Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants—The Current Status of Understanding
Abstract
:1. Introduction
1.1. Biogeochemistry of Pb in Different Soils
1.2. Plant Invasion and Pb Dynamics in Soils
2. Mechanisms Involved in Invasive Plants’ Tolerance to Pb
2.1. Morphological Plasticity
2.2. Contribution of Rhizospheric Biota
2.3. Physiological and Molecular Mechanisms
3. Potential Applications
4. Conclusions
5. Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]
- Chowdhury, A.; Maiti, S.K. Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: A case study from Indian Sunderban. Environ. Earth Sci. 2016, 75, 744. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Hernández-Plata, I.; Martinez, M.S.; Valencia-Cuevas, L.; Galante, P.M. Heavy metal pollution as a biodiversity threat. In Heavy Metals; IntechOpen: London, UK, 2018; Volume 383. [Google Scholar]
- Yang, R.-Y.; Tang, J.-J.; Yang, Y.-S.; Chen, X. Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Bot. Stud. 2007, 48, 453–458. [Google Scholar]
- Gulezian, P.Z.; Ison, J.L.; Granberg, K.J. Establishment of an invasive plant species (Conium maculatum) in contaminated roadside soil in Cook County, Illinois. Am. Midl. Nat. 2012, 168, 375–395. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Ruyi, Y.; Guodong, Y.; Jianjun, T.; Xin, C. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). J. Environ. Sci. 2008, 20, 739–744. [Google Scholar]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef]
- Mateos-Naranjo, E.; Redondo-Gómez, S.; Cambrollé, J.; Figueroa, M.E. Growth and photosynthetic responses to copper stress of an invasive cordgrass, Spartina densiflora. Mar. Environ. Res. 2008, 66, 459–465. [Google Scholar] [CrossRef]
- Windham, L.; Weis, J.S.; Weis, P. Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Mar. Pollut. Bull. 2001, 42, 811–816. [Google Scholar] [CrossRef]
- Alirzayeva, E.; Neumann, G.; Horst, W.; Allahverdiyeva, Y.; Specht, A.; Alizade, V. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. Environ. Pollut. 2017, 220, 1024–1035. [Google Scholar] [CrossRef]
- Garcia, H.; Palacio, R. A novel method to test for lead contamination in soil around US schools. Int. J. Agric. Res. Innov. Technol. 2020, 10, 94–96. [Google Scholar] [CrossRef]
- Manara, A. Plant responses to heavy metal toxicity. In Plants and Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–53. [Google Scholar]
- Sytar, O.; Ghosh, S.; Malinska, H.; Zivcak, M.; Brestic, M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021, 173, 148–166. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Skuza, L.; Szućko-Kociuba, I.; Filip, E.; Bożek, I. Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int. J. Mol. Sci. 2022, 23, 9335. [Google Scholar] [CrossRef]
- Herlina, L.; Purnaweni, H.; Sudarno, S.; Widianarko, B.; Sunoko, H. Phytoremediation of lead-contaminated soil by ornament plant Codiaeum variegatum. Proc. J. Phys. Conf. Ser. 2020, 1567, 032043. [Google Scholar] [CrossRef]
- Tibbett, M.; Green, I.; Rate, A.; De Oliveira, V.H.; Whitaker, J. The transfer of trace metals in the soil-plant-arthropod system. Sci. Total Environ. 2021, 779, 146260. [Google Scholar] [CrossRef]
- Cheng, S.; Tam, N.F.Y.; Li, R.; Shen, X.; Niu, Z.; Chai, M.; Qiu, G.Y. Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. Mar. Pollut. Bull. 2017, 124, 1089–1095. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci. World J. 2018, 2018, 1219364. [Google Scholar] [CrossRef]
- Velichkova, K.; Sirakov, I.; Slavcheva-Sirakova, D. Bioaccumulation, growth and photosynthetic response of a new found in bulgaria invasive species Lemna minuta and L. valdiviana to heavy metal pollution. Planta Daninha 2019, 37, 1–8. [Google Scholar]
- Bajwa, A.A.; Chauhan, B.S.; Farooq, M.; Shabbir, A.; Adkins, S.W. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 2016, 244, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Yap, C.K.; Tan, W.S.; Wong, K.W.; Ong, G.H.; Cheng, W.H.; Nulit, R.; Ibrahim, M.H.; Chew, W.; Berandah Edward, F.; Okamura, H. Antioxidant enzyme activities as biomarkers of Cu and Pb stress in Centella asiatica. Stresses 2021, 1, 253–265. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Feng, Y.L.; Zhang, L.K.; Callaway, R.M.; Valiente-Banuet, A.; Luo, D.Q.; Liao, Z.Y.; Lei, Y.B.; Barclay, G.F.; Silva-Pereyra, C. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 2015, 205, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, H.; Wang, A.; Lu, M.; Shen, Z.; Lian, C. Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments. Plant Soil 2015, 396, 215–227. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y.; Yin, T.-F.; Liu, C.-X.; Luo, F.-L. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLoS ONE 2013, 8, e81456. [Google Scholar] [CrossRef]
- Liu, X.; Qi, C.; Wang, Z.; Ouyang, C.; Li, Y.; Yan, D.; Wang, Q.; Guo, M.; Yuan, Z.; He, F. Biochemical and ultrastructural changes induced by lead and cadmium to crofton weed (Eupatorium adenophorum Spreng.). Int. J. Environ. Res. 2018, 12, 597–607. [Google Scholar] [CrossRef]
- Domańska, J.; Leszczyńska, D.; Badora, A. The possibilities of using common buckwheat in phytoremediation of mineral and organic soils contaminated with Cd or Pb. Agriculture 2021, 11, 562. [Google Scholar] [CrossRef]
- Selvi, F.; Carrari, E.; Colzi, I.; Coppi, A.; Gonnelli, C. Responses of serpentine plants to pine invasion: Vegetation diversity and nickel accumulation in species with contrasting adaptive strategies. Sci. Total Environ. 2017, 595, 72–80. [Google Scholar] [CrossRef]
- Wang, S.; Wei, M.; Wu, B.; Cheng, H.; Wang, C. Combined nitrogen deposition and Cd stress antagonistically affect the allelopathy of invasive alien species Canada goldenrod on the cultivated crop lettuce. Sci. Hortic. 2020, 261, 108955. [Google Scholar] [CrossRef]
- O’Loughlin, L.S.; Panetta, F.D.; Gooden, B. Identifying thresholds in the impacts of an invasive groundcover on native vegetation. Sci. Rep. 2021, 11, 20512. [Google Scholar] [CrossRef]
- Neggaz, N.E.; Yssaad, H.A.R. Effect of lead stress on polyphenols flavonoids and proline. Int. J. Biosci. 2018, 5, 135–144. [Google Scholar]
- Shahid, M. Biogeochemical Behavior of Heavy Metals in Soil-Plant System; Higher Education Commission: Islamabad, Pakistan, 2017; pp. 1–196. [Google Scholar]
- Silva, T.M.; de Medeiros Macêdo, G.; Soares, N.Z.D.; Fonseca, M.C.A.; Lacerda, G.A.; Veloso, M.d.D.M.; dos Reis, A.B.; Pimenta, M.A.S.; Arrudas, S.R. Phytoremediation Potential of Crotalaria juncea Plants in Lead-Contaminated Soils. J. Agric. Sci. 2021, 13, 27. [Google Scholar] [CrossRef]
- Herlina, L.; Widianarko, B.; Sunoko, H. Phytoremediation of Lead Contaminated Soils using Cordyline fruicosa (L). In Proceedings of the E3S Web of Conferences, Semarang, Indonesia, 14–15 August 2018. [Google Scholar]
- Kuo, S.a.; Heilman, P.; Baker, A. Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter1. Soil Sci. 1983, 135, 101–109. [Google Scholar] [CrossRef]
- Quenea, K.; Lamy, I.; Winterton, P.; Bermond, A.; Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 2009, 149, 217–223. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Peinado, F.M.; Van Gestel, C. Effect of soil properties on the toxicity of Pb: Assessment of the appropriateness of guideline values. J. Hazard. Mater. 2015, 289, 46–53. [Google Scholar] [CrossRef]
- Kumar, D.S.; Srikantaswamy, S. Factors affecting on mobility of heavy metals in soil environment. Int. J. Sci. Res. Dev. 2014, 2, 201–203. [Google Scholar]
- Pikuła, D.; Stępień, W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy 2021, 11, 878. [Google Scholar] [CrossRef]
- Kajeiou, M.; Alem, A.; Mezghich, S.; Ahfir, N.-D.; Mignot, M.; Devouge-Boyer, C.; Pantet, A. Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers. Chemosphere 2020, 260, 127505. [Google Scholar] [CrossRef]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Mandal, A.; Naidu, R. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil. J. Hazard. Mater. 2015, 298, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, W.; Zhang, L.; Peng, J.; Xia, H.; Zhang, S. Kinetics and equilibrium adsorption study of lead (II) onto the low cost adsorbent—Eupatorium adenophorum spreng. Process Saf. Environ. Prot. 2009, 87, 343–351. [Google Scholar] [CrossRef]
- Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001, 212, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Leng, Z.; Wu, Y.; Du, Y.; Dai, Z.; Biswas, A.; Zheng, X.; Li, G.; Mahmoud, E.K.; Jia, H. Interactions between invasive plants and heavy metal stresses: A review. J. Plant Ecol. 2022, 15, 429–436. [Google Scholar] [CrossRef]
- Suseela, V.; Alpert, P.; Nakatsu, C.H.; Armstrong, A.; Tharayil, N. Plant–soil interactions regulate the identity of soil carbon in invaded ecosystems: Implication for legacy effects. Funct. Ecol. 2016, 30, 1227–1238. [Google Scholar] [CrossRef]
- Gajaje, K.; Ultra, V.U.; David, P.W.; Rantong, G. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Environ. Sci. Pollut. Res. 2021, 28, 20637–20649. [Google Scholar] [CrossRef]
- Cantor, A.; Hale, A.; Aaron, J.; Traw, M.B.; Kalisz, S. Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination. Biol. Invasions 2011, 13, 3015–3025. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Vanparys, V.; Hayez, M.; Gruber, W.; Meerts, P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008, 157, 131–140. [Google Scholar] [CrossRef]
- Tharayil, N.; Bhowmik, P.; Alpert, P.; Walker, E.; Amarasiriwardena, D.; Xing, B. Dual purpose secondary compounds: Phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol. 2009, 181, 424–434. [Google Scholar] [CrossRef]
- Yannarell, A.C.; Busby, R.R.; Denight, M.L.; Gebhart, D.L.; Taylor, S.J. Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata. Front. Microbiol. 2011, 2, 127. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Usman, K.; Abu-Dieyeh, M.H.; Zouari, N.; Al-Ghouti, M.A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci. Rep. 2020, 10, 17070. [Google Scholar] [CrossRef]
- Nicholls, A.M.; Mal, T.K. Effects of lead and copper exposure on growth of an invasive weed, Lythrum salicaria L. (Purple Loosestrife). Ohio J. Sci. 2003, 103, 129–133. [Google Scholar]
- Grubor, M. Lead uptake, tolerance, and accumulation exhibited by the plants Urtica dioica and Sedum spectabile in contaminated soil without additives. Arch. Biol. Sci. 2008, 60, 239–244. [Google Scholar] [CrossRef]
- Maestri, E.; Marmiroli, M.; Visioli, G.; Marmiroli, N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 2010, 68, 1–13. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Allocation plasticity and plant–metal partitioning: Meta-analytical perspectives in phytoremediation. Environ. Pollut. 2008, 156, 290–296. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, T.; Su, R.; Yao, H.; Du, L.; Liu, J. Responses and Tolerance Mechanisms of K. Paniculate Seedlings under Lead Stress: Physiological Indicators, Morphological Distribution, Enrichment Effects and Microstructure. 2022. Available online: https://assets.researchsquare.com/files/rs-1430342/v1/96674ead-47cb-4a88-b885-58292512e86d.pdf?c=1649337268 (accessed on 21 March 2022).
- Xu, L.; Zhou, Z.-F. Effects of Cu pollution on the expansion of an amphibious clonal herb in aquatic-terrestrial ecotones. PLoS ONE 2016, 11, e0164361. [Google Scholar] [CrossRef]
- Yang, S.; Liang, S.; Yi, L.; Xu, B.; Cao, J.; Guo, Y.; Zhou, Y. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front. Environ. Sci. Eng. 2014, 8, 394–404. [Google Scholar] [CrossRef]
- Babu, S.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Phytoremediation of toxic metals: A sustainable green solution for clean environment. Appl. Sci. 2021, 11, 10348. [Google Scholar] [CrossRef]
- Mehes-Smith, M.; Nkongolo, K.; Cholewa, E. Coping mechanisms of plants to metal contaminated soil. Environ. Chang. Sustain. 2013, 54, 53–90. [Google Scholar]
- Sołtysiak, J.; Brej, T. Effect of Soil Artificially Polluted with Lead on an Invasive Fallopia x bohemica: A Case Study from Central Europe. Pol. J. Environ. Stud. 2019, 28, 4537–4542. [Google Scholar] [CrossRef] [PubMed]
- Michalet, S.; Rouifed, S.; Pellassa-Simon, T.; Fusade-Boyer, M.; Meiffren, G.; Nazaret, S.; Piola, F. Tolerance of Japanese knotweed sl to soil artificial polymetallic pollution: Early metabolic responses and performance during vegetative multiplication. Environ. Sci. Pollut. Res. 2017, 24, 20897–20907. [Google Scholar] [CrossRef]
- Mahdieh, M.; Yazdani, M.; Mahdieh, S. The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ. Monit. Assess. 2013, 185, 7877–7881. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P.; Timonen, S. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 2005, 28, 23–36. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Shi, W.; Yang, M.-X.; Sha, T.; Zhao, Z.-W. Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries. J. Microbiol. 2007, 45, 479–484. [Google Scholar]
- Kozdrój, J.; van Elsas, J.D. Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl. Soil Ecol. 2001, 17, 31–42. [Google Scholar] [CrossRef]
- Li, J.; Jin, Z.; Gu, Q. Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead–zinc mine tailings in Zhejiang, China. Can. J. Microbiol. 2011, 57, 569–577. [Google Scholar] [CrossRef]
- Carrasco, L.; Gattinger, A.; Fließbach, A.; Roldán, A.; Schloter, M.; Caravaca, F. Estimation by PLFA of microbial community structure associated with the rhizosphere of Lygeum spartum and Piptatherum miliaceum growing in semiarid mine tailings. Microb. Ecol. 2010, 60, 265–271. [Google Scholar] [CrossRef]
- Hou, D.; Lin, Z.; Wang, R.; Ge, J.; Wei, S.; Xie, R.; Wang, H.; Wang, K.; Hu, Y.; Yang, X. Cadmium exposure-sedum alfredii planting interactions shape the bacterial community in the hyperaccumulator plant rhizosphere. Appl. Environ. Microbiol. 2018, 84, e02797-17. [Google Scholar] [CrossRef]
- Miransari, M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 2011, 29, 645–653. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Tian, Z.; Feng, L.; Xu, L.; Wang, H. Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ 2019, 6, e6162. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, Q.; Wang, X. Characteristics of 18 species of weed hyperaccumulating heavy metals in contaminated soils. J. Basic Sci. Eng. 2003, 11, 152–160. [Google Scholar]
- Dai, Z.-C.; Fu, W.; Wan, L.-Y.; Cai, H.-H.; Wang, N.; Qi, S.-S.; Du, D.-L. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 2016, 7, 706. [Google Scholar] [CrossRef]
- Rout, M.E.; Callaway, R.M. Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Ann. Bot. 2012, 110, 213–222. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Wolfe, B.E.; Klironomos, J.N. Breaking new ground: Soil communities and exotic plant invasion. Bioscience 2005, 55, 477–487. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Tao, S. Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere. J. Appl. Ecol. 2002, 13, 859–862. [Google Scholar]
- Jakobsen, I.; Gazey, C.; Abbott, L. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol. 2001, 149, 95–103. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Kirnak, H.; Tas, I. Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 2003, 253, 287–292. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; De Souza, F.A.; Van Veen, J.A. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 2002, 11, 571–581. [Google Scholar] [CrossRef]
- Stampe, E.D.; Daehler, C.C. Mycorrhizal species identity affects plant community structure and invasion: A microcosm study. Oikos 2003, 100, 362–372. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Env. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Verkleji, J. The effects of heavy metals stress on higher plants and their use as biomonitors. In Plant as Bioindicators: Indicators of Heavy Metals in the Terrestrial Environment; VCH: New York, NY, USA, 1993; pp. 415–424. [Google Scholar]
- D'Antonio, C.M.; Hughes, R.F.; Vitousek, P.M. Factors influencing dynamics of two invasive C4 grasses in seasonally dry Hawaiian woodlands. Ecology 2001, 82, 89–104. [Google Scholar]
- Vila, M.; Weiner, J. Are invasive plant species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- McDowell, S.C. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am. J. Bot. 2002, 89, 1431–1438. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Drobne, D.; Regvar, M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ. Pollut. 2005, 133, 233–242. [Google Scholar] [CrossRef]
- Ginn, B.R.; Szymanowski, J.S.; Fein, J.B. Metal and proton binding onto the roots of Fescue rubra. Chem. Geol. 2008, 253, 130–135. [Google Scholar] [CrossRef]
- Meyers, D.E.; Auchterlonie, G.J.; Webb, R.I.; Wood, B. Uptake and localisation of lead in the root system of Brassica juncea. Environ. Pollut. 2008, 153, 323–332. [Google Scholar] [CrossRef]
- Baranowska-Morek, A.; Wierzbicka, M. Localization of lead in root tip. Acta Biol. Crac. Ser. Bot. 2004, 46, 45–56. [Google Scholar]
- Chinmayee, M.D.; Mahesh, B.; Pradesh, S.; Mini, I.; Swapna, T. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Appl. Biochem. Biotechnol. 2012, 167, 1550–1559. [Google Scholar] [CrossRef]
- Arazi, T.; Sunkar, R.; Kaplan, B.; Fromm, H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 1999, 20, 171–182. [Google Scholar] [CrossRef]
- Dalvi, A.A.; Bhalerao, S.A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Viehweger, K. How plants cope with heavy metals. Bot. Stud. 2014, 55, 35. [Google Scholar] [CrossRef] [PubMed]
- Saba, H.; Jyoti, P.; Neha, S. Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Int. Res. J. Environ. Sci. 2013, 2, 74–78. [Google Scholar]
- Lombi, E.; Susini, J. Synchrotron-based techniques for plant and soil science: Opportunities, challenges and future perspectives. Plant Soil 2009, 320, 1–35. [Google Scholar] [CrossRef]
- Andra, S.S.; Datta, R.; Sarkar, D.; Makris, K.C.; Mullens, C.P.; Sahi, S.V.; Bach, S.B. Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 2010, 326, 171–185. [Google Scholar] [CrossRef]
- Mishra, S.; Srivastava, S.; Tripathi, R.; Kumar, R.; Seth, C.; Gupta, D. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 2006, 65, 1027–1039. [Google Scholar] [CrossRef]
- Song, W.Y.; Mendoza-Cózatl, D.G.; Lee, Y.; Schroeder, J.I.; Ahn, S.N.; Lee, H.S.; Wicker, T.; Martinoia, E. Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ. 2014, 37, 1192–1201. [Google Scholar] [CrossRef]
- Pathak, P.; Bhattacharya, D. Phytoextraction of heavy metals by weeds: Physiological and molecular intervention. In Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–59. [Google Scholar]
- Kohli, S.K.; Handa, N.; Bali, S.; Khanna, K.; Arora, S.; Sharma, A.; Bhardwaj, R. Current scenario of Pb toxicity in plants: Unraveling plethora of physiological responses. Rev. Environ. Contam. Toxicol. 2020, 249, 153–197. [Google Scholar]
- Zhou, C.; Huang, M.; Ren, H.; Yu, J.; Wu, J.; Ma, X. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Ecotoxicol. Environ. Saf. 2017, 142, 59–68. [Google Scholar] [CrossRef]
- Małecka, A.; Piechalak, A.; Morkunas, I.; Tomaszewska, B. Accumulation of lead in root cells of Pisum sativum. Acta Physiol. Plant. 2008, 30, 629–637. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Benaroya, R.O.; Tzin, V.; Tel-Or, E.; Zamski, E. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem. 2004, 42, 639–645. [Google Scholar] [CrossRef]
- Mourato, M.; Reis, R.; Martins, L.L. Characterization of plant antioxidative system in response to abiotic stresses: A focus on heavy metal toxicity. Adv. Sel. Plant Physiol. Asp. 2012, 12, 1–17. [Google Scholar]
- Lajayer, B.A.; Ghorbanpour, M.; Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Rastgoo, L.; Alemzadeh, A.; Afsharifar, A. Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics. J. 2011, 4, 377–383. [Google Scholar]
- Singh, P.K.; Yadav, J.S.; Kumar, I.; Kumar, U.; Sharma, R.K. Invasive Alien Plant Species: An Exploration of Social Aspect and Phytoremediation Acceptability. In Phytoremediation for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 231–249. [Google Scholar]
- Shukla, P.; Kidwai, M.; Narayan, S.; Shirke, P.A.; Pandey, K.D.; Misra, P.; Chakrabarty, D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. Environ. Sci. Pollut. Res. 2023, 30, 41878–41899. [Google Scholar] [CrossRef]
- Beals, C.; King, H.; Bailey, G. The physiological responses of two aquatic plants, Alternanthera philoxeroides (Alligator Weed) and Nasturtium officinale (Watercress) to heavy metal exposure. Environ. Sci. Pollut. Res. 2023, 30, 59443–59448. [Google Scholar] [CrossRef]
- Song, W.-Y.; Ju Sohn, E.; Martinoia, E.; Jik Lee, Y.; Yang, Y.-Y.; Jasinski, M.; Forestier, C.; Hwang, I.; Lee, Y. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 2003, 21, 914–919. [Google Scholar] [CrossRef]
- Gisbert, C.; Ros, R.; De Haro, A.; Walker, D.J.; Bernal, M.P.; Serrano, R.; Navarro-Aviñó, J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 2003, 303, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.S.U.; Min, S.R.; Jeong, W.J.; Sultana, S.; Choi, K.S.; Song, W.Y.; Lee, Y.; Lim, Y.P.; Liu, J.R. Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Cult. 2011, 105, 85–91. [Google Scholar] [CrossRef]
- Morel, M.; Crouzet, J.; Gravot, A.; Auroy, P.; Leonhardt, N.; Vavasseur, A.; Richaud, P. AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol. 2009, 149, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Mir, Z.A.; Bharose, R.; Lone, A.H.; Malik, Z.A. Review on phytoremediation: An ecofriendly and green technology for removal of heavy metals. Crop Res. 2017, 52, 74–82. [Google Scholar]
- Barocsi, A.; Csintalan, Z.; Kocsanyi, L.; Dushenkov, S.; Kuperberg, J.M.; Kucharski, R.; Richter, P.I. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation. Int. J. Phytoremediation 2003, 5, 13–23. [Google Scholar] [CrossRef]
- Gunarathne, V.; Mayakaduwa, S.; Ashiq, A.; Weerakoon, S.R.; Biswas, J.K.; Vithanage, M. Transgenic plants: Benefits, applications, and potential risks in phytoremediation. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–102. [Google Scholar]
- Khan, I.U.; Qi, S.-S.; Gul, F.; Manan, S.; Rono, J.K.; Naz, M.; Shi, X.-N.; Zhang, H.; Dai, Z.-C.; Du, D.-L. A Green Approach Used for Heavy Metals ‘Phytoremediation’Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. Plants 2023, 12, 725. [Google Scholar] [CrossRef]
- Zagurskaya, Y.V. Ecosystem transformation. Учредители Череповецкий государственный университет 2022, 5, 42–54. [Google Scholar]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Nedjimi, B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021, 3, 286. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef]
- Dai, Q.; Yuan, J.; Fang, W.; Yang, Z. Differences on Pb accumulation among plant tissues of 25 varieties of maize (Zea mays). Front. Biol. China 2007, 2, 303–308. [Google Scholar] [CrossRef]
- Singh, R. Microorganism as a tool of bioremediation technology for cleaning environment: A review. Proc. Int. Acad. Ecol. Environ. Sci. 2014, 4, 1. [Google Scholar]
Invasive Species | Growth Conditions | Location | Mechanism of Tolerance | References |
---|---|---|---|---|
Solidago canadensis L. | A greenhouse experiment with Pb as Pb(AC)2·3H2O @ (0, 300 and 600) mg kg−1 soil | Southeastern China | Exclusion or reduction in the uptake of Pb | [5] |
Solidago canadensis L. | A greenhouse experiment with Pb as Pb(AC)2·2H2O @ (0, 300 and 600) mg kg−1 soil and Mycorrhizal inoculum | Southeastern China | High efficiency nutrient uptake in association with mycorrhizae | [8] |
Atriplex halimus | Field study at 14 different sites, representing Pb pollution | Alexandria, Egypt | Molecular and physiological strategies involving transcriptional factors, ATPase transporter expression, and ROS detoxification | [23] |
Spartina alterniflora | Greenhouse study with Pb-added sediment at (29, 68) µg/g Pb | Tuckerton, NJ, United States | Pb accumulator in above ground biomass (leaves and stems) | [11] |
Tetraena qataranse | Pot experiment with Pb as (PbCl2) at (25, 50, and 100) mg/L Pb | Doha-Qatar | Pb hyperaccumulator With Increased antioxidant enzyme activity | [56] |
Lythrum salicaria | Pot experiment with Pb at control (0, 1000 and 2000) ppm Pb | Cleveland, United States | Hyperaccumulator with death and regrowth strategy | [57] |
Centella asiatica | Greenhouse experiment with Pb as Pb(NO3)2 at (0.20, 0.40 and 0.60) mg/L | Malaysia | Enhanced antioxidant capacity | [25] |
Conium maculatum | two seasons of field surveys of Pb polluted area with 92 mg/kg dry soil Pb | Cook County, Illinois | Pb Accumulator | [6] |
Method/Technique | Species | Study/Experiment | References |
---|---|---|---|
Hyperaccumulation potential | Urtica dioica and Sedum spectabile | Plant specimens from uncontaminated sites were collected and transplanted in soils with Pb contamination without any additives, such as EDTA and HEDTA, and their natural hyper-tolerance and hyperaccumulation potentials were assessed through atomic spectroscopy. | [58] |
Physiological indicators, morphological distribution, enrichment effects, and microstructure | Koelreuteria paniculata | Plants were exposed to various concentrations of Pb solution to explore impacts on growth, and transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were used to study physiology and microstructure. | [61] |
Uptake and accumulation potential | Pelargonium roseum | Pb uptake and accumulation potential of the plant species was estimated using flame atomic absorption spectrophotometry (AAS). | [68] |
Phytoremediation potential | Codiaeum variegatum | Phytoremediation of Pb-contaminated soil was studied by interpreting the phytoremediation potential of the plants through the following considerations: metal tolerance index (MTI), translocation factor (TF), and bioaccumulation factor (BAF). | [18] |
Efficiency as a phytoremediator | Crotalaria juncea | The plant species was studied for its phytoremediation potential in Pb-contaminated soil, and metal concentrations in soil and plant samples were determined through atomic absorption spectrometry (AAS). | [36] |
Effect on polyphenols, flavonoids, and proline contents | Raphanus sativus L. | The Pb stress indicators were determined using a UV-visible spectrophotometer. | [34] |
Role as a potential phytoremediator | Cordyline fruicosa L. | Phytoremediation of Pb-contaminated soils was studied using a UV–visible spectrophotometer. | [37] |
Effects on plant growth and development | Raphanus raphanistrum | Response of plant growth indicators was used as a novel strategy to indicate Pb contamination in soils around US schools before proceeding for testing. | [13] |
Tolerance potential to elevated contents of Pb in organic and mineral soils | Fagopyrum esculentum Moench | A plant species was investigated for its tolerance in Pb-contaminated mineral and organic soils. Pb quantification in plant and soil samples was performed using atomic absorption spectrometry (AAS). | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, M.R.; Naz, M.; Wan, J.; Dai, Z.; Ullah, R.; Rehman, S.u.; Du, D. Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants—The Current Status of Understanding. Plants 2023, 12, 2084. https://doi.org/10.3390/plants12112084
Afzal MR, Naz M, Wan J, Dai Z, Ullah R, Rehman Su, Du D. Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants—The Current Status of Understanding. Plants. 2023; 12(11):2084. https://doi.org/10.3390/plants12112084
Chicago/Turabian StyleAfzal, Muhammad Rahil, Misbah Naz, Justin Wan, Zhicong Dai, Raza Ullah, Shafiq ur Rehman, and Daolin Du. 2023. "Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants—The Current Status of Understanding" Plants 12, no. 11: 2084. https://doi.org/10.3390/plants12112084
APA StyleAfzal, M. R., Naz, M., Wan, J., Dai, Z., Ullah, R., Rehman, S. u., & Du, D. (2023). Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants—The Current Status of Understanding. Plants, 12(11), 2084. https://doi.org/10.3390/plants12112084