | |
0 | 0 z | 1 c | 15 c |
4 | 0 | 14 b | 52 b |
8 | 0 | 26 a | 69 a |
ACC | Fruit Detachment Force (N) | ||
---|---|---|---|
Jasmonic Acid (mM) | |||
0 | 4 | 8 | |
0 | 1.37 az A y | 1.25 aA | 0.73 aB |
500 | 1.31 aA | 0.76 bB | 0.41 bC |
1000 | 0.96 bA | 0.55 bB | 0.41 bB |
ACC | Detached Berries with a Dry Stem Scar (%) | ||
---|---|---|---|
Jasmonic Acid (mM) | |||
0 | 4 | 8 | |
0 | 3 b z C y | 52 bB | 79 A |
500 | 10 bB | 87 aA | 90 A |
1000 | 38 aB | 88 aA | 87 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidelibus, M.W.; Petracek, P.; McArtney, S. Jasmonic Acid Activates the Fruit-Pedicel Abscission Zone of ‘Thompson Seedless’ Grapes, Especially with Co-Application of 1-Aminocyclopropane-1-carboxylic Acid. Plants 2022, 11, 1245. https://doi.org/10.3390/plants11091245
Fidelibus MW, Petracek P, McArtney S. Jasmonic Acid Activates the Fruit-Pedicel Abscission Zone of ‘Thompson Seedless’ Grapes, Especially with Co-Application of 1-Aminocyclopropane-1-carboxylic Acid. Plants. 2022; 11(9):1245. https://doi.org/10.3390/plants11091245
Chicago/Turabian StyleFidelibus, Matthew W., Peter Petracek, and Steven McArtney. 2022. "Jasmonic Acid Activates the Fruit-Pedicel Abscission Zone of ‘Thompson Seedless’ Grapes, Especially with Co-Application of 1-Aminocyclopropane-1-carboxylic Acid" Plants 11, no. 9: 1245. https://doi.org/10.3390/plants11091245