Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Male and Female Ochradenus arabicus VOs Chemical Profiling
2.2. Chemometric Analysis of the VOs from Male and Female O. arabicus
2.3. Allelopathic Activity of Male and Female O. arabicus VOs on the Weed D. aegyptium
3. Materials and Methods
3.1. Plant Collection and Preparation
3.2. Extraction of the VOs, GC–MS Analysis, and Components Identification
3.3. Allelopathic Activity Bioassay
3.4. Statistical Analaysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reece, J.B.; Urry, L.A.; Cain, M.L.; Wasserman, S.A.; Minorsky, P.V.; Jackson, R.B.; Rawle, F.E.; Durnford, D.G.; Moyes, C.D.; Scott, K. Campbell Biology, Third Canadian Edition; Pearson Education Canada: North York, ON, Canada, 2020. [Google Scholar]
- El-Shemy, H. Essential Oils: Oils of Nature; IntechOpen: London, UK, 2020. [Google Scholar]
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Essential Oils. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–17. [Google Scholar]
- Rhind, J.; Pirie, D. Essential Oils: A Handbook for Aromatherapy Practice; Singing Dragon: London, UK, 2012. [Google Scholar]
- El Gendy, A.E.-N.G.; Essa, A.F.; El-Rashedy, A.A.; Elgamal, A.M.; Khalaf, D.D.; Hassan, E.M.; Abd-ElGawad, A.M.; Elgorban, A.M.; Zaghloul, N.S.; Alamery, S.F. Antiviral potentialities of chemical characterized essential oils of Acacia nilotica bark and fruits against hepatitis A and herpes simplex viruses: In vitro, in silico, and molecular dynamics studies. Plants 2022, 11, 2889. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; El-Amier, Y.A.; Bonanomi, G.; Gendy, A.E.-N.G.E.; Elgorban, A.M.; Alamery, S.F.; Elshamy, A.I. Chemical composition of Kickxia aegyptiaca essential oil and its potential antioxidant and antimicrobial activities. Plants 2022, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P.; Tirillini, B.; Akhtar, M.S.; Dimitriu, L.; Bricchi, E.; Bertuzzi, G.; Venanzoni, R. Essential Oil with Anticancer Activity: An Overview. In Anticancer Plants: Natural Products and Biotechnological Implements; Akhtar, M.S., Swamy, M.K., Eds.; Springer: Singapore, 2018; Volume 2, pp. 207–231. [Google Scholar]
- Elgamal, A.M.; Ahmed, R.F.; Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Elshamy, A.I.; Nassar, M.I. Chemical profiles, anticancer, and anti-aging activities of essential oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. Plants 2021, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; Al-Rowaily, S.L.; Ragab, T.I.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M. Essential oil and its nanoemulsion of Araucaria heterophylla resin: Chemical characterization, anti-inflammatory, and antipyretic activities. Ind. Crops Prod. 2020, 148, 112272. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elgamal, A.M.; Ei-Amier, Y.A.; Mohamed, T.A.; El Gendy, A.E.-N.G.; Elshamy, A.I. Chemical composition, allelopathic, antioxidant, and anti-inflammatory activities of sesquiterpenes rich essential oil of Cleome amblyocarpa barratte & murb. Plants 2021, 10, 1294. [Google Scholar]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.; Ahmed, R.F.; El Gendy, A.E.-N.G.; El-Rahman, A.; Sahar, S.; Elgamal, A.M.; Elshamy, A.I. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Ammar, N.M.; Hassan, H.A.; Ahmed, R.F.; El-Gendy, A.E.-N.G.; Abd-ElGawad, A.M.; Farrag, A.R.H.; Farag, M.A.; Elshamy, A.I.; Afifi, S.M. Gastro-protective effect of Artemisia sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers 2022, 27, 247–257. [Google Scholar] [CrossRef]
- Boira, H.; Blanquer, A. Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. Syst. Ecol. 1998, 26, 811–822. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; El-Amier, Y.A.; El Gendy, A.E.-N.G.; Al-Barati, S.A.; Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M. Chemical composition variations, allelopathic, and antioxidant activities of Symphyotrichum squamatum (Spreng.) Nesom essential oils growing in heterogeneous habitats. Arab. J. Chem. 2020, 13, 4237–4245. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab. J. Geosci. 2021, 14, 1257. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Mishra, R.; Singh, A.; Srivastava, A.; Lal, R. Genetic variability and correlations of essential oil yield with agro-economic traits in Mentha species and identification of promising cultivars. Ind. Crops Prod. 2017, 95, 726–732. [Google Scholar] [CrossRef]
- Hassan, E.M.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M.; Elshamy, A.I.; Farag, M.A.; Alamery, S.F.; Omer, E.A. Comparative chemical profiles of the essential oils from different varieties of Psidium guajava L. Molecules 2020, 26, 119. [Google Scholar] [CrossRef] [PubMed]
- Demirbolat, I.; Karik, Ü.; Erçin, E.; Kartal, M. Gender dependent differences in composition, antioxidant and antimicrobial activities of wild and cultivated Laurus nobilis L. Leaf and flower essential oils from Aegean region of Turkey. J. Essent. Oil Bear. Plants 2020, 23, 1084–1094. [Google Scholar] [CrossRef]
- Markó, G.; Németh, I.; Gyuricza, V.; Altbäcker, V. Sex-specific differences in Juniperus communis: Essential oil yield, growth-defence conflict and population sex ratio. AoB PLANTS 2021, 13, plab021. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.G. Revision of Ochradenus. Notes-R. Bot. Gard. Edinb. 1984, 41, 491–504. [Google Scholar]
- Collenette, S. Wildflowers of Saudi Arabia; National Commission for Wildlife Conservation and Development (NCWCD): Riyadh, Saudi Arabia, 1999.
- Hussain, J.; Rehman, N.U.; Khan, A.L.; Ali, L.; Kim, J.-S.; Zakarova, A.; Al-Harrasi, A.; Shinwari, Z.K. Phytochemical and biological assessment of medicinally important plant Ochradenus arabicus. Pak. J. Bot. 2014, 46, 2027–2034. [Google Scholar]
- Ali, M.A.; Farah, M.A.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Wabaidur, S.; Alothman, Z.; Lee, J. Assessment of biological activity and UPLC–MS based chromatographic profiling of ethanolic extract of Ochradenus arabicus. Saudi J. Biol. Sci. 2016, 23, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, K.M.; Al-Kawmani, A.A.; Farah, M.A.; Hailan, W.A.; Alsalme, A.; Al-Zaqri, N.; Ali, M.A.; Almansob, A.M. Amelioration of indole acetic acid-induced cytotoxicity in mice using zinc nanoparticles biosynthesized with Ochradenus arabicus leaf extract. Saudi J. Biol. Sci. 2021, 28, 7190–7201. [Google Scholar] [CrossRef]
- Ullah, O.; Shah, M.; Rehman, N.U.; Ullah, S.; Al-Sabahi, J.N.; Alam, T.; Khan, A.; Khan, N.A.; Rafiq, N.; Bilal, S.; et al. Aroma profile and biological effects of Ochradenus arabicus essential oils: A comparative study of stem, flowers, and leaves. Molecules 2022, 27, 5197. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Ho, C.-T. Thermal degradation of allyl isothiocyanate in aqueous solution. J. Agric. Food Chem. 1998, 46, 220–223. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, G.R.; Montaut, S.; Rollin, P.; Nyegue, M.; Menut, C.; Iori, R.; Tatibouët, A. Stability of benzylic-type isothiocyanates in hydrodistillation-mimicking conditions. J. Agric. Food Chem. 2013, 61, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Kashima, N.; Seki, T.; Sakurai, H.; Ishii, K.; Ariga, T. Analysis of volatile components in essential oil of upland wasabi and their inhibitory effects on platelet aggregation. Biosci. Botechnology Biochem. 1994, 58, 2131–2135. [Google Scholar] [CrossRef]
- Kyriakou, S.; Trafalis, D.T.; Deligiorgi, M.V.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Assessment of methodological pipelines for the determination of isothiocyanates derived from natural sources. Antioxidants 2022, 11, 642. [Google Scholar] [CrossRef]
- Başer, K.H.C.; Demirci, B.; Tabanca, N.; Özek, T.; Gören, N. Composition of the essential oils of Tanacetum armenum (DC.) Schultz Bip., T. balsamita L., T. chiliophyllum (Fisch. & Mey.) Schultz Bip. var. chiliophyllum and T. haradjani (Rech. fil.) Grierson and the enantiomeric distribution of camphor and carvone. Flavour Fragr. J. 2001, 16, 195–200. [Google Scholar]
- Younis, Y.M.; Beshir, S.M. Carvone-rich essential oils from Mentha longifolia (L.) Huds. ssp. schimperi Briq. and Mentha spicata L. grown in Sudan. J. Essent. Oil Res. 2004, 16, 539–541. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Viljoen, A.M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc. 2010, 87, 1–7. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Assaeed, A.M.; Elgamal, A.M.; Gendy, A.E.-N.G.E.; Mohamed, T.A.; Dar, B.A.; Mohamed, T.K.; Elshamy, A.I. Essential oil of Calotropis procera: Comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules 2020, 25, 5203. [Google Scholar] [CrossRef]
- Tsusaka, T.; Makino, B.; Ohsawa, R.; Ezura, H. Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea. PLoS ONE 2019, 14, e0217522. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Faughnan, M.S.; Hawdon, A.; Ah-Singh, E.; Brown, J.; Millward, D.; Cassidy, A. Urinary isoflavone kinetics: The effect of age, gender, food matrix and chemical composition. Br. J. Nutr. 2004, 91, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Struiving, S.; Hacke, A.C.M.; Simionatto, E.L.; Scharf, D.R.; Klimaczewski, C.V.; Besten, M.A.; Heiden, G.; Boligon, A.A.; Rocha, J.B.T.; Vellosa, J.C.R. Effects of gender and geographical origin on the chemical composition and antiradical activity of Baccharis myriocephala and Baccharis trimera. Foods 2020, 9, 1433. [Google Scholar] [CrossRef]
- Litto, M.; Scopece, G.; Fineschi, S.; Schiestl, F.P.; Cozzolino, S. Herbivory affects male and female reproductive success differently in dioecious Silene latifolia. Entomol. Exp. Appl. 2015, 157, 60–67. [Google Scholar] [CrossRef]
- Phillips, M.A.; Croteau, R.B. Resin-based defenses in conifers. Trends Plant Sci. 1999, 4, 184–190. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M. Chemical constituents, antioxidant and potential allelopathic effect of the essential oil from the aerial parts of Cullen plicata. Ind. Crops Prod. 2016, 80, 36–41. [Google Scholar] [CrossRef]
- Elshamy, A.; Abd-ElGawad, A.; Mohamed, T.; El Gendy, A.E.N.; Abd El Aty, A.A.; Saleh, I.; Moustafa, M.F.; Hussien, T.A.; Pare, P.W.; Hegazy, M.E.F. Extraction development for antimicrobial and phytotoxic essential oils from Asteraceae species: Achillea fragrantissima, Artemisia judaica and Tanacetum sinaicum. Flavour Fragr. J. 2021, 36, 352–364. [Google Scholar] [CrossRef]
- Ketnawa, S.; Reginio, F.C., Jr.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. 2022, 62, 4684–4705. [Google Scholar] [CrossRef]
- Tomazzoli, M.M. Phytochemical Evaluation, Antioxidant Activity and Propagation Methods of Baccharis dracunculifolia DC: The Main Botanical Source of Brazilian Green Propolis; Universidade Federal Do Paraná: Curitiba, Brazil, 2020. [Google Scholar]
- Ben Ahmed, Z.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Vander Heyden, Y. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharm. Biol. 2017, 55, 1185–1194. [Google Scholar] [CrossRef] [Green Version]
- Bialy, Z.; Oleszek, W.; Lewis, J.; Fenwick, G. Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 1990, 129, 277–281. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Malik, M.S.; Jha, P.; Oliveira, M.J. Effects of isothiocyanates on purple (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Weed Biol. Manag. 2006, 6, 131–138. [Google Scholar] [CrossRef]
- Smolinska, U.; Morra, M.; Knudsen, G.; James, R. Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis. 2003, 87, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Grodowitz, M.J.; Chen, J. Insecticidal and enzyme inhibitory activities of isothiocyanates against red imported fire ants, Solenopsis invicta. Biomolecules 2020, 10, 716. [Google Scholar] [CrossRef]
- Razavi, S.M.; Badihi, M.; Nasrollahi, P. Inhibitory potential of (-)-carvone and carvone-PLGA composite on plant pathogens and common weeds. Arch. Phytopathol. Plant Prot. 2022, 55, 926–936. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Omer, E.A.; Dar, B.A.; Al-Taisan, W.’a.A.; Elshamy, A.I. Essential oil enriched with oxygenated constituents from invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants 2020, 9, 998. [Google Scholar] [CrossRef]
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 1999; Volume 1.
No | Compound Name | Rt 1 | Conc. % 2 | KI | ||
---|---|---|---|---|---|---|
Male | Female | Lit. 3 | Exp. 4 | |||
Monoterpene hydrocarbons | ||||||
1 | α-Terpinene | 6.55 | 0.15 ± 0.01 | 0.09 ± 0.01 | 1014 | 1015 |
2 | γ-Terpinene | 7.92 | 0.29 ± 0.02 | 0.42 ± 0.02 | 1054 | 1053 |
Oxygenated Monoterpenes | ||||||
3 | Eucalyptol | 6.87 | 0.11 ± 0.01 | 0.05 ± 0.00 | 1026 | 1024 |
4 | Linalool | 7.05 | 0.18 ± 0.01 | 0.04 ± 0.00 | 1096 | 1097 |
5 | 1-Terpineol | 9.51 | 0.00 | 0.13 ± 0.01 | 1133 | 1134 |
6 | cis-Verbenol | 10.47 | 0.11 ± 0.01 | 0.14 ± 0.01 | 1137 | 1135 |
7 | trans-Pinocarveol | 11.11 | 0.35 ± 0.02 | 0.13 ± 0.01 | 1139 | 1141 |
8 | Camphor | 11.21 | 0.00 | 0.03 ± 0.00 | 1141 | 1143 |
9 | Menthone | 11.44 | 1.42 ± 0.06 | 0.56 ± 0.02 | 1148 | 1147 |
10 | Isopulegol | 12.00 | 3.49 ± 0.09 | 1.10 ± 0.05 | 1149 | 1150 |
11 | 4-Terpineol | 12.73 | 0.64 ± 0.03 | 0.00 | 1177 | 1175 |
12 | α-Terpineol | 13.44 | 0.58 ± 0.02 | 0.42 ± 0.01 | 1188 | 1190 |
13 | trans-Carveol | 13.89 | 1.52 ± 0.06 | 0.95 ± 0.03 | 1215 | 1213 |
14 | Pulegone | 15.21 | 0.82 ± 0.03 | 0.00 | 1233 | 1231 |
15 | trans-chrysanthenyl acetate | 15.57 | 3.02 ± 0.08 | 0.11 ± 0.01 | 1235 | 1236 |
16 | Carvone | 15.74 | 7.80 ± 0.16 | 3.01 ± 0.12 | 1239 | 1241 |
17 | Bornyl acetate | 16.90 | 0.11 ± 0.01 | 0.04 ± 0.01 | 1254 | 1257 |
18 | Thymol | 17.40 | 0.51 ± 0.02 | 0.19 ± 0.01 | 1290 | 1291 |
19 | 2-Adamantanone | 17.73 | 0.84 ± 0.03 | 0.04 ± 0.01 | 1311 | 1314 |
20 | trans-sabinenehydrate acetate | 24.39 | 1.04 ± 0.05 | 0.09 ± 0.01 | 1577 | 1574 |
Sesquiterpene hydrocarbons | ||||||
21 | α-Cubebene | 19.25 | 0.23 ± 0.01 | 0.10 ± 0.01 | 1351 | 1353 |
22 | α-Ylangene | 20.47 | 0.12 ± 0.01 | 0.07 ± 0.00 | 1373 | 1371 |
23 | α-Duprezianene | 23.34 | 0.26 ± 0.01 | 0.14 ± 0.01 | 1387 | 1384 |
24 | Davana ether-1 | 24.90 | 1.16 ± 0.09 | 0.23 ± 0.01 | 1433 | 1430 |
25 | Spirolepechinene | 25.22 | 0.36 ± 0.02 | 0.08 ± 0.00 | 1451 | 1449 |
26 | Dihydro-β-agarofuran | 25.99 | 0.22 ± 0.01 | 0.06 ± 0.00 | 1503 | 1505 |
27 | γ-Cadinene | 26.22 | 0.32 ± 0.02 | 0.09 ± 0.01 | 1513 | 1515 |
28 | α-Cadinene | 26.39 | 0.73 ± 0.02 | 0.26 ± 0.01 | 1537 | 1539 |
29 | α-Cadinene | 27.14 | 0.22 ± 0.01 | 0.05 ± 0.00 | 1538 | 1535 |
Oxygenated Sesquiterpenes | ||||||
30 | Widdrol hydroxyether | 19.94 | 0.00 | 0.06 ± 0.00 | 1479 | 1480 |
31 | 6-epi-shyobunol | 26.97 | 0.79 ± 0.02 | 0.21 ± 0.01 | 1517 | 1516 |
32 | E-Nerolidol | 28.27 | 0.87 ± 0.02 | 0.00 | 1563 | 1560 |
33 | Spathulenol | 28.81 | 0.28 ± 0.01 | 0.04 ± 0.00 | 1578 | 1590 |
34 | Caryophyllene oxide | 28.93 | 0.56 ± 0.02 | 0.11 ± 0.00 | 1583 | 1581 |
35 | Davanone | 29.65 | 0.41 ± 0.01 | 0.13 ± 0.01 | 1587 | 1585 |
36 | Cubenol | 31.39 | 1.17 ± 0.06 | 0.23 ± 0.01 | 1646 | 1645 |
37 | Calarene epoxide | 31.81 | 3.79 ± 0.08 | 1.68 ± 0.08 | 1671 | 1670 |
38 | α-Bisabolol | 32.21 | 5.77 ± 0.11 | 1.11 ± 0.07 | 1685 | 1687 |
39 | epi-Nootkatol | 32.48 | 0.09 ± 0.01 | 0.00 | 1699 | 1601 |
40 | Juniper camphor | 33.07 | 0.37 ± 0.01 | 0.00 | 1700 | 1703 |
41 | Drimenol | 33.24 | 0.67 ± 0.03 | 0.13 ± 0.01 | 1767 | 1768 |
42 | Hexahydrofarnesyl acetone | 38.42 | 1.58 ± 0.07 | 0.54 ± 0.02 | 1845 | 1843 |
43 | Farnesyl acetone C | 40.76 | 1.29 ± 0.06 | 0.11 ± 0.01 | 1921 | 1924 |
Diterpene hydrocarbons | ||||||
44 | Cembrene | 36.89 | 0.33 ± 0.02 | 0.00 | 1937 | 1939 |
Oxygenated Diterpenes | ||||||
45 | Phytol | 46.98 | 2.99 ± 0.08 | 0.14 ± 0.01 | 1942 | 1945 |
Carotenoid derived compounds | ||||||
46 | Theaspirane B | 18.08 | 0.21 ± 0.01 | 0.07 ± 0.00 | 1302 | 1300 |
47 | α-Ionone | 25.04 | 0.28 ± 0.02 | 0.04 ± 0.00 | 1430 | 1432 |
Isothiocyanates | ||||||
48 | Butyl isothiocyanate | 4.43 | 4.77 ± 0.10 | 6.84 ± 0.13 | 943 | 941 |
49 | Isobutyl isothiocyanate | 5.01 | 1.55 ± 0.05 | 7.99 ± 0.17 | 978 | 976 |
50 | Benzyl isothiocyanate | 11.56 | 4.88 ± 0.07 | 14.08 ± 0.26 | 1367 | 1369 |
51 | m-Tolyl isothiocyanate | 20.93 | 35.30 ± 0.33 | 55.41 ± 0.46 | 1970 | 1972 |
Aliphatic hydrocarbons | ||||||
52 | n-Docosane | 52.46 | 0.00 | 0.08 ± 0.00 | 2200 | 2200 |
53 | n-Tricosane | 57.84 | 0.17 ± 0.01 | 0.16 ± 0.01 | 2300 | 2300 |
Total | 94.72 | 97.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-ElGawad, A.M.; Assaeed, A.M.; El Gendy, A.E.-N.G.; Dar, B.A.; Elshamy, A.I. Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium. Plants 2023, 12, 110. https://doi.org/10.3390/plants12010110
Abd-ElGawad AM, Assaeed AM, El Gendy AE-NG, Dar BA, Elshamy AI. Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium. Plants. 2023; 12(1):110. https://doi.org/10.3390/plants12010110
Chicago/Turabian StyleAbd-ElGawad, Ahmed M., Abdulaziz M. Assaeed, Abd El-Nasser G. El Gendy, Basharat A. Dar, and Abdelsamed I. Elshamy. 2023. "Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium" Plants 12, no. 1: 110. https://doi.org/10.3390/plants12010110
APA StyleAbd-ElGawad, A. M., Assaeed, A. M., El Gendy, A. E. -N. G., Dar, B. A., & Elshamy, A. I. (2023). Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium. Plants, 12(1), 110. https://doi.org/10.3390/plants12010110