Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions
Abstract
:1. Introduction
2. Results
2.1. Fertility Evaluation of Curcuma Germplasm Resources
2.2. Genetic Relationship Analysis
2.3. Fruit-Setting Rates of Different Hybrid Groups
2.4. Number of Seeds per Fruit and Germination Rates
2.5. Hybrid Identification
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Pollen Germinability Test
4.3. Evaluation of Stigma Receptivity
4.4. Interspecific Hybridization
4.5. Hybrid Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, Y.J.; Zhang, X.N.; Chen, X.Q.; Xu, Y.C.; Liu, J.M.; Tan, J.J.; Li, W.; Tembrock, L.R.; Wu, Z.Q.; Zhu, G.F. The use of widely targeted metabolomics profiling to quantify differences in medicinally important compounds from five Curcuma (Zingiberaceae) species. Ind. Crops Prod. 2022, 175, 114289. [Google Scholar] [CrossRef]
- Setzer, W.N.; Duong, L.; Poudel, A.; Mentreddy, S.R. Variation in the chemical composition of five varieties of Curcuma longa rhizome essential oils cultivated in North Alabama. Foods 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.; Kar, B.; Sahoo, S.; Jena, S.; Kuanar, A.; Parameswaran, S.; Patnaik, J.; Nayak, S. De Novo transcriptome sequencing explored cultivar specifific sequence variation and difffferential expression of pigment synthesis genes in turmeric (Curcuma longa L.). Ind. Crops Prod. 2019, 134, 388–402. [Google Scholar] [CrossRef]
- Chintakovid, A.; Tisarum, R.; Samphumphuang, T.; Sotesaritkul, T.; Cha-um, S. Evaluation of curcuminoids, physiological adaptation, and growth of Curcuma longa under water defcit and controlled temperature. Protoplasma 2022, 259, 301–315. [Google Scholar] [CrossRef]
- Chao, I.C.; Wang, C.M.; Li, S.P.; Lin, L.G.; Ye, W.C.; Zhang, Q.W. Simultaneous quantifification of three curcuminoids and three volatile components of Curcuma longa using pressurized liquid extraction and high-performance liquid chromatography. Molecules 2018, 23, 1568. [Google Scholar] [CrossRef]
- Wu, P.; Dong, X.M.; Song, G.Q.; Wei, M.M.; Fang, C.; Zheng, F.B.; Zhao, Y.J.; Lu, H.Q.; Cheng, L.H.; Zhou, J.L.; et al. Bioactivity-guided discovery of quality control markers in rhizomes of Curcuma wenyujin based on spectrum-effect relationship against human lung cancer cells. Phytomedicine 2021, 86, 153559. [Google Scholar] [CrossRef]
- Jiang, C.X.; Fei, X.; Pan, X.J.; Huang, H.L.; Qi, Y.; Wang, X.Q.; Zhao, Q.; Li, F.; Zhang, L.P.; Shao, Q.S.; et al. Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin . Ind. Crops Prod. 2021, 170, 113758. [Google Scholar] [CrossRef]
- Sandeep, I.S.; Das, S.; Nasim, N.; Mishra, A.; Acharya, L.; Joshi, R.K.; Nayak, S.; Mohanty, S. Differential expression of CURS gene during various growth stages, climatic condition and soil nutrients in turmeric (Curcuma longa): Towards site specifific cultivation for high curcumin yield. Plant Physiol. Biochem. 2017, 118, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Liu, N.; Sheng, A.W.; Ma, G.H.; Wu, G.J. In vitro plant regeneration from organogenic callus of Curcuma kwangsiensis Lindl. (Zingiberaceae). Plant Growth Regul. 2011, 64, 141–145. [Google Scholar] [CrossRef]
- Kou, Y.P.; Ma, G.H.; Teixeira da Silva, J.A.; Liu, N. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuata Wall. Plant Cell Tissue Organ. 2013, 112, 1–7. [Google Scholar] [CrossRef]
- Liao, X.Z.; Ye, Y.J.; Zhang, X.N.; Peng, D.; Hou, M.M.; Fu, G.F.; Tan, J.J.; Zhao, J.L.; Jiang, R.H.; Xu, Y.C.; et al. The genomic and bulked segregant analysis of Curcuma alismatifolia revealed its diverse bract pigmentation. aBIOTECH 2022, 3, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Abdullah, T.L.; Rafi, M.Y.; Harikrishna, J.A.; Werbrouck, S.P.O.; Teo, C.H.; Sahebi, M.; Azizi, P. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci. Rep. 2019, 9, 3047. [Google Scholar] [CrossRef]
- He, X.J.; Shi, G.Q.; Zhang, T.X.; Xie, N.S.; Lin, J.S. Effects of temperature and photoperiod on growth of Curcuma alismatifolia . Chin. Agric. Sci. Bull. 2022, 38, 53–60. [Google Scholar]
- Ke, J.L.; Yu, H.W.; Peng, F.T.; Lin, J.S.; Lu, L.M. Preliminary report on hybrid breeding of Curcuma alsimatifolia . J. Minnan Norm. Univ. Nat. Sci. 2020, 33, 62–66. [Google Scholar]
- Ruamrungsri, S. The physiology of Curcuma alismatifolia Gagnep. as a basis for the improvement of ornamental production. Eur. J. Hortic. Sci. 2015, 80, 316–321. [Google Scholar] [CrossRef]
- Taheri, S.; Abdullah, T.L.; Noor, Y.M.; Padil, H.M.; Sahebi, M.; Azizi, P. Data of the first de novo transcriptome assembly of the inflorescence of Curcuma alismatifolia . Data Brief 2018, 19, 2452–2454. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.J.; Xu, Y.C.; Li, D.M.; Tan, J.J.; Liu, J.M. Characterization of EST-SSR markers in Curcuma kwangsiensis S. K. Lee & C. F. Liang based on RNA sequencing and its application for phylogenetic relationship analysis and core collection construction. Genet. Resour. Crop Evol. 2021, 68, 1503–1516. [Google Scholar]
- Pikulthong, V.; Teerakathiti, T.; Thamchaipenet, A.; Peyachoknagulc, S. Development of somatic embryos for genetic transformation in Curcuma longa L. and Curcuma mangga Valeton & Zijp. Agric. Nat. Resour. 2016, 50, 276–285. [Google Scholar]
- Mahadtanapuk, S.; Topoonyanont, N.; Handa, T.; Sanguansermsri, M.; Anuntalabhochai1, S. Genetic transformation of Curcuma alismatifolia Gagnep. using retarded shoots. Plant Biotechnol. 2006, 23, 233–237. [Google Scholar] [CrossRef]
- Zhuang, P. Cross fertility of intra-subgen. Hymenanthes of 23 Rhododendron species. Guihaia 2018, 38, 1545–1557. [Google Scholar]
- Ma, X.Y.; Wang, Y.B.; Zhang, J.B.; Tan, W.W.; Xiao, H.; Han, X.C.; Liu, Z.J.; Wang, G.J. Research progress of mutation breeding technology in Soybean. Soybean Sci. 2023, 42, 245–252. [Google Scholar]
- Abdullah, T.L.; Endan, J.; Nazir, B.M. Changes in flower development, chlorophyll mutation and alteration in plant morphology of Curcuma alismatifolia by gamma irradiation. Am. J. Appl. Sci. 2009, 6, 1436–1439. [Google Scholar] [CrossRef]
- Hase, Y.; Akita, Y.; Kitamura, S.; Narumi, I. Development of an efficient mutagenesis technique using ion beams: Toward more controlled mutation breeding. Plant Biotechnol. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Cimen, B.; Yesiloglu, T.; Incesu, M.; Yilmaz, B. Studies on mutation breeding in citrus: Improving seedless types of ‘Kozan’ common orange by gamma irradiation. Sci. Hortic. 2021, 278, 109857. [Google Scholar] [CrossRef]
- Szymajda, M.; Studnicki, M.; Kuras, A.; Żurawicz, E. Cross-compatibility in interspecific hybridization between three Prunus species. S. Afr. J. Bot. 2022, 146, 624–633. [Google Scholar] [CrossRef]
- Barinder, K.; Singh, G.K.; Kaur, C.G. Study on pre-fertilization barriers in the interspecific hybridization between Cucurbita pepo L. and C. moschata duchesne. Agric. Res. J. 2021, 58, 594–602. [Google Scholar]
- Xing, Q.; Yang, Z.J.; Zhu, X.H.; Liu, J.; Huang, X.T.; Hu, J.J.; Bao, Z.M. Interspecific hybridization between Patinopecten yessoensis (♀) and P. caurinus (♂) with heterosis in growth and temperature tolerance. Aquaculture 2022, 547, 737489. [Google Scholar] [CrossRef]
- Devi, C.P.; Munshi, A.D.; Beheraa, T.K.; Choudharya, H.; Gurung, V.B.; Sahaa, P. Cross compatibility in interspecifific hybridization of eggplant, Solanum melongena, with its wild relatives. Sci. Hortic. 2015, 193, 353–358. [Google Scholar] [CrossRef]
- Li, G.F.; Yang, X.H.; Qiao, Y.C.; Gao, Y.S.; Jiang, Y.Y.; Lin, S.Q. Study on interspecific and intergeneric hybridization compatibility of Eriobotrya and related genera. Acta Hortic. Sin. 2016, 43, 1069–1078. [Google Scholar]
- Xie, W.J.; Li, S.F.; Qu, S.P.; Peng, L.C.; Zhang, L.; Yang, X.M.; Wang, J.H. Cross fertility of the crosses between Rhododendron different hybrids groups. Acta Hortic. Sin. 2019, 46, 910–922. [Google Scholar]
- Xing, G.M.; Qu, L.W.; Zhang, W.; Zhang, Y.Q.; Yuan, X.F.; Lei, J.J. Study on interspecifific hybridization between tulip cultivars and wild species native to China. Euphytica 2020, 216, 66. [Google Scholar] [CrossRef]
- Leong-Škorničková, J.; Sída, O.; Jarolímová, V.; Sabu, M.; Fér, T.; Trávnícek, P.; Suda, J. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae) Ann . Bot. 2007, 100, 505–526. [Google Scholar]
- Lamo, J.M.; Rao, S.R. Meiotic behaviour and its implication on species interrelationship in the genus Curcuma (Linnaeus, 1753) (Zingiberaceae). Comp. Cytogenet. 2017, 11, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhang, Y.; Deng, J.B.; Gao, G.; Ding, C.B.; Zhang, L.; Yang, R.W. The complete chloroplast genome sequences of 14 Curcuma species: Insights into genome evolution and phylogenetic relationships within zingiberales. Front. Genet. 2020, 11, 802. [Google Scholar] [CrossRef]
- Manabi, P.; Angana, B.; Kumar, P.S.; Joyashree, B.; Twahira, B.; Mohan, L. Simple sequence repeat marker based genetic diversity assessment amongst high essential oil yielding lines of Curcuma caesia Roxb. Genet. Resour. Crop Evol. 2021, 68, 1345–1358. [Google Scholar]
- Taheri, S.; Abdullah, T.L.; Ahmad, Z.; Abdullah, N.A.P. Effect of acute gamma irradiation on Curcuma alismatifolia varieties and detection of DNA polymorphism through SSR marker. Biomed. Res. Int. 2014, 2014, 631813. [Google Scholar] [CrossRef]
- Záveská, E.; Fér, T.; Šída, O.; Marhold, K.; Leong-Škorničková, J. Hybridization among distantly related species: Examples from the polyploid genus Curcuma (Zingiberaceae). Mol. Phylogenet. Evol. 2016, 100, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Ketmaro, S.; Taychasinpitak, T.; Mongkolchaiyaphruek, A.; Wongchaochant, S. Effect of colchicine on increasing pollen viability in a Curcuma hybrid (Curcuma sparganiifolia × C. parviflora). Kasetsart J. Nat. Sci. 2012, 46, 363–370. [Google Scholar]
- Saensouk, P.; Theerakulpisut, P.; Thammathawornc, A.; Saensoukd, S.; Maknoie, C.; Kohkaew, P. Pollen morphology of the genus Curcuma (Zingiberaceae) in Northeastern Thailand. ScienceAsia 2015, 41, 87–92. [Google Scholar] [CrossRef]
- Yu, H.W.; Zhao, Z.X.; Liu, Y.Q.; Zhang, Y.N.; Ling, X.Y.; Ke, L.J.; Lu, L.M. Investigation on pollen viability and storage capacity of 14 Curcuma alismatifolia varieties. J. Minnan Norm. Univ. Nat. Sci. 2021, 34, 69–75. [Google Scholar]
- Nishio, S.; Takada, N.; Terakami, S.; Kato, H.; Inoue, H.; Takeuchi, Y.; Saito, T. Estimation of effffective pollen dispersal distance for cross-pollination in chestnut orchards by microsatellite-based paternity analyses. Sci. Hortic. 2019, 250, 89–93. [Google Scholar] [CrossRef]
- Li, Y.Y.; Tian, Q.L.; Yu, H.W.; Lu, L.M. Progress towards a molecular-level understanding of Curcuma alismatifolia . Eur. J. Hortic. Sci. 2021, 86, 328–334. [Google Scholar] [CrossRef]
- Alexander, L.W. Optimizing pollen germination and pollen viability estimates for Hydrangea macrophylla, Dichroa febrifuga, and their hybrids. Sci. Hortic. 2019, 246, 244–250. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, K.; Zhong, W.P.; Chen, P.; Fan, X.M.; Yuan, D.Y. Optimization of in vitro pollen germination and pollen viability tests for Castanea mollissima and Castanea henryi . Sci. Hortic. 2020, 271, 109481. [Google Scholar] [CrossRef]
- Mesnoua, M.; Roumani, M.; Salem, A. The effffect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Sci. Hortic. 2018, 236, 279–283. [Google Scholar] [CrossRef]
- Kadluczka, D.; Czernicka, M.; Sliwinska, E.; Bieniasz, M.; Maćkowska, K.; Kapczyńska, A.; Grzebelus, E. Development and quality of pollen in Lachenalia cultivars with determination of genome size and chromosome number. Sci. Hortic. 2021, 277, 109842. [Google Scholar] [CrossRef]
- Wang, L.F.; Xu, J.J.; Huang, X.X.; Li, S.B.; Cheng, X.M. Evaluation of cross compatibility between modern chinese rose cultivars. Mol. Plant Breed. 2021, 1–17. [Google Scholar]
- Li, C.C.; Gao, Y.K.; Liu, R.; Cao, Y.; Fan, Z.P.; Guo, L.; Zhang, Q.X. Analysis on the barriers of interspecific hybridization in beardless irises. J. Beijing For. Univ. 2018, 4, 96–101. [Google Scholar]
- Morimoto, T.; Kitamura, Y.; Numaguchi, K.; Akagi, T.; Tao, R. Characterization of post-mating interspecifific cross-compatibility in Prunus (Rosaceae). Sci. Hortic. 2019, 246, 693–699. [Google Scholar] [CrossRef]
- Carrera, L.; Sanzol, J.; Herrero, M.; Hormaza, J.I. Genomic characterization of self-incompatibility ribonucleases (S-RNases) in loquat (Eriobotrya japonica Lindl.) (Rosaceae, Pyrinae). Mol. Breed. 2009, 23, 539–551. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, L.; Bi, X.Y.; Lei, J.J. Compatibility of interspecifific hybridization between Hemerocallis liloasphodelus and daylily cultivars. Sci. Hortic. 2017, 220, 267–274. [Google Scholar] [CrossRef]
- Yin, Y.P.; Guan, W.L.; Song, J.; Li, Y.F.; Du, J. Studies on the cross affinity of Rhododendron hybridum and Rhododendron spinuliferum (Rhododendron). J. Southwest For. Univ. 2023, 43, 173–178. [Google Scholar]
Accessions | Stigma Receptivity | Accessions | Stigma Receptivity | Accessions | Stigma Receptivity |
---|---|---|---|---|---|
Ca01 | +++ | Ch16 | + | Ch61 | + |
Ca03 | +++ | Ch20 | ++ | Cros | ++ |
Ca05 | +++ | Ch29 | ++ | Cpet | +++ |
Ca06 | +++ | Ch30 | ++ | Csic | + |
Ca07 | +++ | Ch34 | + | Ckwa | + |
Ca08 | +++ | Ch35 | + | Catt | ++ |
Ca09 | +++ | Ch36 | ++ | Cnan1 | + |
Ca10 | +++ | Ch39 | + | Cnan2 | + |
Ca11 | +++ | Ch40 | ++ | Ctho | +++ |
Ca42 | ++ | Ch47 | — | Cyun | ++ |
Ca55 | ++ | Ch49 | + | Cspp | +++ |
Ca60 | ++ | Ch54 | — | Csms | +++ |
Ca63 | +++ | Ch59 | — |
SSR Locus | Parent | F1 Individual | Purity% | ||||||
---|---|---|---|---|---|---|---|---|---|
Ca01 | Ca10 | Caa-1 | Caa-2 | Caa-3 | Caa-4 | Caa-5 | Caa-6 | 100 | |
JHH10 | 160/160 | 160/166 | 160/166 | 160/166 | 166/166 | 160/166 | 166/166 | 166/166 | |
Ca06 | Ctho | Cat-1 | Cat-2 | Cat-3 | Cat-4 | Cat-5 | Cat-6 | 100 | |
JHH2 | 245/248 | 248/251 | 251/251 | 248/251 | 245/251 | 245/251 | 248/251 | 251/251 | |
JHH21 | 146/155 | 146/149 | 146/149 | 146/149 | 146/149 | 149/155 | 149/155 | 146/149 | |
Ctho | Csms | Cts-1 | Cts-2 | Cts-3 | Cts-4 | Cts-5 | Cts-6 | ||
JHH10 | 166/172 | 169/172 | 169/172 | 169/169 | 169/172 | 169/172 | 169/169 | 166/172 | 100 |
JHH2 | 248/248 | 248/251 | 251/251 | 248/251 | 248/248 | 248/251 | 251/251 | 248/251 | |
Catt | Cpet | Cap-1 | Cap-2 | Cap-3 | Cap-4 | Cap-5 | Cap-6 | 100 | |
JHH15 | 130/133 | 130/139 | 130/139 | 130/139 | 139/139 | 139/139 | 130/139 | 130/139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Zhou, Y.; Tan, J.; Zhu, G.; Liu, J.; Xu, Y. Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions. Plants 2023, 12, 1961. https://doi.org/10.3390/plants12101961
Ye Y, Zhou Y, Tan J, Zhu G, Liu J, Xu Y. Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions. Plants. 2023; 12(10):1961. https://doi.org/10.3390/plants12101961
Chicago/Turabian StyleYe, Yuanjun, Yiwei Zhou, Jianjun Tan, Genfa Zhu, Jinmei Liu, and Yechun Xu. 2023. "Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions" Plants 12, no. 10: 1961. https://doi.org/10.3390/plants12101961
APA StyleYe, Y., Zhou, Y., Tan, J., Zhu, G., Liu, J., & Xu, Y. (2023). Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions. Plants, 12(10), 1961. https://doi.org/10.3390/plants12101961