Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Plant Trait | r2 | F Value | p Value |
---|---|---|---|
Fruit size—number of trait states | 0.02 | 4.22 | <0.01 ** |
Fruit size—number of trait states weighted by seedling abundance | 0.03 | 4.95 | <0.01 ** |
Fruit type—number of trait states | <0.01 | 0.53 | 0.87 |
Fruit type—number of trait states weighted by seedling abundance | <0.01 | 0.54 | 0.73 |
Seed size—number of trait states | 0.01 | 1.13 | 0.28 |
Seed size—number of trait states weighted by seedling abundance | 0.01 | 2.20 | 0.20 |
Dispersal mechanism—number of trait states | 0.01 | 1.93 | 0.07 |
Dispersal mechanism—number of trait states weighted by seedling abundance | 0.01 | 1.34 | 0.20 |
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Species | Fruit Type Category | Fruit Size Category | Seed Size Category | Dispersal Mechanism |
---|---|---|---|---|
Acacia disparrima M.W. McDonald & Maslin | Pod | 6 | 3 | Bird |
Acmena smithii (Poir.) Merr. & L.M. Perry | Berry | 4 | 4 | Bird |
Acronychia pubescens C.T. White | Drupe | 4 | 3 | Bird |
Aphananthe philippinensis Planch. | Drupe | 3 | 3 | Bird |
Archirhodomyrtus beckleri (F. Muell.) A.J. Scott | Berry | 3 | 1 | Bird |
Ardisia crenata Sims | Drupe | 3 | 3 | Bird |
Beilschmiedia elliptica C.T. White | Drupe | 3 | 4 | Bird |
Canarium australasicum (F.M. Bailey) Leenh. | Drupe | 3 | 3 | Bird |
Cinnamomum camphora (L.) J. Presl | Drupe | 3 | 3 | Bird |
Cryptocarya foetida R.T. Baker | Drupe | 3 | 4 | Bird |
Cryptocarya glaucescens R.Br. | Drupe | 4 | 5 | Bird |
Cryptocarya laevigata Blume | Drupe | 5 | 5 | Bird |
Cryptocarya microneura Meisn. | Drupe | 3 | 4 | Bird |
Cryptocarya obovata R.Br. | Drupe | 3 | 4 | Bird |
Cryptocarya triplinervis R.Br. | Drupe | 3 | 4 | Bird |
Cupaniopsis newmanii S.T. Reynolds | Capsule | 4 | 5 | Bird |
Cyclophyllum coprosmoides (F. Muell.) S.T.Reynolds & R.J.F. Hend. | Drupe | 4 | 3 | Bird |
Daphnandra tenuipes Perkins | Achene | 3 | 2 | Wind |
Decaspermum humile (G.Don) A.J. Scott | Berry | 3 | 2 | Bird |
Denhamia celastroides (F.Muell.) Jessup | Capsule | 4 | 2 | Bird * |
Diploglottis australis Radlk. | Capsule | 4 | 4 | Bird |
Elaeocarpus grandis F. Muell. | Drupe | 5 | 4 | Bird |
Elaeocarpus Kirtonii F.Muell. ex F.M. Bailey | Drupe | 3 | 3 | Bird |
Elaeocarpus obovatus G. Don | Drupe | 3 | 3 | Bird |
Endiandra discolor Benth. | Drupe | 4 | 5 | Bird |
Endiandra globosa Maiden & Betche | Drupe | 5 | 5 | Ground vertebrates (mainly now extinct bird/mammal megafauna) * |
Eupomatia laurina Hook. | Achene | 5 | 3 | Bird |
Euroschinus falcatus Hook.f. | Drupe | 3 | 3 | Bird |
Ficus coronata Reinw. ex Blume | Fig | 5 | 1 | Bird |
Flindersia bennettii F.Muell. ex C. Moore | Capsule | 5 | 3 | Wind |
Glochidion ferdinandi (Müll.Arg.) F.M. Bailey | Capsule | 4 | 3 | Bird |
Gossia hillii (Benth.) N.Snow & Guymer | Berry | 3 | 3 | Bird |
Guioa semiglauca (F.Muell.) Radlk. | Capsule | 3 | 3 | Bird |
Hedraianthera porphyropetala F. Muell. | Capsule | 5 | 4 | Bird * |
Homalanthus populifolius Graham | Capsule | 3 | 3 | Bird |
Hymenosporum flavum F. Muell. | Capsule | 5 | 4 | Wind |
Jagera pseudorhus (A.Rich.) Radlk. | Capsule | 4 | 3 | Bird |
Karrabina benthamiana (F.Muell.) Rozefelds & H.C. Hopkins | Capsule | 4 | 3 | Wind |
Lantana camara L. | Drupe | 2 | 3 | Bird |
Litsea reticulata Benth. & Hook.f. ex F. Muell. | Drupe | 3 | 4 | Bird |
Mallotus philippensis (Lam.) Müll.Arg. | Capsule | 3 | 2 | Bird |
Mischocarpus pyriformis (F.Muell.) Radlk. | Capsule | 4 | 4 | Bird |
Myrsine variabilis R.Br. | Drupe | 3 | 3 | Bird |
Neolitsea dealbata (R.Br.) Merr. | Drupe | 3 | 3 | Bird |
Notelaea longifolia Vent. | Drupe | 4 | 4 | Bird |
Ochna serrulata Walp. | Drupe | 3 | 3 | Bird |
Olea paniculata R.Br. | Drupe | 3 | 4 | Bird |
Pilidiostigma glabrum Burret | Berry | 3 | 3 | Bird |
Pittosporum revolutum Dryand. | Capsule | 5 | 3 | Bird * |
Pleioluma queenslandica (P. Royen) Swenson | Drupe | 4 | 5 | Bird |
Psychotria loniceroides Sieber ex DC. | Drupe | 3 | 3 | Bird |
Psydrax lamprophylla f. latissima S.T. Reynolds & R.J.F. Hend. | Drupe | 3 | 3 | Bird * |
Quintinia verdonii F. Muell. | Capsule | 2 | 1 | Unassisted |
Rhodamnia maideniana C.T. White | Berry | 3 | 2 | Bird * |
Sarcopteryx stipata (F.Muell.) Radlk. | Capsule | 4 | 3 | Bird |
Senna pendula var. glabrata (Vogel) H.S.Irwin & Barneby | Pod | 6 | 3 | Unassisted |
Synoum glandulosum A.Juss. | Capsule | 4 | 3 | Bird |
Syzygium hodgkinsoniae (F. Muell.) L.A.S.Johnson | Berry | 5 | 5 | Bird |
Syzygium luehmannii (F. Muell.) L.A.S.Johnson | Berry | 3 | 3 | Bird |
Syzygium moorei (F.Muell.) L.A.S. Johnson | Berry | 5 | 5 | Bird |
Syzygium oleosum (F.Muell.) B. Hyland | Berry | 4 | 4 | Bird |
Tasmannia insipida R.Br. ex DC. | Berry | 4 | 2 | Bird * |
Toona ciliata M.Roem. | Capsule | 4 | 5 | Wind |
Trochocarpa laurina R.Br. | Drupe | 3 | 1 | Bird |
Wilkiea huegeliana (Tul.) A.DC. | Drupe | 3 | 3 | Bird |
Appendix I
References
- Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of Emerging Fungal Diseases of Forest Trees. For. Ecol. Manag. 2016, 381, 235–246. [Google Scholar] [CrossRef]
- Roy, B.A.; Alexander, H.M.; Davidson, J.; Campbell, F.T.; Burdon, J.J.; Sniezko, R.; Brasier, C. Increasing Forest Loss Worldwide from Invasive Pests Requires New Trade Regulations. Front. Ecol. Environ. 2014, 12, 457–465. [Google Scholar] [CrossRef]
- Anagnostakis, S.L. Chestnut Blight: The Classical Problem of an Introduced Pathogen. Mycologia 1987, 79, 23–37. [Google Scholar] [CrossRef]
- Cobb, R.C.; Haas, S.E.; Kruskamp, N.; Dillon, W.W.; Swiecki, T.J.; Rizzo, D.M.; Frankel, S.J.; Meentemeyer, R.K. The Magnitude of Regional-Scale Tree Mortality Caused by the Invasive Pathogen Phytophthora ramorum. Earth’s Future 2020, 8, e2020EF001500. [Google Scholar] [CrossRef]
- Carnegie, A.J.; Kathuria, A.; Pegg, G.S.; Entwistle, P.; Nagel, M.; Giblin, F.R. Impact of the Invasive Rust Puccinia psidii (Myrtle rust) on Native Myrtaceae in Natural Ecosystems in Australia. Biol. Invasions 2016, 18, 127–144. [Google Scholar] [CrossRef]
- Fensham, R.J.; Carnegie, A.J.; Laffineur, B.; Makinson, R.O.; Pegg, G.S.; Wills, J. Imminent Extinction of Australian Myrtaceae by Fungal Disease. Trends Ecol. Evol. 2020, 35, 554–557. [Google Scholar] [CrossRef]
- Pegg, G.; Taylor, T.; Entwistle, P.; Guymer, G.; Giblin, F.; Carnegie, A. Impact of Austropuccinia psidii (Myrtle rust) on Myrtaceae-Rich Wet Sclerophyll Forests in South East Queensland. PLoS ONE 2017, 12, e0188058. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the Holy Grail: Using Plant Functional Traits to Understand Ecological Processes. Biol. Rev. Camb. Philos. Soc. 2017, 92, 1156–1173. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest Biodiversity, Ecosystem Functioning and the Provision of Ecosystem Services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Loo, J. Ecological Impacts of Non-Indigenous Invasive Fungi as Forest Pathogens. Biol. Invasions 2009, 11, 81–96. [Google Scholar] [CrossRef]
- Lovett, G.M.; Canham, C.D.; Arthur, M.A.; Weathers, K.C.; Fitzhugh, R.D. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience 2006, 56, 395–405. [Google Scholar] [CrossRef]
- Laidlaw, W.S.; Wilson, B.A. Floristic and Structural Characteristics of a Coastal Heathland Exhibiting Symptoms of Phytophthora Cinnamomi Infestation in the Eastern Otway Ranges, Victoria. Aust. J. Bot. 2003, 51, 283–293. [Google Scholar] [CrossRef]
- Barrett, S.; Rathbone, D. Long-term Phosphite Application Maintains Species Assemblages, Richness and Structure of Plant Communities Invaded by Phytophthora cinnamomi. Austral. Ecol. 2018, 43, 360–374. [Google Scholar] [CrossRef]
- McDougall, K.L.; Hobbs, R.J.; Hardy, G.E.S. Vegetation of Phytophthora Cinnamomi-Infested and Adjoining Uninfested Sites in the Northern Jarrah (Eucalyptus marginata) Forest of Western Australia. Aust. J. Bot. 2002, 50, 277–288. [Google Scholar] [CrossRef]
- Fernandez-Winzer, L.; Berthon, K.; Entwistle, P.; Manea, A.; Pegg, G.; Carnegie, A.; Leishman, M. Direct and Indirect Community Effects of the Invasive Plant Pathogen Austropuccinia Psidii (Myrtle rust) in Eastern Australian Rainforests. Biol. Invasions 2020, 22, 2357–2369. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the Concept of Trait Be Functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive La Différence: Plant Functional Diversity Matters to Ecosystem Processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Burns, K.C. What Causes Size Coupling in Fruit-Frugivore Interaction Webs? Ecology 2013, 94, 295–300. [Google Scholar] [CrossRef]
- Moran, C.; Catterall, C.P. Can Functional Traits Predict Ecological Interactions? A Case Study Using Rain Forest Frugivores and Plants in Australia. Biotropica 2010, 42, 318–326. [Google Scholar] [CrossRef]
- Mayfield, M.M.; Bonser, S.P.; Morgan, J.W.; Aubin, I.; McNamara, S.; Vesk, P.A. What Does Species Richness Tell Us about Functional Trait Diversity? Predictions and Evidence for Responses of Species and Functional Trait Diversity to Land-Use Change. Glob. Ecol. Biogeogr. 2010, 19, 423–431. [Google Scholar] [CrossRef]
- Camp, R.J.; LaPointe, D.A.; Hart, P.J.; Sedgwick, D.E.; Canale, L.K. Large-Scale Tree Mortality from Rapid Ohia Death Negatively Influences Avifauna in Lower Puna, Hawaii Island, USA. Condor 2019, 121, duz007. [Google Scholar] [CrossRef]
- Davis, R.A.; Valentine, L.E.; Craig, M.D.; Wilson, B.; Bancroft, W.J.; Mallie, M. Impact of Phytophthora-Dieback on Birds in Banksia Woodlands in South West Western Australia. Biol. Conserv. 2014, 171, 136–144. [Google Scholar] [CrossRef]
- Floyd, A.G. Rainforest Trees of Mainland South-Eastern Australia; Terania Rainforest Publishing: Lismore, Australia, 2008. [Google Scholar]
- Butler, D.W. Seed Dispersal Syndromes and the Distribution of Woody Plants in South-East Queensland’s Vine-Forests. Ph.D Thesis, The University of Queensland, Brisbane, QLD, Australia, 2004. [Google Scholar]
- Church, R. Avian Frugivory in a Subtropical Rainforest: Eleven Years of Observations in Lamington National Park. Sunbird J. Qld. Ornithol. Soc. 1997, 27, 85–97. [Google Scholar]
- Gosper, C.R.; Gosper, D.G. Foods of Pigeons and Doves in Fragmented Landscapes of Subtropical Eastern Australia. Aust. Field Ornithol. 2008, 25, 76–86. [Google Scholar] [CrossRef]
- Hawkins, B.A. Birds, Fruit and Nectar: Spatio-Temporal Patterns of Regional Bird Abundance and Food Availability in Subtropical Eastern Australia. Ph.D Thesis, Monash University, Melbourne, VIC, Australia, 2014. [Google Scholar]
- Wheelwright, N.T. Fruit-Size, Gape Width, and the Diets of Fruit-Eating Birds. Ecology 1985, 66, 808–818. [Google Scholar] [CrossRef]
- Leishman, M.R. Does the Seed Size/Number Trade-Off Model Determine Plant Community Structure? An Assessment of the Model Mechanisms and Their Generality. Oikos 2001, 93, 294–302. [Google Scholar] [CrossRef]
- Edwards, W. Plants Reward Seed Dispersers in Proportion to Their Effort: The Relationship between Pulp Mass and Seed Mass in Vertebrate Dispersed Plants. Evol. Ecol. 2006, 20, 365–376. [Google Scholar] [CrossRef]
- French, K. Characteristics and Abundance of Vertebrate-Dispersed Fruits in Temperate Wet Sclerophyll Forest in Southeastern Australia. Aust. J. Ecol. 1991, 16, 1–13. [Google Scholar] [CrossRef]
- Snow, D.W. Tropical Frugivorous Birds and Their Food Plants: A World Survey. Biotropica 1981, 13, 1–14. [Google Scholar] [CrossRef]
- Innis, G. Feeding Ecology of Fruit Pigeons in Subtropical Rainforests of South-Eastern Queensland. Wildl. Res. 1989, 16, 365–394. [Google Scholar] [CrossRef]
- Leishman, M.R.; Westoby, M. The Role of Large Seed Size in Shaded Conditions: Experimental Evidence. Funct. Ecol. 1994, 8, 205–214. [Google Scholar] [CrossRef]
- Kooyman, R.M. Growing Rainforest: Rainforest Restoration and Regeneration: Recommendations for the Humid Sub-Tropical Region of Northern New South Wales and South East Queensland; Greening Australia: Brisbane, QLD, Australia, 1996. [Google Scholar]
- Stanton, P.; Stanton, D.; Stott, M.; Parsons, M. Fire Exclusion and the Changing Landscape of Queensland’s Wet Tropics Bioregion 1. The Extent and Pattern of Transition. Aust. For. 2014, 77, 51–57. [Google Scholar] [CrossRef]
- Ashton, D.H.; Attiwill, P.M. Major Vegetation Types: Tall Open Forests. In Australian Vegetation; Groves, R.H., Ed.; Cambridge University Press: Cambridge, UK, 1994; pp. 157–197. [Google Scholar]
- Tng, D.Y.P.; Williamson, G.J.; Jordan, G.J.; Bowman, D.M.J.S. Giant Eucalypts—Globally Unique Fire-Adapted Rain-Forest Trees? New Phytol. 2012, 196, 1001–1014. [Google Scholar] [CrossRef]
- Diaz-Torres, S. Ecological Impact of Myrtle Rust (Austropuccinia Psidii) in a Wet Sclerophyll Forest. Ph.D Thesis, Queensland University of Technology, Brisbane, QLD, Australia, 2020. [Google Scholar]
- Fensham, R.J.; Radford-Smith, J. Unprecedented Extinction of Tree Species by Fungal Disease. Biol. Conserv. 2021, 261, 109276. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Monthly Rainfall: Tallebudgera Guineas Creek Road. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=040196 (accessed on 11 January 2021).
- Sork, V.L. Germination Response in a Large-Seeded Neotropical Tree Species, Gustavia Superba (Lecythidaceae). Biotropica 1985, 17, 130–136. [Google Scholar] [CrossRef]
- Hopkins, M.S.; Graham, A.W. Community Phenological Patterns of a Lowland Tropical Rainforest in North-eastern Australia. Aust. J. Ecol. 1989, 14, 399–413. [Google Scholar] [CrossRef]
- Cobb, R.C.; Eviner, V.T.; Rizzo, D.M. Mortality and Community Changes Drive Sudden Oak Death Impacts on Litterfall and Soil Nitrogen Cycling. New Phytol. 2013, 200, 422–431. [Google Scholar] [CrossRef]
- Fenner, M. Regeneration and Diversity. In Seed Ecology; Fenner, M., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 1985; pp. 117–131. [Google Scholar] [CrossRef]
- Lovett, G.M.; Arthur, M.A.; Weathers, K.C.; Griffin, J.M. Long-Term Changes in Forest Carbon and Nitrogen Cycling Caused by an Introduced Pest/Pathogen Complex. Ecosystems 2010, 13, 1188–1200. [Google Scholar] [CrossRef]
- Queensland State Government. Regional Ecosystem Details for 12.11.2. Available online: https://apps.des.qld.gov.au/regional-ecosystems/details/?re=12.11.2 (accessed on 10 February 2022).
- Stevenson, K. Study Site: Tallebudgera Valley. 2022. [Google Scholar]
- Gibson, D.J. Methods in Comparative Plant Population Ecology, 2nd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Harden, G.; Nicholson, H.; McDonald, B.; Nicholson, N.; Tame, T.; Williams, J. Rainforest Plants of Australia—Rockhampton to Victoria, 1st ed.; Gwen Harden Publishing: Nambucca, NSW, Australia, 2019. [Google Scholar]
- Harden, G.J.; McDonald, W.J.F.; Williams, J.B. Rainforest Trees and Shrubs: A Field Guide to Their Identification in Victoria, New South Wales and Subtropical Queensland Using Vegetative Features. In Rainforest Trees and Shrubs: A Field Guide to Their Identification; Gwen Harden Publishing: Nambucca, NSW, Australia, 2006. [Google Scholar]
- Leiper, G.; Glazebrook, J.; Cox, D.; Rathie, K.A. Mangroves to Mountains: A Field Guide to the Native Plants of South-East Queensland, 2nd ed.; Logan River Branch, Society for Growing Australian Plants: Logan Village, Australia, 2017. [Google Scholar]
- Katovai, E.; Burley, A.L.; Mayfield, M.M. Understory Plant Species and Functional Diversity in the Degraded Wet Tropical Forests of Kolombangara Island, Solomon Islands. Biol. Conserv. 2012, 145, 214–224. [Google Scholar] [CrossRef]
- Wills, J.; Herbohn, J.; Moreno, M.O.M.; Avela, M.S.; Firn, J. Next-generation Tropical Forests: Reforestation Type Affects Recruitment of Species and Functional Diversity in a Human-dominated Landscape. J. Appl. Ecol. 2017, 54, 772–783. [Google Scholar] [CrossRef]
- Mayfield, M.M.; Boni, M.F.; Daily, G.C.; Ackerly, D. Species and Functional Diversity of Native and Human-Dominated Plant Communities. Ecology 2005, 86, 2365–2372. [Google Scholar] [CrossRef]
- Bitani, N.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Functional Traits Vary among Fleshy-Fruited Invasive Plant Species and Their Potential Avian Dispersers. Acta Oecol. 2020, 108, 103651. [Google Scholar] [CrossRef]
- Brisbane City Council. Brisbane City Weed Identification Tool. Available online: https://weeds.brisbane.qld.gov.au/ (accessed on 5 February 2023).
- Cooper, W.; Cooper, W.T. Australian Rainforest Fruits: A Field Guide; CSIRO (Australia), Series Ed.; CSIRO Publishing: Collingwood, VIC, Australia, 2013. [Google Scholar]
- Dunphy, M.; McAlpin, S.; Nelson, P.N.; Chapman, M.; Nicholson, H. Australian Rainforest Seeds a Guide to Collecting, Processing and Propagation; CSIRO Publishing, issuing body, Series Ed.; CSIRO Publishing: Clayton, VIC, Australia, 2020. [Google Scholar]
- Gosper, C.R.; Vivian-Smith, G. Fruit Traits of Vertebrate-Dispersed Alien Plants: Smaller Seeds and More Pulp Sugar than Indigenous Species. Biol. Invasions 2010, 12, 2153–2163. [Google Scholar] [CrossRef]
- Hauser, J.; Blok, J. Fragments of Green: An Identification Field Guide for Rainforest Plants of the Greater Brisbane Area; Rainforest Conservation Society of Queensland, Series Ed.; Rainforest Conservation Society: Bardon, QLD, Australia, 1992. [Google Scholar]
- Palmer, G.J.; Catterall, C.P. Factors Influencing Seed Predation in Rainforest Tree Communities of Subtropical Australia: Fragmentation, Seed Size and Shifts in Vertebrate Assemblages. Acta Oecologica 2021, 110, 103674. [Google Scholar] [CrossRef]
- Stanley, T.D.; Ross, E.M.; Jessup, L.W. Flora of South-Eastern Queensland; Queensland. Department of Primary Industries, Queensland Herbarium, Series Eds.; Queensland Department of Primary Industries: Brisbane, QLD, Australia, 1983. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R. 2021. Available online: http://www.rstudio.com/ (accessed on 17 March 2023).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package., 2020, R Package Version 2.6-2. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 March 2023).
- Martinez Arbizu, P. PairwiseAdonis: Pairwise Multilevel Comparison Using Adonis, Version 0.4; R Package: Vienna, Austria, 2020. [Google Scholar]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online 2014, 1–15. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel Test in the Face of Heterogeneous Dispersions: What Null Hypothesis Are You Testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legen, P. Numerical Ecology with R, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Pakgohar, N.; Eshaghi Rad, J.; Gholami, G.; Alijanpour, A.; Roberts, D.W.; Botta-Dukát, Z. A Comparative Study of Hard Clustering Algorithms for Vegetation Data. J. Veg. Sci. 2021, 32. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Nbclust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 1997, 67, 345. [Google Scholar] [CrossRef]
- Cáceres, M.D.; Legendre, P. Associations between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Pedersen, T.L. Patchwork: The Composer of Plots, 2020, R Package Version 1.1.1. Available online: https://CRAN.R-project.org/package=patchwork (accessed on 17 March 2023).
- Stevenson, K.; Pegg, G.; Wills, J.; Herbohn, J.; Firn, J. Impacts of Myrtle Rust (Austropuccinia Psidii) Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia. Ph.D. Thesis, The University of Queensland, Brisbane, QLD, Australia, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevenson, K.; Pegg, G.; Wills, J.; Herbohn, J.; Firn, J. Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia. Plants 2023, 12, 1970. https://doi.org/10.3390/plants12101970
Stevenson K, Pegg G, Wills J, Herbohn J, Firn J. Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia. Plants. 2023; 12(10):1970. https://doi.org/10.3390/plants12101970
Chicago/Turabian StyleStevenson, Kristy, Geoff Pegg, Jarrah Wills, John Herbohn, and Jennifer Firn. 2023. "Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia" Plants 12, no. 10: 1970. https://doi.org/10.3390/plants12101970
APA StyleStevenson, K., Pegg, G., Wills, J., Herbohn, J., & Firn, J. (2023). Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia. Plants, 12(10), 1970. https://doi.org/10.3390/plants12101970