Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review
Abstract
:1. Stevia rebaudiana (Bertoni)
1.1. Botanical Description
1.2. Applications
2. Propagation of Stevia rebaudiana (Bertoni)
3. Stevia Tissue Culture Techniques
4. Callus and Suspension Cultures
5. Direct Organogenesis
6. Genetic Variability
7. Elicitation
7.1. Physical Elicitors
7.1.1. Light
7.1.2. Temperature
7.2. Chemical Elicitors
7.2.1. Plant Growth Regulators
7.2.2. Complex Organic Extracts
Type of Elicitors Used | Effects | References |
---|---|---|
Salicylic acid | Promotion of callus growth and accumulation of rebaudioside A | Golkar et al., 2019 [40] |
Improvement of stevioside and rebaudioside A production and KA13H, UGT74G1 genes expression | Tahmasi et al., 2017 [81] | |
Methyl jasmonate | Enhancement of stevioside production in shoot cultures | Bayraktar et al., 2018 [83] |
Gibberellic acid | Optimization of biomass production from adventitious root culture and accumulation of polyphenolics and SGs | Ahmad et al., 2020a [85] |
Promotive role in enhancing stevioside content in calluses | Hendawey and Abo El Fadl, 2014 [84] | |
Casein hydrolysate | An increase in stevioside and rebaudioside A content in callus culture | Hsing et al., 1983 [88] |
Enhancement of in vitro shoot regeneration and multiplication | Sridhar et al., 2014 [86] | |
Chitosan | Acceleration of shoot production and biomass accumulation | Bayraktar et al., 2016; Bayraktar et al., 2018 [82,83] |
Alginate | High stevioside accumulation | Bayraktar et al., 2016 [82] |
Yeast extract | Improvement of stevioside production | Bayraktar et al., 2016 [82] |
Coconut water | Enhancement of shoot growth and development | Sridhar et al., 2014 [86] |
Malt extract | Induction of shoots and multiplication | Sridhar et al., 2014 [86] |
Proline | Induction of callus growth and stevioside accumulation in callus culture and decrease in malondialdehyde content | Hendawey and Abo El Fadl, 2014 [84] |
Improvement of biomass yield and SGs production in the callus and suspension cultures | Gupta et al., 2015 [98] | |
Glutamine | Induction of greenish, healthy nodular calli with embryogenic potential. | Das and Mandal, 2010 [99] |
Increase in shoot biomass and chlorophyll content | Thilakavathy and Jagadeesan, 2017 [100] | |
Effect on UGT74G1 and UGT76G1 gene expression and steviol glycosides accumulation | Esmaeili et al., 2018 [101] | |
Creatine lysinate | Beneficial effects on growth parameters and phenol and flavonoid accumulation in in vitro cultivated plants | Miladinova-Georgieva et al., 2022 [102] |
Glucose | Enhancement of stevioside content in callus cultures | Hendawey and Abo El Fadl, 2014 [84] |
Polyethylene glycol | Improvement of biomass yield and SGs production in the callus and suspension cultures | Gupta et al., 2015 [98] |
NaCl and Na2CO3 | Reduction in the growth and development of callus and suspension cultures; Increase in the concentration of SGs | Gupta et al., 2014 [103] |
NaCl | Increase of antioxidant capacity, hydroxycinnamic acid and total soluble sugar content in in vitro plantlets and up-regulation of several genes (CMS, CMK, HDR and UGT76G1) encoding key enzymes of the SGs biosynthetic pathways | Lucho et al., 2019 [104] |
7.2.3. Amino Acids
7.3. Other Organic Components
Sodium Compounds
8. Nanoparticles
9. Effect of Elicitors on Antioxidant Activity in S. rebaudiana
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Peteliuk, V.; Rybchuk, L.; Bayliak, M.; Storey, K.B.; Lushchak, O. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J. 2021, 20, 1412–1430. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.T.; Islam, M.R.; Roy, P.K.; Mamun, A.N.K.; Islam, M.A. In vitro clonal propagation of Stevia rebaudiana Bertoni through node and shoot tip culture. Nucl. Sci. Appl. 2014, 23, 61–65. [Google Scholar]
- Lewis, W.H.; Rawat, A.S.; Pharswan, A.S.; Nautiyal, M.C.; Kostermans, A.J.G.H. Notes on economic plants. Econ. Bot. 1992, 46, 336–337. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.F.Y. Separation and determination of Stevia sweeteners by capillary electrophoresis and high performance liquid chromatography. J. Liq. Chromatogr. 1995, 18, 1703–1719. [Google Scholar] [CrossRef]
- Chalapathi, M.V.; Thimmegowda, S.; Sridhara, S.; Parama, V.R.; Prasad, T.G. Natural non-calorie sweetener stevia (Stevia rebaudiana Bertoni)-A future crop of India. Crop Res.-Hisar 1997, 14, 347–350. [Google Scholar]
- Ahmed, M.B.; Salahin, M.; Karim, R.; Razvy, M.A.; Hannan, M.M.; Sultana, R.; Islam, R. An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. Am.-Eurasian J. Sci. Res. 2007, 2, 121–125. [Google Scholar]
- Ceunen, S.; Geuns, J.M. Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni). Plant Sci. 2013, 198, 72–82. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Capecka, E.; Tuleja, M.; Konieczny, R. Synthesis and production of steviol glycosides: Recent research trends and perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3883–3900. [Google Scholar] [CrossRef]
- Hendawey, M.H.; El-Fadl, R.E.A.; El-Din, T.A.S. Biochemical Role of Some Nanoparticles in the Production of Active Constituents in Stevia Rebaudiana L. Callus. Life Sci. J. 2015, 12, 144–156. [Google Scholar]
- Geuns, J.M. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef]
- Bhosle, S. Commercial cultivation of Stevia rebaudiana. Agrobios Newslett. 2004, 3, 43–45. [Google Scholar]
- Sumon, M.H.; Mostofa, M.; Jahan, M.S.; Kayesh, M.E.H.; Haque, M.A. Comparative efficacy of powdered form of Stevia (Stevia rebaudiana Bertoni) leaves and glimepiride in induced diabetic rats. Bangl. J. Vet. Med. 2008, 6, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Bespalhok-Filho, J.C.; Hattori, K. Embryogenic callus formation and histological studies from Stevia rebaudiana (Bert.) Bertoni floret explants. Rev. Bras. Fisiol. Veg. 1997, 9, 185–188. [Google Scholar]
- Handro, W.; Ferreira, C.M. Stevia rebaudiana (Bert.) Bertoni: Production of Natural Sweeteners. In Medicinal and Aromatic Plants II; Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 7, pp. 468–487. [Google Scholar]
- Wolwer-Rieck, U. The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: A review. J. Agric. Food Chem. 2012, 60, 886–895. [Google Scholar] [CrossRef]
- Razak, U.N.A.A.; Ong, C.B.; Yu, T.S.; Lau, L.K. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Braz. Arch. Biol. Technol. 2014, 57, 23–28. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Esmaeili, S.A.; Abdollahi, E.; Sahebkar, A. A review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Curr. Pharm. Des. 2017, 23, 1616–1622. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, J.C.; Moguel-Ordonez, Y.B.; Segura-Campos, M.R. Biological activity of Stevia Rebaudiana Bertoni and their relationship to health. Crit. Rev. Food Sci. Nutr. 2015, 57, 2680–2690. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, V.; Malhotra, N. Chapter 11—Stevia rebaudiana. In Himalayan Medicinal Plants—Advances in Botany, Production & Research; Malhotra, N., Singh, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 199–221. [Google Scholar] [CrossRef]
- Megeji, N.W.; Kumar, J.K.; Sing, V.; Kaul, V.K.; Ahuja, P.S. Introducing Stevia rebaudiana, a natural zero-calorie sweetener. Curr. Sci. 2005, 88, 801–804. Available online: http://ihbt.csircentral.net/id/eprint/685 (accessed on 23 December 2022).
- Jain, P.; Kachhwaha, S.; Kothari, S. Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Sci. Hortic. 2009, 119, 315–319. [Google Scholar] [CrossRef]
- Felippe, G.M.; Lucas, N.M.C. Estudo da viabilidade dos frutos de Stevia rebaudiana Bert. Hoehnea 1971, 1, 95–105, (In Portuguese with English abstract). [Google Scholar]
- Toffler, F.; Orio, O.A. Acceni sulla pin ata tropicale ‘Kaa-he-e’ ou ‘erba dolce’. Rev. Soc. Sci. Aliment 1981, 4, 225–230. [Google Scholar]
- Tadhani, M.B.; Subhash, R. Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. Int. J. Med. Sci. 2006, 6, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G. Direct organogenesis of Stevia rebaudiana Bertoni using thin cell layer (TCL) method. Sugar Tech 2016, 18, 424–428. [Google Scholar] [CrossRef]
- Nakamura, S.; Tamura, Y. Variation in the main glycosides of Stevia (Stevia rebaudiana Bertoni). Jpn. J. Trop. Agric. 1985, 29, 109–116. [Google Scholar]
- Sakaguchi, M.; Kan, T. Japanese researches on Stevia rebaudiana Bertoni and stevioside. Cienc. Cult. 1982, 34, 235–248. [Google Scholar]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Ramírez-Madero, G.; Hernández-Rincón, E.U. Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. S. Afr. J. Bot. 2016, 106, 238–243. [Google Scholar] [CrossRef]
- Hussain, A.; Qarshi, I.A.; Nazir, H.; Ullah, I. Plant tissue culture: Current status and opportunities. Chapter 1. In Recent Advances in Plant In Vitro Culture; Leva, A., Rinaldi, L., Eds.; InTech Open: London, UK, 2012; Volume 6, pp. 1–28. [Google Scholar] [CrossRef]
- Kazmi, A.; Khan, M.A.; Mohammad, S.; Ali, A.; Kamil, A.; Arif, M.; Ali, H. Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind. Crops Prod. 2019, 139, 111530. [Google Scholar] [CrossRef]
- Handro, W.; Hell, K.G.; Kerbauy, G. Tissue culture of Stevia rebaudiana, a sweetening plant. Planta Med. 1977, 32, 115–117. [Google Scholar] [CrossRef]
- Yang, Y.W.; Chang, W.C. In vitro plant regeneration from leaf explants of Stevia rebaudiana Bertoni. Z. Pflanzenphysiol. 1979, 93, 337–343. [Google Scholar] [CrossRef]
- Yang, Y.; Hsing, Y.; Chang, W. Clonal propagation of Stevia rebaudiana Bertoni through axillary shoot proliferation in vitro. Bot. Bull. Acad. Sin. 1981, 22, 7–62. [Google Scholar]
- Wada, Y.; Tamura, T.; Kodama, T.; Yamaki, T.; Uchida, Y. Callus cultures and morphogenesis of Stevia rebaudiana Bertoni. JOCS 1981, 30, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Nakamura, S.; Fukui, H.; Tabata, M. Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture. Plant Cell Rep. 1984, 3, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Sivaram, L.; Mukundar, U. In vitro Culture Studies on Stevia rebaudiana. In Vitro Cell. Dev. Biol. Plant. 2003, 39, 520–523. [Google Scholar] [CrossRef]
- Das, K.; Dang, R.; Rajasekharan, P.E. Establishment and maintenance of callus of Stevia rebaudiana Bertoni under aseptic environment. Nat. Prod. Radiance 2006, 5, 373–376. [Google Scholar]
- Röck-Okuyucu, B.; Bayraktar, M.; Akgun, I.H.; Gurel, A. Plant growth regulator effects on in vitro propagation and stevioside production in Stevia rebaudiana Bertoni. Hort. Sci. 2016, 51, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Golkar, P.; Moradi, M.; Garousi, G.A. Elicitation of Stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech 2019, 21, 569–577. [Google Scholar] [CrossRef]
- Singh, M.; Saharan, V.; Dayma, J.; Rajpurohit, D.; Sen, Y.; Sharma, A. In vitro propagation of Stevia rebaudiana (Bertoni): An overview. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.; Bera, T.; Bhatia, S.; Sharma, K.; Dahiya, R. Somatic embryogenesis and organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bera, T., Ed.; Academic Press: Boston, MA, USA, 2015; Volume 6, pp. 209–230. [Google Scholar] [CrossRef]
- Desai, P.; Desai, S.; Rafaliya, R.; Patil, G. Plant tissue culture: Somatic embryogenesis and organogenesis. In Advances in Plant Tissue Culture; Chandra Rai, A., Kumar, A., Modi, A., Singh, M., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2022; pp. 109–130. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Zayova, E.; Trendafil, N.; Stancheva, I. Callus via shoot organogenesis and plant regeneration of Stevia rebaudiana Bertoni. Proc. Acad. Bulg. Sci. 2022, 75, 620–628. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Handro, W. Production, maintenance and plant regeneration from cell suspension cultures of Stevia rebaudiana (Bert.) Bertoni. Plant Cell Rep. 1988, 7, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Chang Yeon, Y.; Young Am., C. In vitro Propagation of Stevia rebaudiana Bertoni. Korean J. Crop Sci. 1984, 29, 102–107. [Google Scholar]
- Ferreira, C.M.; Handro, W. Some morphogenetic responses in leaf explants of Stevia rebaudiana cultured in vitro. Rev. Bras. Bot. 1987, 10, 113–116. [Google Scholar]
- Flachsland, E.; Mroginski, L.; Davina, J. Regeneration of plants from anthers of Stevia rebaudiana Bertoni (Compositae) cultivated in vitro. Biocell 1996, 20, 87–90. [Google Scholar]
- Ahmad, N.; Fazal, H.; Zamir, R.; Khalil, S.A.; Abbasi, B.H. Callogenesis and shoot organogenesis from flowers of Stevia rebaudiana (Bert.). Sugar Tech 2011, 13, 174–177. [Google Scholar] [CrossRef]
- Godoy-Hernández, G.; Vázquez-Flota, F.A. Estimation of Cell Division and Cell Expansion. In Methods in Molecular Biology, Plant Cell Culture Protocols, 2nd ed.; Loyola-Vargas, V.M., Vázquez-Flota, F., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2006; Volume 318, pp. 51–58. [Google Scholar]
- Gunasena, M.D.; Senarath, W.T.P.S.K. In vitro plant regeneration of Stevia rebaudiana through indirect organogenesis. Int. J. Bot. Stud. 2019, 4, 199–203. Available online: http://dr.lib.sjp.ac.lk/handle/123456789/10241 (accessed on 3 December 2019).
- Khalil, S.A.; Zamir, R.; Ahmad, N. Selection of suitable propagation method for consistent plantlets production in Stevia rebaudiana (Bertoni). Saudi J. Biol. Sci. 2014, 21, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tissue cultures. Physiol. Plant 1967, 51, 100–127. [Google Scholar] [CrossRef]
- Mathur, S.; Shekhawat, G.S. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: An in vitro approach for production of stevioside. Acta Physiol. Plant 2013, 35, 931–939. [Google Scholar] [CrossRef]
- Hwang, S.J. Rapid in vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J. Plant Biol. 2006, 49, 267–270. [Google Scholar] [CrossRef]
- Thiyagarajan, M.; Venkatachalam, P. Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: Pharmaceutically important and antidiabetic medicinal herb. Ind. Crops Prod. 2012, 37, 111–117. [Google Scholar] [CrossRef]
- Khan, A.; Jayanthi, M.; Gantasala, N.P.; Bhooshan, N.; Rao, U. A rapid and efficient protocol for in vitro multiplication of genetically uniform Stevia rebaudiana (Bertoni). Indian J. Exp. Biol. 2016, 54, 477–481. [Google Scholar] [PubMed]
- Gamborg, O.L.; Miller, R.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, H.; Fujioka, N.; Kohda, H.; Yamasaki, K.; Taniguchi, K.; Tanaka, R. Studies on the tissue culture of Stevia rebaudiana and its components; (II). Induction of shoot primordia. Planta Med. 1986, 4, 321–323. [Google Scholar] [CrossRef]
- Akbari, F.; Arminian, A.; Kahrizi, D.; Fazeli, A. Effect of nitrogen sources on some morphological characteristics of in vitro Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2017, 63, 107–111. [Google Scholar] [CrossRef]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theoret. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Saker, M.M.; Bekheet, S.A.; Taha, H.S.; Fahmy, A.S.; Moursy, H.A. Detection of somaclonal variations in tissue culture-derived date palm plants using isoenzyme analysis and RAPD fingerprints. Biol. Plant 2020, 43, 347–351. [Google Scholar] [CrossRef]
- Martins, M.; Sarmento, D.; Oliveira, M. Genetic stability of micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep. 2004, 23, 492–496. [Google Scholar] [CrossRef]
- George, E.F.; Sherrington, P.D. Plant Propagation by Tissue Culture; Exegetics Ltd.: Eversley, UK, 1984; pp. 39–71. [Google Scholar]
- Tamura, Y.; Nakamura, S.; Fukui, H.; Tabata, M. Comparison of Stevia plants grown from seeds, cuttings and stem tip cultures for growth and sweet diterpene glycosides. Plant Cell Rep. 1984, 3, 180–182. [Google Scholar] [CrossRef]
- Ostry, M.E.; Hacket, W.; Michler, C.; Serres, R.; Mccown, B. Influence of regeneration method and tissue culture on the frequency of somatic variation in Populus to infection by Septoria musiva. Plant Sci. 1994, 97, 209–215. [Google Scholar] [CrossRef]
- Singh, P.; Dwivedi, P.; Atri, N. In vitro shoot multiplication of stevia and assessment of stevioside content and genetic fidelity of the regenerates. Sugar Tech. 2014, 6, 430–439. [Google Scholar] [CrossRef]
- Moktaduzzaman, M.; Mahbubur Rahman, S.M. Regeneration of Stevia rebaudiana and analysis of somaclonal variation by RAPD. Biotechnology 2009, 8, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Soliman, H.I.A.; Metwali, E.M.R.; Almaghrabi, O.A.H. Micropropagation of Stevia rebaudiana Bertoni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol. 2014, 31, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Modi, A.R.; Sharma, V.; Patil, G.; Singh, A.S.; Subhash, N.; Kumar, N. Micropropagation and biomass production of true-to-type Stevia rebaudiana Bertoni. Methods Mol. Biol. 2016, 1391, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Jadczak, P.; Kulpa, D.; Bihun, M.; Przewodowski, W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tiss. Org. Cult. 2019, 139, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Rab, A.; Ahmad, N. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J. Photochem. Photobiol. B 2016, 154, 51–56. [Google Scholar] [CrossRef]
- Nakonechnaya, O.; Gafitskaya, I.; Burkovskaya, E.; Khrolenko, Y.; Grishchenko, O.; Zhuravlev, Y.; Subbotin, E.; Kulchin, Y. Effect of light intensity on the morphogenesis of Stevia rebaudiana under in vitro conditions. Russ. J. Plant Physiol. 2019, 66, 656–663. [Google Scholar] [CrossRef]
- Idrees, M.; Sania, B.; Hafsa, B.; Kumari, S.; Khan, H.; Fazal, H.; Ahmad, I.; Akbar, F.; Ahmad, N.; Ali, S.; et al. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.). C. R. Biol. 2018, 341, 334–342. [Google Scholar] [CrossRef]
- Shulgina, A.A.; Kalashnikova, E.A.; Tarakanov, I.G.; Kirakosyan, R.N.; Cherednichenko, M.Y.; Polivanova, O.B.; Baranova, E.N.; Khaliluev, M.R. Influence of light conditions and medium composition on morphophysiological characteristics of Stevia rebaudiana Bertoni in vitro and in vivo. Horticulturae 2021, 7, 195. [Google Scholar] [CrossRef]
- Shamloo, M.; Babawale, E.A.; Furtado, A.; Henry, R.J.; Eck, P.K.; Jones, P.J.H. Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci. Rep. 2017, 7, 9133. [Google Scholar] [CrossRef] [Green Version]
- De Capite, L. Action of Light and Temperature on Growth of Plant Tissue Cultures In vitro. Am. J. Bot. 1955, 42, 869–873. [Google Scholar] [CrossRef]
- Mubarak, M.H.; Belal, A.H.; Geddawy, I.M.; Eman, I.; Nasr, M.I. Micropropagation of Stevia rebaudiana in vitro. In Proceedings of the Meeting the Challenges of Sugar Crops & Integrated Industries in Developing Countries, Al Arish, Egypt, 11–14 September 2008; pp. 293–298. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S.; Han, Y.; Yuan, H.; Gu, C.; Wang, Z. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol. Biochem. 2015, 86, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Tahmasi, S.; Garoosi, G.; Ahmadi, J.; Farjaminezhad, R. Effect of salicylic acid on stevioside and rebaudioside A production and transcription of biosynthetic genes in in vitro culture of Stevia rebaudiana. Iran. J. Genet. Plant Breed. 2017, 6, 1–8. [Google Scholar]
- Bayraktar, M.; Naziri, E.; Akgun, I.H.; Karabey, F.; Ilhan, E.; Akyol, B.; Gurel, A. Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell Tissue Org. Cult. 2016, 127, 289–300. [Google Scholar] [CrossRef]
- Bayraktar, M.; Naziri, E.; Karabey, F.; Akgun, I.H.; Bedir, E.; Bärbel, R.O.; Gürel, A. Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. Int. J. Second. Metab. 2018, 5, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Hendawey, M.H.; Abo El Fadl, R.E. Biochemical studies on the production of active constituents in Stevia rebaudiana L. callus. Glob. J. Biotechnol. Biochem. 2014, 9, 76–93. [Google Scholar] [CrossRef]
- Ahmad, A.; Ali, H.; Khan, H.; Begam, A.; Khan, S.; Ali, S.S.; Abbasi, B.H. Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Plants 2020, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, T.; Aswath, C. Influence of additives on enhanced in vitro shoot multiplication of Stevia rebaudiana (Bert.)—An important anti diabetic medicinal plant. Am. J. Plant Sci. 2014, 5, 192–199. [Google Scholar] [CrossRef] [Green Version]
- George, E.F.; Hall, M.A.; Klerk, G.J.D. The components of plant tissue culture media I: Macro-and micro-nutrients. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., de Klerk, G.J., Eds.; Springer: Dordrecht, Germany, 2008; Volume 1, pp. 65–113. [Google Scholar] [CrossRef]
- Hsing, Y.I.; Su, W.F.; Chang, W.C. Accumulation of stevioside andrebaudioside A in callus culture of Stevia rebaudiana Bertoni. Bot. Bull. Acad. Sin. 1983, 24, 115–119. [Google Scholar]
- Angelova, Z.; Georgiev, S.; Roos, W. Elicitation of plants. Biotechnol. Biotechnol. Equip. 2006, 20, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Baenas, N.; García-Viguera, C.; Moreno, D.A. Elicitation: A tool for enriching the bioactive composition of foods. Molecules 2014, 19, 13541–13563. [Google Scholar] [CrossRef] [Green Version]
- Benhamou, N.; Thériault, G. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol. Mol. Plant Pathol. 1992, 41, 33–52. [Google Scholar] [CrossRef]
- Zhang, C.H.; Fevereiro, P.S.; He, G.; Chen, Z. Enhanced paclitaxel productivity and release capacity of Taxus chinensis cell suspension cultures adapted to chitosan. Plant Sci. 2007, 172, 158–163. [Google Scholar] [CrossRef]
- Tocci, N.; Ferrari, F.; Santamaria, A.R.; Valletta, A.; Rovardi, I.; Pasqua, G. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat. Prod. Res. 2010, 24, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Wiktorowska, E.; Długosz, M.; Janiszowska, W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme Microb. Technol. 2010, 46, 14–20. [Google Scholar] [CrossRef]
- Nanayakkara, N.P.; Klocke, J.A.; Compadre, C.M.; Hussain, R.A.; Pezzuto, J.M.; Kinghorn, A.D. Characterization and feeding deterrent effects on the aphid, Schizaphis graminum, of some derivatives of the sweet compounds, stevioside and rebaudioside A. J. Nat. Prod. 1987, 50, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Brandle, J.E.; Starratt, A.N.; Gijzen, M. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 1998, 78, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Richman, A.S.; Gijzen, M.; Starratt, A.N.; Yang, Z.; Brandle, J.E. Diterpene synthesis in Stevia rebaudiana: Recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant J. 1999, 19, 411–421. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, S.; Saxena, S. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl. Biochem. Biotechnol. 2015, 176, 863–874. [Google Scholar] [CrossRef]
- Das, A.; Mandal, N. Enhanced development of embryogenic callus in Stevia rebaudiana Bert. by additive and amino acids. Biotechnology 2010, 9, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Thilakavathy, R.; Jagadeesan, M. Caulogenesis and chlorophyll content in Stevia rebaudiana (Bert) Bertoni by using glutamine in the culture medium. Int. J. Sci. Res. 2017, 6, 1961–1963. Available online: https://www.ijsr.net/get_abstract.php?paper_id=ART20173663 (accessed on 1 May 2017).
- Esmaeili, F.; Ghaheri, M.; Kahrizi, D.; Mansouri, M.; Safavi, S.M.; Ghorbani, T.; Vaziri, S. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2018, 64, 1–5. [Google Scholar] [CrossRef]
- Miladinova-Georgieva, K.; Geneva, M.; Petrova, M.; Kirova, E.; Vezenkov, L. Effect of creatine and creatine lysinate on the in vitro cultivation and antioxidant potential of Stevia rebaudiana Bertoni and Leontopodium alpinum Cass. Res. J. Biotech. 2022, 17, 148–158. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, S.; Saxena, S. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production. Appl. Biochem. Biotechnol. 2014, 172, 2894–2906. [Google Scholar] [CrossRef] [PubMed]
- Lucho, S.R.; do Amaral, M.N.; Auler, P.A.; Bianchi, V.J.; Ferrer, M.A.; Calderón, A.A.; Braga, E.J.B. Salt stress-induced changes in in vitro cultured Stevia rebaudiana Bertoni: Effect on metabolite contents, antioxidant capacity and expression of steviol glycosides-related biosynthetic genes. J. Plant Growth Regul. 2019, 38, 1341–1353. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salachna, P.; Byczyn’ska, A.; Zawadzin’ska, A.; Piechocki, R.; Mizielin´ska, M. Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 2019, 9, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, M.; Mahfud, C.; Risuleo, G.; Jadid, N. Nanotechnology in plant metabolite improvement and in animal welfare. Appl. Sci. 2022, 12, 838. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zjao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Salehi, H. Silver nanoparticles: An influential element in plant nanobiotechnology. Mol. Biotechnol. 2016, 58, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Ruttkay-Nedecky, B.; Krystofova, O.; Nejdl, L.; Adam, V. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnol. 2017, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, A.; Fernández, L.; Gutiérrez, D.; Iglesias, B.; Rodríguez, A.; García, P. Methicillin-resistant Staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages. J. Clin. Microbiol. 2019, 57, e01006-19. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Ilyas, S.; Naz, S. Nanotechnology and plant tissue culture. In Nanoagronomy; Javad, S., Ed.; Springer: Cham, Switzerland, 2020; pp. 23–35. [Google Scholar] [CrossRef]
- Desai, C.V.; Desai, H.B.; Suthar, K.P.; Singh, D.; Patel, R.M.; Taslim, A. Phytotoxicity of zinc nanoparticles and its influence on stevioside production in Stevia rebaudiana Bertoni. Appl. Biol. Res 2015, 17, 1–7. [Google Scholar] [CrossRef]
- Desai Heta, B.; Desai Charmi, V.; Desai Charmi, P.; Singh, D.; Suthar, H. Effect of magnesium nanoparticles on physiology and stevioside in Stevia rebaudiana Bertoni. Eur. J. Biomed. Pharm. Sci. 2017, 4, 642–646. [Google Scholar]
- Javed, R.; Mohamed, A.; Yücesan, B.; Gürel, E.; Kausar, R.; Zia, M. CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss. Org. Cult. 2017, 131, 611–620. [Google Scholar] [CrossRef]
- Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem. 2017, 110, 94–99. [Google Scholar] [CrossRef]
- Ghazal, B.; Saif, S.; Farid, K.; Khan, A.; Rehman, S.; Reshma, A.; Fazal, H.; Ali, M.; Ahmad, A.; Rahman, L.; et al. Stimulation of secondary metabolites by copper and gold nanoparticles in submerge adventitious root cultures of Stevia rebaudiana (Bert.). IET Nanobiotechnol. 2018, 12, 569–573. [Google Scholar] [CrossRef]
- Castro-González, C.G.; Sánchez-Segura, L.; Gómez-Merino, F.C.; Bello-Bello, J.J. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: Transport and accumulation. Sci. Rep. 2019, 9, 10372. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, M.; Asghari, S.; Gerami, M.; Ramezani, F.; Abdolmaleki, M.K. Effect of silver nanoparticle treatment on the expression of key genes involved in glycosides biosynthetic pathway in Stevia rebaudiana B. plant. Sugar Tech 2020, 22, 518–527. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Javed, R.; Adeel, M.; Rizwan, M.; Ao, Q.; Yang, Y. Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candy leaf (Stevia rebaudiana). Molecules 2020, 25, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Ali, A.; Mohammad, S.; Ali, H.; Khan, T.; Mashwani, Z.; Jan, A.; Ahmad, P. Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell Tissue Organ Cult. 2020, 143, 121–130. [Google Scholar] [CrossRef]
- Javed, R.; Yucesan, B.; Zia, M.; Gurel, E. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni Grown Under ZnO and CuO Nanoparticles Stress. Sugar Tech 2018, 20, 194–201. [Google Scholar] [CrossRef]
- Kruszka, D.; Sawikowska, A.; Kamalabai Selvakesavan, R.; Krajewski, P.; Kachlicki, P.; Franklin, G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 2020, 716, 135361. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Iwanov, I.; Dochev, K.; Ivanova, V.; et al. Improvement of Stevia rebaudiana Bertoni in vitro propagation and steviol glycoside content using aminoacid silver nanofibers. Plants 2022, 11, 2468. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci. Rep. 2018, 8, 16496. [Google Scholar] [CrossRef] [Green Version]
- Ameer, K.; Jiang, G.H.; Amir, R.M.; Eun, J.B. Antioxidant potential of Stevia rebaudiana (Bertoni). In Pathology; Preedy, V.R., Ed.; Academic Press: London, UK, 2020; Chapter 33; pp. 345–356. [Google Scholar] [CrossRef]
- Sadhana, M.; Patel, V.; Subhash, R. In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J. Food Compos. Anal. 2007, 20, 323–329. [Google Scholar] [CrossRef]
- Zayova, E.; Stancheva, I.; Geneva, M.; Petrova, M.; Dimitrova, L. Antioxidant activity of in vitro propagated Stevia rebaudiana Bertoni plants of different origins. Turk. J. Biol. 2013, 37, 106–113. [Google Scholar] [CrossRef]
- Radić, S.; Vujčić, V.; Glogoški, M.; Radić-Stojković, M. Influence of pH and plant growth regulators on secondary metabolite production and antioxidant activity of Stevia rebaudiana (Bert). Period. Biol. 2016, 118, 9–19. [Google Scholar] [CrossRef]
- Dwivedi, S.; Alam, A.; Shekhawat, G.S.; Sharma, V.; Kumari, J. Enzymatic and Non-Enzymatic Behaviour of Stevia rebaudiana (Bertoni) Bertoni Against Fluoride Induced Stress. Int. J. Sci. Knowl. 2016, 4, 69–76. [Google Scholar] [CrossRef]
Nanoparticles | Optimal Concentration | References |
---|---|---|
Fe3O4 NPs
CuO NPs SiO2 NPs | Hendawey et al., 2015 [10] | |
Zn NPs | 200 mg/L | Desai et al., 2015 [114] |
Mg NPs | 1000 mg/L | Desai et al., 2017 [115] |
CuO NPs | 10 mg/L | Javed et al., 2017a [116] |
ZnO NPs | 1 mg/L | Javed et al., 2017b [117] |
AuCu NPs | Ghazal et al., 2018 [118] | |
Ag NPs | 45 mg/L | Golkar et al., 2019 [40] |
Ag NPs | 100 mg/L; 200 mg/L | Castro-González et al., 2019 [119] |
Ag NPs | 40 mM | Ramezani et al., 2020 [120] |
ZnO
CuONPs | 2 mg/L 20 mg/L | Ahmad et al., 2020b [121] |
Fe NPs | 45 μg/L | Khan et al., 2020 [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miladinova-Georgieva, K.; Geneva, M.; Stancheva, I.; Petrova, M.; Sichanova, M.; Kirova, E. Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants 2023, 12, 153. https://doi.org/10.3390/plants12010153
Miladinova-Georgieva K, Geneva M, Stancheva I, Petrova M, Sichanova M, Kirova E. Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants. 2023; 12(1):153. https://doi.org/10.3390/plants12010153
Chicago/Turabian StyleMiladinova-Georgieva, Kamelia, Maria Geneva, Ira Stancheva, Maria Petrova, Mariana Sichanova, and Elisaveta Kirova. 2023. "Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review" Plants 12, no. 1: 153. https://doi.org/10.3390/plants12010153
APA StyleMiladinova-Georgieva, K., Geneva, M., Stancheva, I., Petrova, M., Sichanova, M., & Kirova, E. (2023). Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants, 12(1), 153. https://doi.org/10.3390/plants12010153