Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction of Plant Material
4.3. LC-ESI/QTrap/MS/MS Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christodoulou, S.; Chimona, C.; Rhizopoulou, S. Comparison of Pericarp Functional Traits in Capparis spinosa from Coastal and Inland Mediterranean Habitats. Plants 2022, 11, 3085. [Google Scholar] [CrossRef]
- Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 2002, 89, 1826–1842. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Zhang, C.; Yin, Y.; Lin, Z.; Huang, Y.; Xiang, J.; Fu, C.; Li, M. Anatomical adaptations of the xerophilous medicinal plant, Capparis spinosa, to drought conditions. Hortic. Environ. Biotechnol. 2013, 54, 156–161. [Google Scholar] [CrossRef]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming. Front. Plant Sci. 2017, 8, 1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimalt, M.; Hernández, F.; Legua, P.; Almansa, M.S.; Amorós, A. Physicochemical composition and antioxidant activity of three Spanish caper (Capparis spinosa L.) fruit cultivars in three stages of development. Sci. Hortic. 2018, 240, 509–515. [Google Scholar] [CrossRef]
- Sozzi, O.G.; Vicente, A.R. Capers and caperberries. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing Limited: Sawston, UK; CRC Press: Boca Raton, FL, USA, 2006; Volume 7, pp. 230–256. [Google Scholar]
- Zohary, M. The species of Capparis in the Mediterranean and the Near Eastern countries. Bull. Res. Counc. Isr. 1960, 2, 49–64. [Google Scholar]
- Yang, T.; Wang, C.; Liu, H.; Chou, G.; Cheng, X.; Wang, Z. A new antioxidant compound from Capparis spinosa. Pharm. Biol. 2010, 48, 589–594. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.F. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amorós, A.; Carbonell-Barrachina, Á.A.; Hernández, F. Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L. Fruits and vegetables in the prevention of cellular oxidative damage. Am. J. Clin. Nutr. 2003, 78, 570S–578S. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [Green Version]
- Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem. 2012, 132, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Haslberger, A.; Jacob, U.; Hippe, B.; Karlic, H.; Haslberger, A. Mechanisms of selected functional foods against viral infections with a view on COVID-19: Mini review. Funct. Foods Health Dis. 2020, 10, 195–209. [Google Scholar] [CrossRef]
- Ramzani Ghara, A.; Ezzati Ghadi, F.; Hosseini, S.H.; Piacente, S.; Cerulli, A.; Alizadeh, A.; Mirmahmoudi, R. Antioxidant and Antidiabetic Effect of Capparis decidua Edgew (Forssk.) Extract on Liver and Pancreas of Streptozotocin-Induced Diabetic Rats. J. Appl. Biotechnol. Rep. 2021, 8, 76–82. [Google Scholar]
- Jan, R.; Khan, M.; Asaf, S.; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef]
- Martucciello, S.; Masullo, M.; Cerulli, A.; Piacente, S. Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. Int. J. Mol. Sci. 2020, 21, 1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol. 2020, 164, 693–1703. [Google Scholar] [CrossRef]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. Int. J. Gen. Med. 2021, 14, 2359–2366. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea sativa (Italian Cultivar “Marrone di Roccadaspide” PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Masullo, M.; Lauro, G.; Cerulli, A.; Bifulco, G.; Piacente, S. Corylus avellana: A Source of Diarylheptanoids With α-Glucosidase Inhibitory Activity Evaluated by in vitro and in silico Studies. Front. Plant Sci. 2022, 13, 805660. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Hou, X.; Wei, Y. Fast screening of flavonoids from switchgrass and Mikania micrantha by liquid chromatography hybrid-ion trap time-of-flight mass spectrometry. Anal. Methods 2018, 10, 109–122. [Google Scholar] [CrossRef]
- Fici, S.; Gianguzzi, L. Diversity and conservation in wild and cultivated Capparis in Sicily. Bocconea 1997, 7, 437–443. [Google Scholar]
- Moghaddasian, B.; Eradatmand Asli, D.; Alaghemand, A. Quantitative analysis of quercetin in different parts of Capparis spinosa by HPLC. Ann. Biol. Res. 2013, 3, 5775–5778. [Google Scholar]
- La Bella, S.; Rossini, F.; Licata, M.; Virga, G.; Ruggeri, R.; Iacuzzi, N.; Leto, C.; Tuttolomondo, T. Four-Year Study on the Bio-Agronomic Response of Biotypes of Capparis spinosa L. on the Island of Linosa (Italy). Agriculture 2021, 11, 327. [Google Scholar] [CrossRef]
- Giuffrida, D.; Salvo, F.; Ziino, M.; Toscano, G.; Dugo, G. Initial investigation on some chemical constituents of capers (Capparis spinosa L.) from the island of Salina. Ital. J. Food Sci. 2002, 14, 25–33. [Google Scholar]
- Gristina, A.S.; Fici, S.; Siragusa, M.; Fontana, I.; Garfì, G.; Carimi, F. Hybridization in Capparis spinosa L.: Molecular and morphological evidence from a Mediterranean island complex. Flora 2014, 209, 733–741. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Masullo, M.; Hošek, J.; Pizza, C.; Piacente, S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020, 129, 108787. [Google Scholar] [CrossRef]
Sample | Station | Sampling Site Description |
---|---|---|
1 | Casalgiordano, Gangi, Palermo | Edges of the SP14 Gangi-Casalgiordano road on regosols, southern exposure, 590 m a.s.l., slope 20/40° (37°43′35″ N 14°11′24″ E) |
2 | Ex oleificio Giannì, Torremuzza, Messina | Coastal Villa Margi-Torremuzza on flat land, southwest exposure, 10 m a.s.l. (38°0′40″ N 14°19′26″ E) |
3 | Contrada Chianchitelle, Alia, Palermo | Roadside near the Luigi Sturzo Technical Institute, southwest exposure, 630 m a.s.l., on flat terrain (37°46′5″ N 13°43′45″ E) |
4 | Train station, Marianopoli, Caltanissetta | Massive railway SS121, northeast exposure, 310 m a.s.l., 20° slope (37°37′18″ N 13°53′56″ E) |
5 | Valle dei Templi, Agrigento, Caltanissetta | Margin cultivated fields on limestone tuff rocks, southwest exposure, 90 m a.s.l., 90° slope (37°17′45″ N 13°35′15″ E) |
Sample | Station | Sampling Site Description |
---|---|---|
6 | Spiaggia Morghella, Pachino, Syracuse | Edges of SP84 road on limestone tuff rocks, southern exposure, 20 m a.s.l., slope 10–20° (36°42′16″ N 15°7′16″ E) |
7 | Alia, Palermo | Old road retaining walls, southern exposure, 650 m a.s.l., slope 30–90° (37°46′41″ N 13°42′50″ E) |
8 | Riserva dello Zingaro, Scopello, Castellamare del Golfo, Trapani | Trail margin on lithosols near the nature museum, east exposure, 30 m a.s.l., 10/20° slope (38°5′11″ N 12°48′25″ E) |
9 | Contrada Fico, Alcamo, Trapani | Rocky tuff limestone wall on SS113, northwest exposure, 170 m a.s.l., 90° slope (37°59′29″ N 13°0′18″ E) |
10 | Botanical Garden, Palermo | Giardino dei Semplici, northeast exposure, 20 m a.s.l., on level ground (38°6′44″ N 13°22′20″ E) |
11 | Contrada Scauri, Pantelleria, Trapani | Roadside on volcanic rocks, southwest exposure, 70 m a.s.l., 20° slope (36°45′2″ N 11°58′55″ E) |
12 | Contrada Nicà, Pantelleria, Trapani | Cappereto azienda la Nicchia, west exposure, 170 m a.s.l., on level ground (36°45′22″ N 11°59′6″ E) |
13 | Lago di Venere, Pantelleria, Trapani | Road edges on volcanic rocks, northern exposure, 50 m a.s.l., slope 20/40° (36°49′10″ N 11°59′18″) |
14 | Spiaggia dei conigli, Lampedusa, Agrigento | Trail margin on calcarenites, southwest exposure, 20 m a.s.l., slope 0/20° (35°30′50″N 12°33′26″E) |
15 | Faraglioni, Linosa, Agrigento | Trail margin on volcanic rocks, east exposure, 10 m a.s.l., slope 0/30° (35°51′51″ N 12°52′52″ E) |
16 | Cala Mannarazza, Linosa, Agrigento | Road edges on volcanic rocks, northern exposure, 50 m a.s.l., slope 10/30° (35°52′26″ N 12°52′35″ E) |
17 | Cala Azzurra, Favignana, Trapani | Calcarenitic rocky ridge, southeast exposure, 10 m a.s.l., slope 20° (37°54′34″ N 12°21′41″ E) |
18 | Castello di Santa Caterina, Favignana, Trapani | Roadside margin on calcarenitic rocks, east exposure, 100 m a.s.l., slope 10° (37°55′39″ N 12°19′3″ E) |
19 | Spiaggia De Rotolo, Marettimo, Trapani | Roadside margin on lithosols with rock outcrops, northeast exposure, 10 m a.s.l., slope 50/80° (37°57′42″ N 12°4′38″ E) |
20 | Frazione Malfa, Salina, Messina | Cappereto with northern exposure, 60 m a.s.l., slope 10–20° (38°34′42″ N 14°50′14″ E) |
21 | Frazione Pollara, Salina, Messina | Roadside on volcanic rocks, southwest exposure, 60 m a.s.l., 90° slope (38°34′53″ N 14°48′26″ E) |
22 | Caletta Acquario, Ustica, Palermo | Margin of the road on volcanic rocks, west exposure, 10 m a.s.l., slope 0/20° (38°42′10″ N 13°9′26″ E) |
Capparis spinosa | |||||
---|---|---|---|---|---|
Sample | μg Quercetin/g Dry Plant | ||||
Flowers | Leaves | Branches | Flower Buttons | Fruits | |
1 | 44.0 | 135.0 | 13.0 | 55.0 | 13.0 |
2 | 14.0 | 44.0 | 9.0 | 37.0 | 18.0 |
3 | 19.0 | 14.0 | 2.0 | 3.0 | 3.0 |
4 | 128.0 | 7.0 | 4.0 | 18.0 | 2.0 |
5 | 22.0 | 7.0 | 1.0 | 7.0 | 2.0 |
Capparis orientalis | |||||
---|---|---|---|---|---|
Sample | μg Quercetin/g Dry Plant | ||||
Flowers | Leaves | Branches | Flower Buttons | Fruits | |
6 | 35.0 | 19.0 | 9.0 | 25.0 | 22.0 |
7 | 121.0 | 21.0 | 14.0 | 29.0 | 15.0 |
8 | 281.0 | 144.0 | 2.0 | 12.0 | 9.0 |
9 | 333.0 | 21.0 | 6.0 | 12.0 | 3.0 |
10 | 274.0 | 17.0 | 1.0 | 15.0 | 7.0 |
11 | 7.0 | 264.0 | 15.0 | 908.0 | 4.0 |
12 | 9.0 | 5.0 | 6.0 | 114.0 | 2.0 |
13 | 277.0 | 93.0 | 2.0 | 180.0 | 3.0 |
14 | 33.0 | 787.0 | 1.0 | 178.0 | 3.0 |
15 | 66.0 | 5.0 | 3.0 | 245.0 | 4.0 |
16 | 4.0 | 6.0 | 1.0 | 35.0 | 3.0 |
17 | 159.0 | 5.0 | 3.0 | 39.0 | 5.0 |
18 | 72.0 | 38.0 | 10.0 | 24.0 | 7.0 |
19 | 10.0 | 185.0 | 3.0 | 4.0 | 7.0 |
20 | 169.0 | 230.0 | 6.0 | 14.0 | 5.0 |
21 | 46.0 | 11.0 | 3.0 | 16.0 | 14.0 |
22 | 393.0 | 11.0 | 8.0 | 25.0 | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgadari, F.; Cerulli, A.; Schicchi, R.; Badalamenti, N.; Bruno, M.; Piacente, S. Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin. Plants 2023, 12, 197. https://doi.org/10.3390/plants12010197
Sgadari F, Cerulli A, Schicchi R, Badalamenti N, Bruno M, Piacente S. Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin. Plants. 2023; 12(1):197. https://doi.org/10.3390/plants12010197
Chicago/Turabian StyleSgadari, Francesco, Antonietta Cerulli, Rosario Schicchi, Natale Badalamenti, Maurizio Bruno, and Sonia Piacente. 2023. "Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin" Plants 12, no. 1: 197. https://doi.org/10.3390/plants12010197
APA StyleSgadari, F., Cerulli, A., Schicchi, R., Badalamenti, N., Bruno, M., & Piacente, S. (2023). Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin. Plants, 12(1), 197. https://doi.org/10.3390/plants12010197