Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine
Abstract
:1. Introduction
2. Biological Activity of C-PC
2.1. Wound Healing Effect
2.2. Antimicrobial Effect
2.2.1. Antibacterial Effect
2.2.2. Antifungal Effect
2.3. Anti-Oxidative Effect
2.4. Anti-Inflammatory Effect
2.5. Antimelanogenic Effect
2.6. Anticancer Effect
- Cell cycle suppression in the specific phases;
- The modification of the cellular redox state;
2.7. Summary of C-PC Topical Activities
3. Advanced Technology for Functionalization of C-PC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for skin care: A bright blue future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Safaei, M.; Maleki, H.; Soleimanpour, H.; Norouzy, A.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci. Rep. 2019, 9, 9474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, A.; Salama, A.; Ghany, A.A.; Sitohy, M. Antibacterial activity and mechanism of action of phycocyanin extracted from an Egyptian strain of Anabaena oryzae SOS13. Zagazig J. Agric. Biochem. Appl. 2015, 42, 30–321. [Google Scholar]
- Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent development in production and biotechnological applications of C-phycocyanin. BioMed Res. Int. 2013, 2013, 742859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Qu, Y.; Fu, X.; Zhao, M.; Wang, S. Isolation, Purification and Properties of an R-Phycocyanin from the Phycobilisomes of a Marine Red Macroalga Polysiphonia urceolata. PLoS ONE 2014, 9, e87833. Available online: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0087833&type=printable (accessed on 28 December 2021). [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gong, X.; Wang, S.; Chen, L. Separation of Native Allophycocyanin and R-Phycocyanin from Marine Red Macroalga Polysiphonia urceolata by the Polyacrylamide Gel Electrophoresis Performed in Novel Buffer Systems. PLoS ONE 2014, 9, e106369. Available online: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0106369&type=printable (accessed on 2 January 2022). [CrossRef]
- Glazer, A.N. Phycobilisome: A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta (BBA) Rev. Bioenerg. 1984, 768, 29–51. [Google Scholar] [CrossRef]
- Park, W.S.; Kim, H.J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.S.; Kang, C.M.; Ferruzzi, M.G.; Ahn, M.J. Two classes of pigments, carotenoids and C-Phycocyanin, in Spirulina powder and their antioxidant activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V.C.; Thakur, A.; Chennabasappa, L.K.; Mishra, G.; Singh, K.; Rathee, P.; Ranjan, A. Phycocyanin extracted from Oscillatoria minima shows antimicrobial, algicidal, and antiradical activities: In silico and in vitro analysis. Antiinfl. Anti-Allergy Agents Med. Chem. 2020, 19, 240–253. [Google Scholar] [CrossRef]
- Aoki, J.; Sasaki, D.; Asayama, M. Development of a method for phycocyanin recovery from filamentous cyanobacteria and evaluation of its stability and antioxidant capacity. BMC Biotechnol. 2021, 21, 40. [Google Scholar] [CrossRef]
- Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Res. 2019, 42, 101600. [Google Scholar] [CrossRef]
- Kuddus, M.; Singh, P.; Thomas, G.; Ali, A. Biotechnology of Bioactive Compounds: Sources and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 287–288. [Google Scholar]
- Patil, G.; Chethana, S.; Sridevi, A.S.; Raghavarao, K.S.M.S. Method to obtain C-phycocyanin of high purity. J. Chromatogr. 2006, 1127, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Choi, J.W.; Lee, M.K.; Choi, Y.H.; Nam, T.J. Wound healing potential of Spirulina protein on CCD-986sk cells. Mar. Drugs 2019, 17, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syarina, P.N.A.; Karthivashan, G.; Abas, F.; Arulselvan, P.; Fakurazi, S. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI J. 2015, 14, 385–393. [Google Scholar] [PubMed]
- Madhyastha, H.K.; Radha, K.S.; Sugiki, M.; Omura, S.; Maruyama, M. C-phycocyanin transcriptionally regulates uPA mRNR through cAMP mediated PKA pathway in human fibroblast WI-38 cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 2006, 1760, 1624–1630. [Google Scholar] [CrossRef]
- Madhyastha, H.K.; Radha, K.S.; Nakajima, Y. uPA dependent and independent mechanisms of wound healing by C-phycocyanin. J. Cell. Mol. Med. 2008, 12, 2691–2703. [Google Scholar] [CrossRef] [Green Version]
- Gur, C.S.; Erdogan, D.K.; Onbasılar, I.; Atilla, P.; Cakar, N.; Gurhan, I.D. In Vitro and in Vivo investigations of the wound healing effect of crude Spirulina extract and C-Phycocyanin. J. Med. Plants Res. 2013, 7, 425–433. [Google Scholar]
- Guo, J.W.; Jee, S.H. Strategies to develop a suitable formulation for inflammatory skin disease treatment. Int. J. Mol. Sci. 2021, 22, 6078. [Google Scholar] [CrossRef]
- Aguilera, A.C.; Dagher, I.A.; Kloepfer, K.M. Role of the Microbiome in Allergic Disease Development. Curr. Allergy Asthma Rep. 2020, 20, 44. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Nihal, B.; Gupta, N.V.; Gowda, D.V.; Mariapan, M. Formulation and development of topical anti acne formulation of Spirulina extract. Int. J. Appl. Pharm. 2018, 10, 229. [Google Scholar] [CrossRef]
- Murugan, T.; Radhamadhavan. Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis. J. Pharm. Res. 2011, 4, 4161–4163. [Google Scholar]
- Zebracka, A.; Matysiak, M.; Jastrzebska, M.D.; Skrzypczak, L.K. Molecular and environmental aspects of skin cancers. J. Pre-Clin. Res. 2015, 9, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Im, A.R.; Park, S.K.; Shin, H.S.; Chae, S.W. Protective effects of timosaponin AIII against UVB-radiation induced inflammation and DNA injury in human epidermal keratinocytes. Biol. Pharm. Bull. 2019, 42, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Obrador, E.; Smith, F.L.; Dellinger, R.W.; Salvador, R.; Meyskens, F.L.; Estrela, J.M. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol. Chem. 2019, 400, 589–612. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.A.; Kim, B.A. Protective effects of Spirulina- derived C-Phycocyanin against ultraviolet B-induced damage in HaCaT cells. Medicina 2021, 57, 273. [Google Scholar] [CrossRef]
- Jung, S.M.; Min, S.K.; Lee, H.C.; Kwon, Y.S.; Jung, M.H.; Shin, H.S. Spirulina PCL nanofiber wound dressing to improve cutaneous wound healing by enhancing antioxidative mechanism. J. Nanomater. 2016, 1, 6135727. [Google Scholar] [CrossRef] [Green Version]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Musolino, C.; Gangemi, S. Oxidative stress and photodynamic therapy of skin cancers: Mechanisms, challenges and promising developments. Antioxidants 2020, 9, 448. [Google Scholar] [CrossRef]
- Gantar, M.; Simovic, D.; Djilas, S.; Gonzalez, W.W.; Miksovska, J. Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1. J. Biotechnol. 2012, 159, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Lee, J.Y.; Im, A.; Chae, S. Phycocyanin protects against UVB-Induced Apoptosis Through the PKC α/β II-Nrf-2/HO-1 Dependent Pathway in Human Primary Skin Cells. Molecules 2018, 23, 478. [Google Scholar] [CrossRef] [Green Version]
- Pardhasaradhi, B.V.V.; Ali, A.M.; Kumari, A.L.; Reddanna, P.; Khar, A. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol. Cancer Ther. 2003, 2, 1165–1170. [Google Scholar] [PubMed]
- Tudor, D.V.; Baldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopartean, A.; Stretea, R.; Filip, A.G. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med. 2020, 17, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Enache, A.O.; Stepan, A.E.; Margaritescu, C.; Patrascu, V.; Ciurea, R.N.; Simionescu, C.E.; Camen, A. Immunoexpression of p53 and COX-2 in basal cell carcinoma. Rom. J. Morphol. Embryol. 2018, 59, 1115–1120. [Google Scholar] [PubMed]
- Karahan, N.; Baspinar, S.; Bozkurt, K.K.; Caloglu, E.; Ciris, I.M.; Kapucuoglu, N. Increased expression of COX-2 in recurrent basal cell carcinoma of the skin: A pilot study. Indian J. Pathol. Microbiol. 2011, 54, 526–531. [Google Scholar]
- Liu, Q.; Huang, Y.; Zhang, R.; Cai, T.; Cai, Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid. Based Complementary Altern. Med. 2016, 2016, 7803846. [Google Scholar]
- Higashi, Y.; Kanekura, T.; Kanzaki, T. Enhanced expression of cyclooxygenase (COX)-2 on human skin epidermal cancer cells: Evidence for growth suppression by inhibiting COX-2 expression. Int. Union Against Cancer 2000, 86, 667–671. [Google Scholar] [CrossRef]
- Gupta, N.K.; Gupta, K.P. Effects of C-Phycocyanin on the representative genes of tumor development in mouse skin exposed to 12-O-tetradecanoyl-phorbol-13-acetate. Environ. Toxicol. Pharmacol. 2012, 34, 941–948. [Google Scholar] [CrossRef]
- Rzepka, Z.; Buszman, E.; Beberok, A.; Wrzesniok, D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig. I Med. Dosw. 2016, 70, 695–708. [Google Scholar] [CrossRef]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis. Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Chen, J.; Lu, J.; Yi, L.; Tong, X.; Kang, L.; Pei, S.; Ouyang, Y.; Jiang, L.; Ding, Y.; et al. Roles of inflammation factors in melanogenesis. Mol. Med. Rep. 2020, 21, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.C.; Lin, Y.Y.; Yang, S.Y.; Weng, Y.T.; Tsai, Y.T. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways. J. Biomed. Sci. 2011, 18, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.F.; Figueira, F.S.; Lettnin, A.P.; Carrett-Dias, M.; Filgueira, D.M.V.B.; Kalil, S.; Trindade, G.S.; Votto, A.P.S. C-Phycocyanin: Cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol. Rep. 2017, 70, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gao, M.H.; Zhang, X.C.; Chu, X.M. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol. Appl. Biochem. 2006, 43, 155–164. [Google Scholar] [PubMed]
- Reddy, M.C.; Subhashini, J.; Mahipal, S.V.K.; Bhat, V.B.; Reddy, P.S.; Kiranmai, G.; Madvastha, K.M.; Reddanna, P. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide- stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2003, 304, 385–392. [Google Scholar] [CrossRef]
- Chen, T.; Wong, Y.S. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium enriched Spirulina platensis. J. Agric. Food Chem. 2008, 56, 4352–4358. [Google Scholar] [CrossRef]
- Hao, S.; Li, S.; Wang, J.; Zhao, L.; Zhang, C.; Huang, W.; Wang, C. Phycocyanin reduces proliferation of melanoma cells through downregulating GRB2/ERK signaling. J. Agric. Food Chem. 2018, 66, 10921–10929. [Google Scholar] [CrossRef]
- Hongo, T.; Morimoto, Y.; Iwagaki, H.; Kobashi, K.; Yoshii, M.; Urushihara, N.; Hizuta, A.; Tanaka, N. Functional expression of Fas and Fas ligand on human colonic intraepithelial T lymphocytes. J. Int. Med. Res. 2000, 28, 132–142. [Google Scholar] [CrossRef]
- Elmets, C.A.; Athar, M. Targeting ornithine decarboxylase for the prevention of nonmelanoma skin cancer in humans. Cancer Prev. Res. 2010, 3, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Mann, A.P.; Verma, A.; Sethi, G.; Manavathi, B.; Wang, H.; Fok, J.Y.; Kunnumakkara, A.B.; Kumar, R.; Aggarwal, B.B.; Mehta, K. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kB in cancer cells: Delineation of a novel pathway. Cancer Res. 2006, 66, 8788–8795. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, A.; Verma, A.; Mehta, K. Tissue transglutaminase promotes or suppresses tumors depending on cell context. Anticancer Res. 2009, 29, 1909–1919. [Google Scholar]
- Mehta, K.; Eckert, R. Transglutaminases: Family of Enzymes with Diverse Functions. Progress in Experimental Tumor Research, 1st ed.; Karger Publishers: Basel, Switzerland, 2005; Volume 38. [Google Scholar]
- Esposito, E.; Nastruzzi, C.; Sguizzato, M.; Cortesi, R. Nanomedicines to treat skin pathologies with natural molecules. Curr. Pharm. Des. 2019, 25, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J.; Bucekova, M.; Jesenak, M. Natural products and skin diseases. Molecules 2021, 26, 4489. [Google Scholar] [CrossRef] [PubMed]
- Manconia, M.; Pendas, J.; Ledon, N.; Moreira, T.; Sinico, C.; Saso, L.; Fadda, A.M. Phycocyanin liposomes for topical anti-inflammatory activity: In-vitro in-vivo studies. J. Pharm. Pharmacol. 2009, 61, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Chessa, M.; Vassallo, A.; Pons, R.; Diez-Sales, O.; Fadda, A.M.; Manconi, M. Extraction, purification and Nanoformulation of Natural Phycocyanin (from Klamath algae) for Dermal and Deeper Soft Tissue Delivery. J. Biomed. Nanotechnol. 2013, 9, 1929–1938. [Google Scholar] [CrossRef] [Green Version]
- Castangia, I.; Manca, M.L.; Catalan- Latorre, A.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Phycocyanin- encapsulating hyalurosomes as carrier for skin delivery and protection from oxidative stress damage. J. Mater. Sci. Mater. Med. 2016, 27, 75. [Google Scholar] [CrossRef]
- Castangia, I.; Manca, M.L.; Caddeo, C.; Bacchetta, G.; Pons, R.; Demurtas, D.; Diez-Sales, O.; Fadda, A.M.; Manconi, M. Santosomes as natural and efficient carriers for the improvement of phycocyanin reepithelising ability in vitro and in vivo. Eur. J. Pharm. Biopharm. 2016, 103, 149–158. [Google Scholar] [CrossRef]
- Dev, A.; Mohanbhai, S.J.; Kushwaha, A.C.; Sood, A.; Sardiowala, M.N.; Choudhury, S.R.; Karmakar, S. Corrigendum to ‘κ-carrageenan-c-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomater. 2022, 138, 576. [Google Scholar] [CrossRef]
- Madhyastha, H.; Madhyastha, R.; Thakur, A.; Kentaro, S.; Dev, A.; Singh, S.; Chandrashekharappa, R.B.; Kumar, H.; Acevedo, O.; Nakajima, Y.; et al. C-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism. Colloids Surf. B Biointerfaces 2020, 194, 111211. [Google Scholar] [CrossRef]
- Adli, S.A.; Ali, F.; Azmi, A.S.; Anuar, H.; Nasir, N.A.M.; Hasham, R.; Idris, M.K.H. Development of biodegradable cosmetic patch using a polylactic acid/phycocyanin- alginate composite. Polymers 2020, 12, 1669. [Google Scholar] [CrossRef]
- Pu, Y.; Wei, M.; Witkowski, A.; Krzywda, M.; Wang, Y.; Li, W. A hybrid biomaterial of biosilica and C-phycocyanin for enhanced photodynamic effect towards tumor cells. Biochem. Biophys. Res. Commun. 2020, 553, 573–579. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Zhu, F.; Liu, G.; Liu, H.; Ji, H.; Zheng, S.; Li, B. Molecular mechanism of anti-cancer activity of the nano-drug C-PC/CMC-CD59sp NPs in cervical cancer. J. Cancer 2019, 10, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Chaiklahan, R.; Chirasuwan, N.; Bunnag, B. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochem. 2012, 47, 659–664. [Google Scholar] [CrossRef]
- Adjali, A.; Clarot, I.; Chen, Z.; Marchioni, E.; Boudier, A. Physicochemical degradation of phycocyanin and means to improve its stability: A short review. J. Pharm. Anal. 2021. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; Sutanto, H.; Suzery, M.; Amelia, D.; Aritonang, R.F. Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Biosci. 2018, 22, 85–90. [Google Scholar] [CrossRef]
- Chandralekha, A.; Prashanth, H.S.; Tavanandi, H.; Raghavarao, K.S.M.S. A novel method for double encapsulation of C-phycocyanin using aqueous two-phase systems for extension of shelf life. J. Food Sci. Technol. 2021, 58, 1750–1763. [Google Scholar] [CrossRef] [PubMed]
No | Study Profile | Origin of C-PC | Dose/Concentration of C-PC | Activity | Reference |
---|---|---|---|---|---|
1 | WI-38 fibroblast cells | Spirulina fusiformis Voronichin | 25, 50, 100 μg/mL | uPA gene regulation through cAMP-mediated PKA pathway | Madhyastha et al. (2006) [16] |
2 | Human fibroblast cells TIG 3-20 | Spirulina fusiformis | 10–200 μg/mL | wound healing promotion by upregulating uPA, GTPases Cdc 42 and Rac 1 stimulation through PI-3K pathway fibroblast proliferation induction via the cyclin-dependent kinases cdK1 and cdK2 cellular migration towards the wound enhancement in a uPA-dependent manner | Madhyastha et al. (2007) [17] |
3 | Male mice | Spirulina fusiformis | 75 μg/mL | wound area reduction | Madhyastha et al. (2007) [17] |
4 | Human keratinocytes | Spirulina platensis | 0.0335, 0.335, 3.35, 33.5 μg/mL | proliferation, healing, and migration promotion | Gur et al. (2012) [18] |
5 | Male rats | Spirulina platensis | 1.25, 2.5% | wound healing process improvement | Gur et al. (2012) [18] |
6 | Pseudomonas fragi Escherichia coli Pseudomonas vulgaris Bacillus subtilis Klebsiella oxytoca Streptococcus pyogenes Enterobacter aerogenes Staphylococcus aureus | Oscillatoria minima | 16 μg/mL | antibacterial activity against Pseudomonas fragi, Escherichia coli, Pseudomonas vulgaris, Bacillus subtilis, Klebsiella oxytoca, Streptococcus pyogenes | Venugopal et al. (2020) [9] |
7 | Bacillus cereus Staphylococcus aureus Escherichia coli Klebsiella pneumonia | Anabaena oryzae | 10, 25, 50, 75, 100 μg/mL | antibacterial activity morphological changes in the cell walls and membranes | Osman et al. (2015) [3] |
8 | Propionibacterium acne Staphylococcus epidermidis | Spirulina platensis | 10% C-PC extract of the formulation of oleaginous base compared with the same concentration of water-soluble base | antibacterial activity | Nihal et al. (2018) [22] |
9 | Candida albicans Aspergillus niger Aspergillus flavus Penicillium species Rhizopus species | Spirulina platensis | 40–80 μg/mL | antifungal activity | Murugan et al. (2011) [23] |
10 | - | Oscillatoria minima | 1 mg/mL | anti-oxidative activity (DPPH, ABTS methods) | Venugopal et al. (2020) [9] |
11 | - | Lamotrix sp. 37-2-1 Spirulina platensis | 0.05–0.3 mg/mL | anti-oxidative activity (DPPH) | Gantar et al. (2012) [30] |
12 | Human dermal keratinocyte (HaCat) cells | Spirulina platensis | 5, 10, 20, 40, 80 μg/mL | ROS production inhibition protection against UVB-induced damage MMP-1 and MMP-9 expression inhibition involucrin, filaggrin and loricrin expression promotion | Jang et al. (2021) [27] |
13 | Human dermal fibroblasts Human epidermal keratinocytes | - | 1–20 μg/mL | protection against UVB-induced apoptosis HO-1 expression induction Nrf-2 via phosphorylation of PKC α/β II activation | Kim et al. (2018) [31] |
14 | Rat histiocytic tumor cells AK-5 | Spirulina platensis | 30 μM | DNA fragmentation and apoptosis in tumor cells induction Bcl-2 down regulation | Pardhasaradhi et al. (2021) [32] |
15 | Female mice | Spirulina platensis | 50, 200, 400 μg/mL | COX-2 and IL-6 expression reduction ODC, pSTAT3 downregulation TG2 upregulation | Gupta N.K. and Gupta K.P. (2021) [38] |
16 | Murine melanoma cells | Spirulina platensis | 0.05, 0.1, 0.2 μg/mL | tyrosinase activity, melanin production, p38 phosphorylation, MIFT inhibition cAMP accumulation p-ERK1/2 level, phosphorylation of MEK induction | Wu et al. (2011) [42] |
17 | RAW 264.7 mouse macrophage cell line | Spirulina platensis | 20 μM | apoptosis induction nuclear condensation DNA fragmentation accumulation of sub-G1 cell populations COX-2 inhibition | Reddy et al. (2003) [45] |
18 | A375 melanoma cells | - | 6 μM | melanoma cells inhibition GRB2-ERK1/2 pathway downregulation | Hao et al. (2018) [47] |
19 | HeLa cells | Spirulina platensis | Different concentrations | apoptosis induction cells in sub-G0/G1 phase augmentation increased expression of Fas and ICAM-1 caspases 2, 3, 4, 8, 9, 10 activations Bcl-2 downregulation | Li et al. (2010) [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dranseikienė, D.; Balčiūnaitė-Murzienė, G.; Karosienė, J.; Morudov, D.; Juodžiukynienė, N.; Hudz, N.; Gerbutavičienė, R.J.; Savickienė, N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. Plants 2022, 11, 1249. https://doi.org/10.3390/plants11091249
Dranseikienė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Juodžiukynienė N, Hudz N, Gerbutavičienė RJ, Savickienė N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. Plants. 2022; 11(9):1249. https://doi.org/10.3390/plants11091249
Chicago/Turabian StyleDranseikienė, Daiva, Gabrielė Balčiūnaitė-Murzienė, Jūratė Karosienė, Dmitrij Morudov, Nomeda Juodžiukynienė, Nataliia Hudz, Rima Jūratė Gerbutavičienė, and Nijolė Savickienė. 2022. "Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine" Plants 11, no. 9: 1249. https://doi.org/10.3390/plants11091249