Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice
Abstract
:1. Introduction
2. Results
2.1. Target Gene Insertion Site Analysis
2.2. Phenotypic Performance of the Transgenic Lines
2.3. Molecular Variation
2.4. Proteome Analysis
2.5. PRM Validation
3. Discussion
4. Materials and Methods
4.1. Plant Material and Phenotyping
4.2. Detection of Target Gene Insertion Sites and Expression
4.3. Genetic Background Detection Based on SSR Markers
4.4. Protein Extraction and Liquid Chromatography (LC)-MS/MS Quantitative Proteomics
4.5. PRM Analysis
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeigler, R.S.; Barclay, A. The relevance of rice. Rice 2008, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.G.; Zhang, G.R.; Zhang, W.Q.; Hu, Y.; Zhang, J. Biological control of rice insect pests in China. Biol. Control. 2013, 6, 8–20. [Google Scholar] [CrossRef]
- Li, Y.; Hallerman, E.M.; Wu, K.; Peng, Y. Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annu. Rev. Entomol. 2020, 65, 273–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, H.; Lu, Q.; Cai, M.; Xu, C.; Zhou, D.X.; Li, X.; Zhang, Q. Analysis of rice genes induced by striped stem borer (Chilo suppressalis) attack identified a promoter fragment highly specifically responsive to insect feeding. Plant Mol. Biol. 2007, 65, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Di, J.U.; Xueqing, Y.; Ma, D.; Wang, X. Comparative transcriptome analysis between resistant and susceptible rice cultivars responding to striped stem borer (SSB), Chilo suppressalis (Walker) infestation. Front. Physiol. 2018, 9, 1717. [Google Scholar]
- ISAAA. Brief 54: Global status of commercialized biotech/GM crops:2018. In ISAAA Briefs; ISAAA: New York, NY, USA, 2018; Volume 54. [Google Scholar]
- Chen, H.; Tang, W.; Xu, C.; Li, X.; Lin, Y.; Zhang, Q. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor. Appl. Genet. 2005, 111, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ling, L.; Zhang, L.; Wang, K.; Cai, M.; Zhan, M.; Li, C.; Wang, J.; Chen, X.; Lin, Y.; et al. Transgenic bt (Cry1ab/ac) rice lines with different genetic backgrounds exhibit superior field performance under pesticide-free environment. Front. Plant Sci. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Baker, J.M.; Hawkins, N.D.; Ward, J.L.; Lovegrove, A.; Napier, J.A.; Shewry, P.R. A metabolomics study of substantial equivalence of feld-grown genetically modifed wheat. Plant Biotechnol. J. 2010, 4, 381–392. [Google Scholar] [CrossRef]
- Ladics, G.S.; Bartholomaeus, A.; Bregitzer, P. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 2015, 24, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, H.A.; Kleter, G.A.; Notenorn, H.O.; Kok, E.J. Assessment of the food safety issues related to genetically modifed foods. Plant J. 2001, 27, 503–528. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Via, L.E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 1993, 14, 748–750. [Google Scholar] [PubMed]
- Chou, J.; Huang, Y. Differential expression of thaumatin-like proteins in sorghum infested with greenbugs. Z. Nat. C J. Biosci. 2010, 65, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhang, X.; Liu, Y.; Zhang, C.; Xie, Y.; Zhong, J.; Xu, C.; Liu, X. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) cry1ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Anal. Bioanal. Chem. 2017, 409, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Sun, X.; Mumm, R.H. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol. Breed. 2014, 33, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.J.; Zhang, X.; Yang, J.T.; Wang, Z.X. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. Plant J. 2018, 93, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, S.H.; Sax, J.K. Ending event-based regulation of GMO crops. Nat. Biotechnol. 2016, 34, 474–477. [Google Scholar] [CrossRef]
- Fu, W.; Wang, C.; Xu, W.; Zhu, P. Unintended effects of transgenic rice revealed by transcriptome and metabolism. GM Crops Food 2019, 10, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yang, X.; Tzin, V.; Peng, Y.; Li, Y. Plant breeding involving genetic engineering does not result in unacceptable unintended effects in rice relative to conventional cross–breeding. Plant J. 2020, 103, 2236–2249. [Google Scholar] [CrossRef]
- Steiner, H.Y.; Halpin, C.; Jez, J.M.; Kough, J.; Hannah, L.C. Editor’s choice: Evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiol. 2013, 161, 1578–1594. [Google Scholar] [CrossRef] [Green Version]
- Arthur, J.W.; Wilkins, M.R. Using proteomics to mine genome sequences. J. Proteome Res. 2004, 3, 393–402. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Zhao, W.; Hao, J.; Luo, Y.; Tang, X.; Zhang, Y.; Huang, K. Comparative analysis of the proteomic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counterparts. J. Cereal Sci. 2012, 55, 226–233. [Google Scholar] [CrossRef]
- Li, H.; Olson, M.; Lin, G.; Hey, T.; Tan, S.Y.; Narva, K.E. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites. PLoS ONE 2013, 8, e53079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agapito-Tenfen, S.; Vilperte, V.; Benevenuto, R.; Rover, C.; Traavik, T.; Nodari, R. Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC Plant Biol. 2014, 14, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandni, M.; Kathuria, P.C.; Pushpa, D.; Singh, A.B.; Manoj, P. Lack of detectable allergenicity in genetically modified maize containing “cry” proteins as compared to native maize based on in silico & in vitro analysis. PLoS ONE 2015, 10, e0117340. [Google Scholar]
- Cho, J.I.; Park, S.H.; Lee, G.S.; Kim, S.M.; Park, S.C. Current status of gm crop development and commercialization. Korean J. Breed. Sci. 2020, 52, 40–48. [Google Scholar] [CrossRef]
- Ricroch, A.E.; Berge, J.B.; Kuntz, M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol. 2011, 155, 1752–1761. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.Y.; Wang, T. Proteomic evaluation of genetically modified crops: Current status and challenges. Front. Plant Sci. 2013, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Miki, B.; Abdeen, A.; Manabe, Y.; MacDonald, P. Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol. J. 2009, 7, 211–218. [Google Scholar] [CrossRef]
- Schnell, J.; Steele, M.; Bean, J.; Neuspiel, M.; Girard, C.; Dormann, N.; Pearson, C.; Savoie, A.; Bourbonniere, L.; Macdonald, P. A comparative analysis of insertional effects in genetically engineered plants: Considerations for pre-market assessments. Transgenic Res. 2015, 24, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, e8126. [Google Scholar] [CrossRef]
- Takáč, T.; Pechan, T.; Samaj, J. Differential proteomics of plant development. J. Proteom. 2011, 74, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Teng, X.; Ma, W.; Li, F. Knockdown of two Cadherin genes confers resistance to cry2A and cry1C in Chilo suppressalis. Sci. Rep. 2017, 7, 5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chao, L.Z.; Shi, Y.L.; Wen, M.H.; Wang, J.; Zhang, H.L. Genetic diversity of Japonica rice varieties based on SSR markers. Southwest China J. Agric. Sci. 2005, 18, 509–513. [Google Scholar]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Genetically Engineered Crops: Experiences and Prospects; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Oerke, E.C. Estimated crop losses due to pathogens, animal pests and weeds. In Crop Production and Crop Protection; Elsevier: Amsterdam, The Netherlands, 1999; pp. 72–301. [Google Scholar]
- Pandi, V.; Babu, P.S.; Kailasam, C. Prediction of damage and yield caused by rice leaffolder at different crop Periods in a susceptible rice cultivar (IR50). J. Appl. Entomol. 2009, 122, 595–599. [Google Scholar] [CrossRef]
- Ye, R.; Huang, H.; Zhou, Y.; Chen, T.; Lin, Y. Development of insect-resistant transgenic rice with cry1C*-free endosperm. Pest Manag. Sci. 2010, 65, 1015–1020. [Google Scholar] [CrossRef]
- Adamczyk, J.J.; Meredith, W.R. Breeding and genetics genetic basis for variability of Cry1Ac expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the united states. J. Cottonence 2004, 8, 1–14. [Google Scholar]
- Fearing, P.L.; Brown, D.; Vlachos, D.; Meghji, M.; Privalle, L. Quantitative analysis of CryIA (b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Mol. Breed. 1997, 3, 169–176. [Google Scholar] [CrossRef]
- Batista, R.; Saibo, N.; Lourenco, T.; Oliveira, M.M. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc. Natl. Acad. Sci. USA 2008, 105, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Montero, M.; Coll, A.; Nadal, A.; Messeguer, J.; Pla, M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. Plant Biotechnol. J. 2011, 9, 693–702. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Sun, Y.; Tong, Z.; Peng, C.; Chang, L.; Guo, A.; Wang, X. Comparative proteomics of phytase-transgenic maize seeds indicates environmental influence is more important than that of gene insertion. Sci. Rep. 2019, 9, 8219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019, 567, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Gho, H.J.; Giong, H.K. Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice 2013, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, Y.X.; Zhang, N. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 2019, 37, 676–684. [Google Scholar] [CrossRef]
- Kogel, K.H.; Voll, L.M.; Schafer, P. Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc. Natl. Acad. Sci. USA 2010, 107, 6198–6203. [Google Scholar] [CrossRef] [Green Version]
- Valentim-Neto, P.A.; Rossi, G.B.; Anacleto, K.B.; De Mello, C.S.; Balsamo, G.M.; Arisi, A.C. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis. J. Sci. Food Agric. 2016, 96, 927–932. [Google Scholar] [CrossRef]
- Wang, W.; Mauleon, R.; Hu, Z. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding. BMC Plant Biol. 2019, 19, 346. [Google Scholar] [CrossRef]
- Lian, G.; Zhai, X.; Shang, F.; Wang, J. Fine mapping and candidate genes analysis of a major QTL, qPL9, for panicle length in rice (Oryza sativa L.). J. Nanjing Agric. Univ. 2019, 42, 398–405. [Google Scholar]
- Li, S.; Li, W.; Huang, B.; Cao, X.; Zhou, X.; Ye, S.; Li, C.; Gao, F.; Zou, T.; Xie, K.; et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat. Commun. 2013, 4, 2793. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, J.; Zheng, X.; Wu, F.; Lin, Q.; Heng, Y.; Tian, P.; Cheng, Z.; Yu, X.; Zhou, K.; et al. Gw5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 2017, 3, 17043. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, G.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.; Zeng, L.; Xu, E.; Xu, J.; et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 2015, 47, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Rao, Y.; Hu, S.; Yang, Y.; Gao, Z.; Zhang, G.; Liu, J.; Hu, J.; Yan, M.; Dong, G.; et al. Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theor. Appl. Genet. 2011, 123, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Agostinetto, D.; Benemann, D.P.; Cechin, J.; Nohatto, M.A.; Vargas, L. Gene expression related to oxidative stress induced by herbicides in rice. Agron. J. 2019, 111, 1–8. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, J.; Lin, H.; Lin, C.; Gao, J.; Shen, Z. Characterization of transgenic rice expressing fusion protein cry1ab/vip3a for insect resistance. Sci. Rep. 2018, 8, 15788. [Google Scholar] [CrossRef] [Green Version]
- Glen, A.; Evans, C.A.; Gan, C.S.; Cross, S.S.; Hamdy, F.C.; Gibbins, J. Eight-Plex iTRAQ analysis of variant metastatic human prostate cancer cells identifies candidate biomarkers of progression: An exploratory study. Prostate 2010, 70, 1313–1332. [Google Scholar] [CrossRef]
- Nobori, T.; Wang, Y.; Wu, J.; Stolze, S.C.; Tsuda, K. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat. Plants 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Du, W.; Xiong, C.-W.; Ding, J.; Nybom, H.; Ruan, C.-J.; Guo, H. Tandem mass tag based quantitative proteomics of developing sea buckthorn berries reveals candidate proteins related to lipid metabolism. J. Proteome Res. 2019, 18, 1958–1969. [Google Scholar] [CrossRef]
- Wu, Y.; Xiong, Q.; Li, S.; Yang, X.; Ge, F. Integrated proteomic and transcriptomic analysis revealslong noncoding rna hotair promotes hepatocellular carcinoma cell proliferation by regulating opioid growth factor receptor (ogfr). Mol. Cell. Proteom. 2017, 17, 146. [Google Scholar] [CrossRef] [Green Version]
- Septiningsih, E.M.; Trijatmiko, K.R.; Moeljopawiro, S.; Mccouch, S.R. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the oryza sativa variety ir64 and the wild relative o. rufipogon. Theor. Appl. Genet. 2003, 107, 1433–1441. [Google Scholar] [CrossRef]
- Chen, X.; Tao, Y.; Ali, A.; Zhuang, Z.; Wu, X. Transcriptome and proteome profiling of different colored rice reveals physiological dynamics involved in the flavonoid pathway. Int. J. Mol. Sci. 2019, 20, 2463. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.Y.; Chen, M.X.; Ye, N.H.; Shi, L.; Ma, K.L.; Yang, J.F.; Cao, Y.-Y.; Zhang, Y.; Yoshida, T.; Fernie, A.R.; et al. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in arabidopsis seedlings. Plant J. 2017, 91, 518–533. [Google Scholar] [CrossRef] [PubMed]
Compared Sample Name | Up-Regulated Protein | Down-Regulated Protein |
---|---|---|
CH891(1C) vs. CH891 | 239 | 199 |
CH891(2A) vs. CH891 | 168 | 131 |
CH891(1C+2A) vs. CH891 | 198 | 198 |
[CH891(1C) vs. CH891] ∩ [CH891(2A) vs. CH891] | 41 | 33 |
[CH891(1C) vs. CH891] ∩ [CH891(1C+2A) vs. CH891] | 39 | 48 |
[CH891(2A) vs. CH891] ∩ [CH891(1C+2A) vs. CH891] | 52 | 54 |
[CH891(1C) vs. CH891] ∩ [CH891(2A) vs. CH891] ∩ [CH891(1C+2A) vs. CH891] | 22 | 23 |
Protein Symbol | Protein Description | CH891(1C)/CH891 | CH891(2A)/CH891 | CH891(1C+2A)/CH891 |
---|---|---|---|---|
B8A8P2 | 1,4-alpha-D-glucan glucanohydrolase | 0.526 | 0.758 | 0.822 |
A2YUR2 | Tyrosine-protein phosphatase domain-containing protein | 0.493 | 0.581 | 0.603 |
A2YCP9 | Serine hydroxymethyltransferase | 0.543 | 0.593 | 0.654 |
B8AN97 | Nicotinate phosphoribosyltransferase | 0.511 | 0.685 | 0.422 |
B8AC53 | MoCF_biosynth domain-containing protein | 0.591 | 0.665 | 0.659 |
B8BHS8 | J domain-containing protein | 0.490 | 1.200 | 0.593 |
A2ZMS2 | Protease Do-like 5, chloroplast, putative, expressed | 0.643 | 0.656 | 0.748 |
A2ZAG4 | Plant intracellular Ras-group-related LRR protein 5 | 0.624 | 1.011 | 0.599 |
A2ZBX3 | Calcium-dependent protein kinase 24 | 0.567 | 0.574 | 0.812 |
B8BPH4 | UDP-glucose 6-dehydrogenase | 3.608 | 0.961 | 4.989 |
B8AVF1 | OSIGBa0106G07.1 protein | 7.107 | 5.766 | 4.810 |
A2WJU9 | Peptidyl-prolyl cis-trans isomerase | 1.850 | 2.073 | 1.081 |
A2XLE8 | Matrin-type domain-containing protein | 2.063 | 1.591 | 1.319 |
B8AME3 | Ubiquitin family protein, expressed | 4.128 | 2.330 | 4.183 |
B8BCI9 | Fe2OG dioxygenase domain-containing protein | 3.572 | 2.699 | 2.746 |
B8B2Q3 | Glutathione synthetase | 2.445 | 0.709 | 2.754 |
B8APR2 | Putative alcohol dehydrogenase | 6.968 | 6.381 | 0.926 |
A2ZMK7 | C-factor | 3.691 | 2.980 | 1.467 |
B8B9E6 | WD_REPEATS_REGION domain-containing protein | 2.255 | 1.095 | 1.955 |
A2XB60 | Acyl-CoA binding protein-like | 1.705 | 1.482 | 1.832 |
B8BJ06 | EF-hand domain-containing protein | 1.532 | 1.555 | 1.951 |
B8B9C9 | RHOMBOID-like protein | 1.756 | 2.110 | 1.629 |
A2X0W6 | Mitogen-activated protein kinase | 3.280 | 2.389 | 3.729 |
B8B894 | Zeta-carotene desaturase | 0.630 | 0.851 | 0.866 |
B8BG13 | Phosphoglucomutase | 0.510 | 0.990 | 0.741 |
B8ARD8 | UBX domain-containing protein | 0.638 | 0.750 | 0.907 |
Protein Symbol | Peptide Sequence | Retention Time | CH891(1C)/CH891 Ratio | CH891(2A)/CH891 Ratio | CH891(1C+2A)/CH891 Ratio |
---|---|---|---|---|---|
A2XLE8 (ZMAT) | CEICGNHSYWGR | 12.05 | 1.4 | 1.17 | 1.67 |
B8AME3 (UBE) | ALIATAGNVHAAVER | 13.37 | 1.28 | 1.53 | 1.73 |
B8BJ06 (EFHC) | AIEYDNFIECCLTVK | 23.95 | 0.92 | 1.44 | 1.16 |
A2X0W6 (MAPK) | YLHSAEILHR | 10.5 | 0.91 | 1.36 | 0.99 |
B8B9C9 (RHBD) | SNAIEHAHFR | 7.72 | 1.54 | 0.96 | 1.53 |
B8B2Q3 (GSS) | ELAPIFNDLVDR | 25.83 | 0.87 | 1.31 | 1.28 |
A2ZMK7 (CF) | TALNQLTK | 11.64 | 1.8 | 1.37 | 1.64 |
B8BPH4 (UG6D) | ETPAIDVCHGLLGDK | 18.25 | 0.71 | 1.61 | 1.17 |
B8ARD8 (PUX) | AFHFVQPIPR | 17.24 | 0.7 | 0.98 | 0.83 |
A2ZMS2 (PDI) | LVGCDPSYDLAVLK | 21.92 | 0.88 | 0.88 | 0.87 |
A2ZAG4 (PIRLs) | VFDDLIQR | 18.3 | 0.75 | 0.88 | 0.62 |
B8B894 (ZDS) | ALVDPDGALQQVR | 18.22 | 0.39 | 1.06 | 0.41 |
A2YUR2 (PTP) | FIAGGQWR | 15.28 | 0.57 | 0.6 | 0.49 |
B8AN97 (NAPRT) | AYVVPQHVEELLK | 19.49 | 0.39 | 0.48 | 0.5 |
B8BG13 (PGM) | EHWATYGR | 9.44 | 1.1 | 0.83 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhao, H.; Chen, Z.; Chen, H.; Li, B.; Wang, C.; Lin, X.; Cai, Y.; Zhou, D.; Ouyang, L.; et al. Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice. Plants 2023, 12, 156. https://doi.org/10.3390/plants12010156
Sun Y, Zhao H, Chen Z, Chen H, Li B, Wang C, Lin X, Cai Y, Zhou D, Ouyang L, et al. Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice. Plants. 2023; 12(1):156. https://doi.org/10.3390/plants12010156
Chicago/Turabian StyleSun, Yue, Huan Zhao, Zhongkai Chen, Huizhen Chen, Bai Li, Chunlei Wang, Xiaoli Lin, Yicong Cai, Dahu Zhou, Linjuan Ouyang, and et al. 2023. "Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice" Plants 12, no. 1: 156. https://doi.org/10.3390/plants12010156
APA StyleSun, Y., Zhao, H., Chen, Z., Chen, H., Li, B., Wang, C., Lin, X., Cai, Y., Zhou, D., Ouyang, L., Zhu, C., He, H., & Peng, X. (2023). Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice. Plants, 12(1), 156. https://doi.org/10.3390/plants12010156