An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa
Abstract
Share and Cite
Sghaier, N.; Essemine, J.; Ayed, R.B.; Gorai, M.; Ben Marzoug, R.; Rebai, A.; Qu, M. An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa. Plants 2023, 12, 71. https://doi.org/10.3390/plants12010071
Sghaier N, Essemine J, Ayed RB, Gorai M, Ben Marzoug R, Rebai A, Qu M. An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa. Plants. 2023; 12(1):71. https://doi.org/10.3390/plants12010071
Chicago/Turabian StyleSghaier, Nesrine, Jemaa Essemine, Rayda Ben Ayed, Mustapha Gorai, Riadh Ben Marzoug, Ahmed Rebai, and Mingnan Qu. 2023. "An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa" Plants 12, no. 1: 71. https://doi.org/10.3390/plants12010071
APA StyleSghaier, N., Essemine, J., Ayed, R. B., Gorai, M., Ben Marzoug, R., Rebai, A., & Qu, M. (2023). An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa. Plants, 12(1), 71. https://doi.org/10.3390/plants12010071