The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections
Abstract
:1. Introduction
2. Staphylococcus aureus
3. Products of Natural Origin as Source of New Antimicrobials
4. Plant Extract-Based Dressings with Potential to Treat Staphylococcus aureus Infected Wounds
5. Emerging New Herbal-Based Dressings with Potential to Threat Staphylococcus aureus-Infected Wound
Material | Plant Product | Formulation | Biological Activity | Reference |
---|---|---|---|---|
Biocomposite membranes | Leaf extract of Aloe vera Curcumin | Oxidized pectin was crosslinked with gelatin to produce the matrix, which was mixed with A. vera (10.0–40.0% wt), curcumin, or aloe vera (20.0% and curcumin (20.0%). | -In vitro Antibacterial Non-toxic NIH3T3 cells -Excision wound in C57BL/6J mouse Wound contraction Angiogenesis | [95] |
Electrospun nanofibers | Lawsonia inermis (Lythraceae Family) | Gelatin (20.0%) solution loaded with L. inermis (10.0 and 20.0% of weight ratio to gelatin) and 6.0% of poly-L-lactic acid solution were prepared and electrospun to produce the nanofibers. | -In vitro Antibacterial Non-toxic NIH3T3-L1 cells | [96] |
Biocomposite membranes | Clove oil Sandalwood oil | Clove oil (2.0, 5.0, 10.0, or 15.0%) or sandalwood oil (2.0, 5.0, 10.0, or 15.0%) was loaded into dextran/nanosoy/glycerol/ chitosan base matrix. | -In vitro Antibacterial Inhibition of bacterial adhesion -Excision wound in BALB/c mouse Re-epithelialization process | [97] |
Electrospun Nanofibers | Moringa oleifera extract | 0.10, 0.15, 0.25, or 0.50 g of plant extract were dissolved into 16.0% (wt) polyacrylonitrile. | -In vitro Antibacterial -Excision wound in Wistar rat Wound contraction Re-epithelialization process | [72] |
Electrospun Nanofibers | Essential oil of Zataria multiflora | 2.0, 5.0 or 10.0% of essential oil were mixed with a chitosan/poly(vinyl alcohol)/gelatin polymeric solution and then used to prepare the nanofibers. | -In vitro Antibacterial Non-toxic to L929 cells | [90] |
Electrospun dual-layer nanofibrous membrane | Methanolic extract of Azadiracta indica | Plant extract/chitosan blend was electrospun on poly(vinyl alcohol) nanofibrous form. | -In vitro Antibacterial | [53] |
Nanostructured lipid carrier | Essential oil of Rosmarinus officinalis | Essential oil was encapsulated into nanostructured lipid carrier (consisting of glyceryl palmitostearate as solid lipid and miglyol as liquid lipid) and loaded into a carbomer-based hydrogel. | -In vitro Antibacterial -Excision wound in BALB/c male mouse Antibacterial Re-epithelialization process Angiogenesis | [82] |
Film | Kappa-carrageenan Locust bean gum Cranberry extract | A pH-responsive film based on kappa-carrageenan and locust bean gum polysaccharides was loaded with 0.3% cranberry extract. | -In vitro Antibacterial Inhibition of bacterial adhesion Non-toxic to NIH3T3 cells | [99] |
Plant cellulose microfibers | Cellulose and phenolic compounds of Gleditsia triacanthos | Cellulose microfibers were functionalized with phenolic compounds extracted from the leaves. | -In vitro Antibacterial Antioxidant Non-toxic to L929 cells | [67] |
Dual-layer nanofibrous membrane | Hydroethanolic extract of Agrimonia eupatoria L | Poly(vinyl alcohol)/chitosan/plant extract (10.0% w/v) (second layer) was electrospun over a cotton fabric (first layer) membrane. | In vitro Antibacterial Non-toxic to NHDF cells | [47] |
Black phosphorus quantum dots (BPQD) | Epigallocatechin gallate (EGCG) | Epigallocatechin-gallate-modified BPQDs were loaded into hydrogels | -In vitro Antibacterial, including antibiofilm Neovascularization and proliferation of HUVEC cells in scratch wound assay Non-toxic to HUVEC cells -Burn wound in Sprague Dawley diabetic rat Wound contraction Re-epithelialization process No systemic toxicity | [100] |
Ointment | Caprylic acid Polygalacturonic acid | 1.0% polygalacturonic acid plus 0.4% caprylic acid incorporated into 2-hydroxyethylcellulose and glycerol ointment base. | -In vitro Antibiofilm Non toxic to L929 cells and bovine erythrocytes | [101] |
Hydrogel | Castor oil | A reactive methoxy-silane-functionalized quaternary ammonium compound bearing a long fatty amide residue originating from castor oil (Si-CAQ) was synthesized and then loaded into gelatin/poly(vinyl alcohol)-based hydrogel. | -In vitro Bactericidal Non toxic to L929 cells Proliferation of L929 cells in scratch wound assay -Excision wound in Wistar rat Re-epithelialization process | [102] |
Nanoemulsion | Geranium oil | Geranium oil was mixed with the surfactant (Tween80/Span80) to prepare the nanoemulsion. The pravastatin was loaded into the nanoemulsion. | -In vitro Antibacterial -Burn wound in Wistar rat Anti-inflammatory Wound contraction | [103] |
Composite film | Basella alba aqueous extract | Poly (vinyl alcohol)/chitosan/plant extract composite film. | -In vitro Antibacterial Anti-inflammatory Proliferation of L929 cells in scratch wound assay Non-toxic to L929 cells | [55] |
Hydrogel | Glycyrrhizic acid | 2.0% Aldehyde-contained glycyrrhizic acid (AGA) was mixed with 2.0% carboxymethyl chitosan. | -In vitro Bactericidal Anti-inflammatory Non-toxic to L929 cells, RAW 264.7 macrophages and erythrocytes -Excision wound in Kunming mouse Bactericidal Anti-inflammatory Re-epithelialization process | [104] |
6. Methods
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkaid, Y.; Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016, 16, 353–366. [Google Scholar] [CrossRef]
- Young, B.C.; Wu, C.-H.; Gordon, N.C.; Cole, K.; Price, J.R.; Liu, E.; Sheppard, A.E.; Perera, S.; Charlesworth, J.; Golubchik, T.; et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 2017, 6, e30637. [Google Scholar] [CrossRef]
- Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Skin Wound Care 2012, 25, 304–314. [Google Scholar] [CrossRef]
- Burgess, M.; Valdera, F.; Varon, D.; Kankuri, E.; Nuutila, K. The Immune and Regenerative Response to Burn Injury. Cells 2022, 11, 3073. [Google Scholar] [CrossRef]
- Adib, Y.; Bensussan, A.; Michel, L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediat. Inflamm. 2022, 2022, 5344085. [Google Scholar] [CrossRef]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [Google Scholar] [CrossRef]
- Okur, M.E.; Karantas, I.D.; Şenyiğit, Z.; Okur, N.; Siafaka, P.I. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci. 2020, 15, 661–684. [Google Scholar] [CrossRef]
- Mofazzal Jahromi, M.A.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 2018, 123, 33–64. [Google Scholar] [CrossRef]
- Hurlow, J.; Couch, K.; Laforet, K.; Bolton, L.; Metcalf, D.; Bowler, P. Clinical Biofilms: A Challenging Frontier in Wound Care. Adv. Wound Care 2015, 4, 295–301. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- François, P.; Schrenzel, J.; Götz, F. Biology and Regulation of Staphylococcal Biofilm. Int. J. Mol. Sci. 2023, 24, 5218. [Google Scholar] [CrossRef]
- Evelhoch, S.R. Biofilm and Chronic Nonhealing Wound Infections. Surg. Clin. North Am. 2020, 100, 727–732. [Google Scholar] [CrossRef]
- Kolasiński, W. Surgical site infections—Review of current knowledge, methods of prevention. Pol. Przegl. Chir. 2018, 91, 41–47. [Google Scholar] [CrossRef]
- Sakr, A.; Brégeon, F.; Mège, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef]
- Yueh, C.-M.; Chi, H.; Chiu, N.-C.; Huang, F.-Y.; Tsung-Ning Huang, D.; Chang, L.; Kung, Y.-H.; Huang, C.-Y. Etiology, clinical features, management, and outcomes of skin and soft tissue infections in hospitalized children: A 10-year review. J. Microbiol. Immunol. Infect. 2022, 55, 728–739. [Google Scholar] [CrossRef]
- Krismer, B.; Weidenmaier, C.; Zipperer, A.; Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 2017, 15, 675–687. [Google Scholar] [CrossRef]
- Danelli, T.; Duarte, F.C.; de Oliveira, T.A.; da Silva, R.S.; Frizon Alfieri, D.; Gonçalves, G.B.; de Oliveira, C.F.; Tavares, E.R.; Yamauchi, L.M.; Perugini, M.R.E.; et al. Nasal Carriage by Staphylococcus aureus among Healthcare Workers and Students Attending a University Hospital in Southern Brazil: Prevalence, Phenotypic, and Molecular Characteristics. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 3808036. [Google Scholar] [CrossRef]
- Chelkeba, L.; Melaku, T. Epidemiology of staphylococci species and their antimicrobial-resistance among patients with wound infection in Ethiopia: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2022, 29, 483–498. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Roy, S.; Santra, S.; Das, A.; Dixith, S.; Sinha, M.; Ghatak, S.; Ghosh, N.; Banerjee, P.; Khanna, S.; Mathew-Steiner, S.; et al. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann. Surg. 2020, 271, 1174–1185. [Google Scholar] [CrossRef]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Res. Int. 2014, 2014, 761741. [Google Scholar] [CrossRef]
- Pereira, R.F.; Bártolo, P.J. Traditional Therapies for Skin Wound Healing. Adv. Wound Care 2016, 5, 208–229. [Google Scholar] [CrossRef]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef]
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti-Infect. Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Pfaller, M.A. Manual of Clinical Microbiology Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci that Grow Aerobically, 11th ed.; ASM Press: Washington, DC, USA, 2015; pp. 354–382. [Google Scholar]
- Missiakas, D.M.; Schneewind, O. Growth and laboratory maintenance of Staphylococcus aureus. Curr. Protoc. Microbiol. 2013, 28, 9C.1.1–9C.1.9. [Google Scholar] [CrossRef]
- Rammelkamp, C.H.; Maxon, T. Resistance of Staphylococcus aureus to the Action of Penicillin. Exp. Biol. Med. 1942, 51, 386–389. [Google Scholar] [CrossRef]
- Jevons, M.P. “Celbenin”-resistant Staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Lade, H.; Joo, H.-S.; Kim, J.-S. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics 2022, 11, 1378. [Google Scholar] [CrossRef]
- Uehara, Y. Current Status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics 2022, 11, 86. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Foster, T.J. The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol. 2019, 27, 927–941. [Google Scholar] [CrossRef]
- Cramton, S.E.; Gerke, C.; Schnell, N.F.; Nichols, W.W.; Götz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 1999, 67, 5427–5433. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Colenci, R.; Abbade, L.P.F. Fundamental aspects of the local approach to cutaneous ulcers. An. Bras. Dermatol. 2018, 93, 859–870. [Google Scholar] [CrossRef]
- Fan, K.; Tang, J.; Escandon, J.; Kirsner, R.S. State of the art in topical wound-healing products. Plast. Reconstr. Surg. 2011, 127, 44S–59S. [Google Scholar] [CrossRef]
- Patel, P.; Thanki, A.; Viradia, D.; Shah, P. Honey-based Silver Sulfadiazine Microsponge-Loaded Hydrogel: In vitro and In vivo Evaluation for Burn Wound Healing. Curr. Drug Deliv. 2023, 20, 608–628. [Google Scholar] [CrossRef]
- Ramírez-Zavaleta, C.Y.; García-Barrera, L.J.; Rodríguez-Verástegui, L.L.; Arrieta-Flores, D.; Gregorio-Jorge, J. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Int. J. Mol. Sci. 2022, 23, 12974. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef] [PubMed]
- Okwu, M.U.; Olley, M.; Akpoka, A.O.; Izevbuwa, O.E. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019, 5, 117–137. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Wiart, C.; Kathirvalu, G.; Raju, C.S.; Nissapatorn, V.; Rahmatullah, M.; Paul, A.K.; Rajagopal, M.; Sathiya Seelan, J.S.; Rusdi, N.A.; Lanting, S.; et al. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023, 28, 3873. [Google Scholar] [CrossRef]
- Nigussie, D.; Davey, G.; Legesse, B.A.; Fekadu, A.; Makonnen, E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement. Med. Ther. 2021, 21, 2. [Google Scholar] [CrossRef]
- Mouro, C.; Dunne, C.P.; Gouveia, I.C. Designing New Antibacterial Wound Dressings: Development of a Dual Layer Cotton Material Coated with Poly(Vinyl Alcohol)_Chitosan Nanofibers Incorporating Agrimonia eupatoria L. Extract. Molecules 2020, 26, 83. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, A.; Ghaznavi-Rad, E.; Jeevajothi Nathan, J.; Abba, Y.; van Belkum, A.; Neela, V. Allium stipitatum Extract Exhibits In Vivo Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus and Accelerates Burn Wound Healing in a Full-Thickness Murine Burn Model. Evid.-Based Complement. Altern. Med. 2017, 2017, 1914732. [Google Scholar] [CrossRef] [PubMed]
- Lobine, D.; Cummins, I.; Govinden-Soulange, J.; Ranghoo-Sanmukhiya, M.; Lindsey, K.; Chazot, P.L.; Ambler, C.A.; Grellscheid, S.; Sharples, G.; Lall, N.; et al. Medicinal Mascarene Aloes: An audit of their phytotherapeutic potential. Fitoterapia 2018, 124, 120–126. [Google Scholar] [CrossRef]
- Rezaei, M.; Dadgar, Z.; Noori-Zadeh, A.; Mesbah-Namin, S.A.; Pakzad, I.; Davodian, E. Evaluation of the antibacterial activity of the Althaea officinalis L. leaf extract and its wound healing potency in the rat model of excision wound creation. Avicenna J. Phytomed. 2015, 5, 105–112. [Google Scholar]
- Manzuoerh, R.; Farahpour, M.R.; Oryan, A.; Sonboli, A. Effectiveness of topical administration of Anethum graveolens essential oil on MRSA-infected wounds. Biomed. Pharmacother. 2019, 109, 1650–1658. [Google Scholar] [CrossRef]
- Yang, W.-T.; Ke, C.-Y.; Wu, W.-T.; Tseng, Y.-H.; Lee, R.-P. Antimicrobial and anti-inflammatory potential of Angelica dahurica and Rheum officinale extract accelerates wound healing in Staphylococcus aureus-infected wounds. Sci. Rep. 2020, 10, 5596. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shahid, M.A.; Hossain, M.D.; Islam, M.N. Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. Int. J. Biol. Macromol. 2019, 138, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Anani, K.; Adjrah, Y.; Ameyapoh, Y.; Karou, S.D.; Agbonon, A.; de Souza, C.; Gbeassor, M. Effects of hydroethanolic extracts of Balanites aegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. J. Ethnopharmacol. 2015, 164, 16–21. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, O.J.; Gasti, T.; Hiremani, V.D.; Pinto, J.P.; Contractor, S.S.; Shettar, A.K.; Olivia, D.; Arakera, S.B.; Masti, S.P.; Chougale, R.B. Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. Int. J. Biol. Macromol. 2023, 225, 673–686. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Choucry, M.A.; Kandil, Z.A. Antibacterial, antioxidant, and topical anti-inflammatory activities of Bergia ammannioides: A wound-healing plant. Pharm. Biol. 2016, 54, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Elizalde, K.S.; Rodriguez-Monroy, M.A.; Flores, C.M.; Hernandez-Portilla, L.B.; Barbosa-Cabrera, E.; Canales-Martinez, M.M. Comparison of Biological Properties of Two Medicinal Extracts of the Tehuacan-Cuicatlan Valley. Evid.-Based Complement. Altern. Med. 2018, 2018, 4918090. [Google Scholar] [CrossRef]
- Léguillier, T.; Lecsö-Bornet, M.; Lémus, C.; Rousseau-Ralliard, D.; Lebouvier, N.; Hnawia, E.; Nour, M.; Aalbersberg, W.; Ghazi, K.; Raharivelomanana, P.; et al. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLoS ONE 2015, 10, e0138602. [Google Scholar] [CrossRef]
- Ekom, S.E.; Tamokou, J.-D.; Kuete, V. Antibacterial and Therapeutic Potentials of the Capsicum annuum Extract against Infected Wound in a Rat Model with Its Mechanisms of Antibacterial Action. BioMed Res. Int. 2021, 2021, 4303902. [Google Scholar] [CrossRef]
- Khémiri, I.; Essghaier, B.; Sadfi-Zouaoui, N.; Bitri, L. Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. in the Management of Skin Injuries. Oxidative Med. Cell. Longev. 2020, 2020, 4103418. [Google Scholar] [CrossRef]
- Kim, B.E.; Goleva, E.; Hall, C.F.; Park, S.H.; Lee, U.H.; Brauweiler, A.M.; Streib, J.E.; Richers, B.N.; Kim, G.; Leung, D.Y.M. Skin Wound Healing Is Accelerated by a Lipid Mixture Representing Major Lipid Components of Chamaecyparis obtusa Plant Extract. J. Investig. Dermatol. 2018, 138, 1176–1186. [Google Scholar] [CrossRef]
- Alhazmi, A.; Aldairi, A.F.; Alghamdi, A.; Alomery, A.; Mujalli, A.; Obaid, A.A.; Farrash, W.F.; Allahyani, M.; Halawani, I.; Aljuaid, A.; et al. Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules 2022, 27, 3320. [Google Scholar] [CrossRef] [PubMed]
- Suarez Carneiro, M.A.M.; Silva, L.D.S.; Diniz, R.M.; Saminez, W.F.D.S.; Oliveira, P.V.; Pereira Mendonça, J.S.; Colasso, A.H.M.; Soeiro Silva, I.S.; Jandú, J.J.B.; Sá, J.C.; et al. Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int. Immunopharmacol. 2021, 100, 108094. [Google Scholar] [CrossRef]
- Rajoo, A.; Ramanathan, S.; Mansor, S.M.; Sasidharan, S. Formulation and evaluation of wound healing activity of Elaeis guineensis Jacq leaves in a Staphylococcus aureus infected Sprague Dawley rat model. J. Ethnopharmacol. 2021, 266, 113414. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Liu, X.; Wang, S.; Li, B.; Pan, T.; Liu, D.; Wang, F.; Diao, Y.; Li, K. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns 2017, 43, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Tatiya-Aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed. Pharmacother. 2019, 111, 705–713. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Geana, E.-I.; Tutunaru, O.; Pircalabioru, G.G.; Zgura, I.; Chifiriuc, M.C. Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties. Int. J. Mol. Sci. 2020, 22, 33. [Google Scholar] [CrossRef]
- Whitehead, A.J.; Nelson, N.W.; Brame, L.S.; Champlin, F.R. Endemic North American Plants as Potentially Suitable Agents for Wound Cleaning Under Resource Scarce Conditions. Wilderness Environ. Med. 2019, 30, 401–406. [Google Scholar] [CrossRef]
- Anani, K.; Adjrah, Y.; Améyapoh, Y.; Karou, S.D.; Agbonon, A.; de Souza, C.; Gbeassor, M. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae). Pharmacogn. Res. 2016, 8, 142–146. [Google Scholar] [CrossRef]
- Hernandez-Hernandez, A.B.; Alarcon-Aguilar, F.J.; Almanza-Perez, J.C.; Nieto-Yañez, O.; Olivares-Sanchez, J.M.; Duran-Diaz, A.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Antimicrobial and anti-inflammatory activities, wound-healing effectiveness and chemical characterization of the latex of Jatropha neopauciflora Pax. J. Ethnopharmacol. 2017, 204, 1–7. [Google Scholar] [CrossRef]
- Eyarefe, O.D.; Idowu, A.; Afolabi, J.M. Healing Potentials of Oral Moringa oleifera Leaves Extract and Tetracycline on Methicillin Resistant Staphylococcus aureus Infected Wounds of Wistar rats. Niger. J. Physiol. Sci. 2015, 30, 73–78. [Google Scholar]
- Fayemi, O.E.; Ekennia, A.C.; Katata-Seru, L.; Ebokaiwe, A.P.; Ijomone, O.M.; Onwudiwe, D.C.; Ebenso, E.E. Antimicrobial and Wound Healing Properties of Polyacrylonitrile-Moringa Extract Nanofibers. ACS Omega 2018, 3, 4791–4797. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghanayem, A.A.; Alhussaini, M.S.; Asad, M.; Joseph, B. Effect of Moringa oleifera Leaf Extract on Excision Wound Infections in Rats: Antioxidant, Antimicrobial, and Gene Expression Analysis. Molecules 2022, 27, 4481. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghanayem, A.A.; Alhussaini, M.S.; Asad, M.; Joseph, B. Moringa oleifera Leaf Extract Promotes Healing of Infected Wounds in Diabetic Rats: Evidence of Antimicrobial, Antioxidant and Proliferative Properties. Pharmaceuticals 2022, 15, 528. [Google Scholar] [CrossRef] [PubMed]
- Emeka, L.B.; Emeka, P.M.; Khan, T.M. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. Pak. J. Pharm. Sci. 2015, 28, 1985–1990. [Google Scholar]
- Ammar, I.; Bardaa, S.; Mzid, M.; Sahnoun, Z.; Rebaii, T.; Attia, H.; Ennouri, M. Antioxidant, antibacterial and in vivo dermal wound healing effects of Opuntia flower extracts. Int. J. Biol. Macromol. 2015, 81, 483–490. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M.R.; Batool, R.; Maryam, S.; Majid, M. Wound healing potential of oil extracted from Parrotiopsis jacquemontiana (Decne) Rehder. J. Ethnopharmacol. 2019, 236, 354–365. [Google Scholar] [CrossRef]
- Ekom, S.E.; Tamokou, J.-D.; Kuete, V. Methanol extract from the seeds of Persea americana displays antibacterial and wound healing activities in rat model. J. Ethnopharmacol. 2022, 282, 114573. [Google Scholar] [CrossRef]
- Valle, D.L.J.; Puzon, J.J.M.; Cabrera, E.C.; Cena-Navarro, R.B.; Rivera, W.L. Antimicrobial efficacy and activity of ethanolic extract of Piper betle L. on Staphylococcus aureus-infected wound in mice and clinical isolates of multiple drug-resistant bacterial pathogens. Trop. Biomed. 2021, 38, 134–142. [Google Scholar] [CrossRef]
- Gonzalez-Aspajo, G.; Belkhelfa, H.; Haddioui-Hbabi, L.; Bourdy, G.; Deharo, E. Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J. Ethnopharmacol. 2015, 171, 330–334. [Google Scholar] [CrossRef]
- Liu, G.; Liu, A.; Yang, C.; Zhou, C.; Zhou, Q.; Li, H.; Yang, H.; Mo, J.; Zhang, Z.; Li, G.; et al. Portulaca oleracea L. organic acid extract inhibits persistent methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front. Microbiol. 2023, 13, 1076154. [Google Scholar] [CrossRef]
- Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol. 2019, 47, 980–988. [Google Scholar] [CrossRef]
- Güzel, S.; Özay, Y.; Kumaş, M.; Uzun, C.; Özkorkmaz, E.G.; Yıldırım, Z.; Ülger, M.; Güler, G.; Çelik, A.; Çamlıca, Y.; et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother. 2019, 111, 1260–1276. [Google Scholar] [CrossRef]
- Farahpour, M.R.; Pirkhezr, E.; Ashrafian, A.; Sonboli, A. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomed. Pharmacother. 2020, 128, 110120. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Głowacka, A.; Poznańska-Kurowska, K.; Kaszuba, A.; Urbaniak, A.; Kowalczyk, E. The effect of clary sage oil on staphylococci responsible for wound infections. Adv. Dermatol. Allergol. 2015, 32, 21–26. [Google Scholar] [CrossRef]
- Muller, J.A.I.; Matias, R.; Guilhermino, J.F.; Moreira, D.L.; Dos Santos, K.S.; Fermiano, M.H.; Silva, B.A.K.; Dourado, D.M. The effect of Sebastiania hispida gel on wound model infected by methicillin resistant Staphylococcus aureus. Biomed. Pharmacother. 2018, 105, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.K.; Alqasmi, M.H.; Alrouji, M.; Kuriri, F.A.; Almuhanna, Y.; Joseph, B.; Asad, M. Antibacterial Activity of Syzygium aromaticum (Clove) Bud Oil and Its Interaction with Imipenem in Controlling Wound Infections in Rats Caused by Methicillin-Resistant Staphylococcus aureus. Molecules 2022, 27, 8551. [Google Scholar] [CrossRef]
- Zouari Bouassida, K.; Bardaa, S.; Khimiri, M.; Rebaii, T.; Tounsi, S.; Jlaiel, L.; Trigui, M. Exploring the Urtica dioica Leaves Hemostatic and Wound-Healing Potential. BioMed Res. Int. 2017, 2017, 1047523. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, Z.-J.; Chen, S.; Wang, H.; Xie, T.-Z.; Xu, X.-J.; Xiang, M.-L.; Chen, Y.-C.; Luo, X.-D. Phytochemical and anti-MRSA constituents of Zanthoxylum nitidum. Biomed. Pharmacother. 2022, 148, 112758. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, N.T.; Khorram, M.; Zomorodian, K.; Yazdanpanah, S.; Veisi, H.; Veisi, H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int. J. Biol. Macromol. 2019, 125, 743–750. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012, 132, 887–895. [Google Scholar] [CrossRef]
- Busse, D.; Kudella, P.; Grüning, N.-M.; Gisselmann, G.; Ständer, S.; Luger, T.; Jacobsen, F.; Steinsträßer, L.; Paus, R.; Gkogkolou, P.; et al. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J. Investig. Dermatol. 2014, 134, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Lien, E.; Sellati, T.J.; Yoshimura, A.; Flo, T.H.; Rawadi, G.; Finberg, R.W.; Carroll, J.D.; Espevik, T.; Ingalls, R.R.; Radolf, J.D.; et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 1999, 274, 33419–33425. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 2008, 58, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.; Alam, M.; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int. J. Biol. Macromol. 2016, 82, 104–113. [Google Scholar] [CrossRef]
- Vakilian, S.; Norouzi, M.; Soufi-Zomorrod, M.; Shabani, I.; Hosseinzadeh, S.; Soleimani, M. L. inermis-loaded nanofibrous scaffolds for wound dressing applications. Tissue Cell 2018, 51, 32–38. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.; Sharma, D.; Gupta, B. Dextran based herbal nanobiocomposite membranes for scar free wound healing. Int. J. Biol. Macromol. 2018, 113, 227–239. [Google Scholar] [CrossRef]
- Mirhaj, M.; Labbaf, S.; Tavakoli, M.; Seifalian, A.M. Emerging treatment strategies in wound care. Int. Wound J. 2022, 19, 1934–1954. [Google Scholar] [CrossRef]
- Zepon, K.M.; Martins, M.M.; Marques, M.S.; Heckler, J.M.; Dal Pont Morisso, F.; Moreira, M.G.; Ziulkoski, A.L.; Kanis, L.A. Smart wound dressing based on κ–carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr. Polym. 2019, 206, 362–370. [Google Scholar] [CrossRef]
- Xu, S.; Chang, L.; Hu, Y.; Zhao, X.; Huang, S.; Chen, Z.; Ren, X.; Mei, X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. J. Nanobiotechnol. 2021, 19, 362. [Google Scholar] [CrossRef]
- Gerges, B.Z.; Rosenblatt, J.; Truong, Y.-L.; Reitzel, R.A.; Hachem, R.; Raad, I.I. Enhanced Biofilm Eradication and Reduced Cytotoxicity of a Novel Polygalacturonic and Caprylic Acid Wound Ointment Compared with Common Antiseptic Ointments. BioMed Res. Int. 2021, 2021, 2710484. [Google Scholar] [CrossRef]
- Gharibi, R.; Shaker, A.; Rezapour-Lactoee, A.; Agarwal, S. Antibacterial and Biocompatible Hydrogel Dressing Based on Gelatin- and Castor-Oil-Derived Biocidal Agent. ACS Biomater. Sci. Eng. 2021, 7, 3633–3647. [Google Scholar] [CrossRef] [PubMed]
- Rizg, W.Y.; Hosny, K.M.; Eshmawi, B.A.; Alamoudi, A.J.; Safhi, A.Y.; Murshid, S.S.A.; Sabei, F.Y.; Al Fatease, A. Tailoring of Geranium Oil-Based Nanoemulsion Loaded with Pravastatin as a Nanoplatform for Wound Healing. Polymers 2022, 14, 1912. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, S.; Du, R.; Yang, Y.; Liu, Y.; Wan, Z.; Yang, X. Injectable Self-Healing Adhesive Natural Glycyrrhizic Acid Bioactive Hydrogel for Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 17562–17576. [Google Scholar] [CrossRef] [PubMed]
Species | Family | Plant Part | Biological Activity | Reference |
---|---|---|---|---|
Achyranthus aspera Telenge | Amaranthaceae | Leaves | -In vitro Antibacterial | [46] |
Agrimonia eupatoria L. | Rosaceae | NI | -In vitro Antibacterial Non toxic to NDHF cells | [47] |
Allium stipitatum | Amaryllidaceae | Fresh bulbs | -In vitro Antibacterial * Non toxic to Vero cells -Burn wound in BALB/c mouse Antibacterial Re-epithelialization process | [48] |
Aloe spp. A. tormentorii (Marais) L.E.Newton and G.D.Rowley A. purpurea Lam. A. macra Haw. A. lomatophylloides Balf.f A. vera | Asphodelaceae | Leaves | -In vitro Antibacterial Proliferation of HaCaT cells in scratch wound assay Except A. purpurea, the other extracts were non toxic to HL60 and MCR 5 cells | [49] |
Althaea officinalis L. | Malvaceae | Leaves | -In vitro Bactericidal -Excision wound in Wistar male rat Re-epithelialization process | [50] |
Anethum graveolens L | Apiaceae | NI | -Excision wound in BALB/c mouse Antibacterial Anti-inflammatory Re-epithelialization process Angiogenesis | [51] |
Angelica dahurica Benth. et Hooker.f Rheum officinale Baill. | Apiaceae Polygonaceae | NI | -In vitro Antibacterial -Excision wound in Sprague Dawley rat Antibacterial Anti-inflammatory Re-epithelialization process Angiogenesis | [52] |
Azadirachta indica | Meliaceae | Leaves | -In vitro Antibacterial | [46,53] |
Balanites aegyptiaca | Balanitaceae | Bark | -In vitro Antibacterial Antioxidant | [54] |
Basela alba L. | Basellaceae | Fresh stem | -In vitro Antibacterial Proliferation of L929 cells in scratch wound assay Anti-inflammatory | [55] |
Bergia ammannioides Henye ex Roth. | Elatinaceae | NI | -In vitro Antibacterial Antioxidant -Excision wound in Sprague Dawley rat and Swiss albino mouse Anti-inflammatory Re-epithelialization process | [56] |
Bursera morelensis | Burseraceae | Barks | -In vitro Antibacterial Antioxidant -Excision wound in male CD-1 mouse Re-epithelialization process Angiogenesis | [57] |
Calophyllum inophyllum | Calophyllaceae | Seeds | -In vitro Antibacterial Proliferation of HaCaT cells in scratch wound assay Induction of the antimicrobial peptide β-defensin 2 release by macrophages | [58] |
Capsicum annuum L. | Solanaceae | Dried fruits | -In vitro Antibacterial -Excision wound in Wistar rat Antibacterial Non-toxic to skin and eyes Induction of wound contraction | [59] |
Carthamus tinctorius L. | Asteraceae | Seeds | -In vitro Antibacterial Antioxidant | [60] |
Chamaecyparis obtuse | Cupressaceae | NI | -In vitro Bactericidal -Excision wound in hairless female mouse (Crl: SKH1-Hrhr) Antibacterial Anti-inflammatory Re-epithelialization process | [61] |
Commiphora gileadensis | Burseraceae | Leaves and branches | -Excision wound in BALB/c mouse Antibacterial Anti-inflammatory Re-epithelialization process | [62] |
Cratylia mollis | Fabaceae | Seeds | -Infection using Tenebrio monitor larvae Increase infected-larvae survivor -Excision wound in Swiss mouse Antibacterial Anti-inflammatory Re-epithelialization process | [63] |
Cyrtocarpa procera Kunth | Anacardiaceae | Barks | -In vitro Antibacterial Antioxidant -Excision wound in male CD-1 mouse Re-epithelialization process Angiogenesis | [57] |
Elaeis guineensis Jacq. | Arecaceae | Leaves | -Excision wound in Sprague Dawley rat Antibacterial Re-epithelialization process | [64] |
Entada phaseoloides (L.) Merr. | Leguminosae | NI | -In vitro Bactericidal Proliferation of NIH3T3 cells in scratch wound assay -Excision wound in male SD rat Re-epithelialization process | [65] |
Garcinia mangostana Linn | Clusiaceae | Fruit pericarp | -In vitro Antibacterial -Tap stripping wound in ICR mouse Antibacterial Anti-inflammatory Re-epithelialization process | [66] |
Gleditsia triacanthos L. | Fabaceae | Reproductive organs | -In vitro Antibacterial Antioxidant Non-toxic to L929 cells | [67] |
Hypericum perforatum | Hypericaceae | Aerial parts | -In vitro Antibacterial | [68] |
Jatropha multifida L. | Euphorbiaceae | Leaves | -In vitro Antibacterial Anti-inflammatory | [69] |
Jatropha neopauciflora L. | Euphorbiaceae | Latex | -In vitro Antibacterial Antioxidant Non-toxic to Ca Ski ATCC CRL-1550 and NIH3T3 cells -Excision wound in CD1 male Mus musculus mouse Wound contraction -Carrageenan-induced edema in Wistar rat Anti-inflammatory | [70] |
Lawsonia inermis Henna | Lythraceae | Leaves | -In vitro Antibacterial | [46] |
Moringa oleifera | Moringaceae | Leaves | -Excision wound in Wistar rat Wound contraction | [71] |
Leaves | -In vitro Antibacterial -Excision wound in Wistar rat Re-epithelialization process | [72] | ||
Leaves | -In vitro Antibacterial -Excision wound in Wistar rat Antioxidant Re-epithelialization process Angiogenesis | [73,74] | ||
Nigella sativa Linn | Ranunculaceae | Black seed | -In vitro Antibacterial | [75] |
Opuntia fícus-indica Miller | Cactaceae | Flowers | -In vitro Antibacterial Antioxidant -Excision wound in Wistar male rat Re-epithelialization process Angiogenesis | [76] |
Parrotiopsis jacquemontiana | Hamamelidaceae | Leaves | -In vitro Antibacterial Antioxidant -Excision wound in Sprague Dawley rat Re-epithelialization process | [77] |
Persea americana Mill. | Lauraceae | Seeds | -In vitro Antibacterial, including antibiofilm -Excision wound in Wistar rat Antibacterial Wound contraction Non-irritant to skin and eyes | [78] |
Piper betle L. | Piperaceae | Leaves | -In vitro Antibacterial -Excision wound in BALB/c mouse Antibacterial Re-epithelialization process | [79] |
Plukenetia volubilis L. | Euphorbiaceae | Seeds | -In vitro Inhibition of bacterial adhesion Non-toxic to human keratinocytes nor human skin explant | [80] |
Portulaca oleracea | Portulacaceae | Trunk and leaves | -In vitro Antibacterial -Excision wound in Kunming mouse Antibacterial Anti-inflammatory Wound contraction | [81] |
Quercus alba | Fagaceae | Bark | -In vitro Antibacterial | [68] |
Rosmarinus officinalis L. | Lamiaceae | Essential oil | -In vitro Antibacterial -Excision wound in BALB/c mouse Antibacterial Re-epithelialization process Angiogenesis | [82] |
Salvia euphratica Montbret, Aucher and Rech. f. var. euphratica Salvia kronenburgii Rech. f. | Lamiaceae | Aerial parts | -In vitro Antibacterial Antioxidant -Excision and incision wound in male Wistar rat Antibacterial Anti-inflammatory Re-epithelialization process Angiogenesis | [83] |
Salvia officinalis L. | Lamiaceae | Leaves | -In vitro Antibacterial Excision wound in BALB/c mouse Antibacterial Re-epithelialization process Angiogenesis | [84] |
Salvia sclarea L. | Lamiaceae | NI | -In vitro Antibacterial | [85] |
Sebastiania hispida (Mart.) Pax | Euphorbiaceae | Leaves | In vitro Antibacterial -Excision wound in Wistar rat Re-epithelialization process Angiogenesis | [86] |
Syzygium aromaticum | Myrtaceae | Essential oil | -In vitro Antibacterial -Excision wound in Wistar rat Antibacterial Re-epithelialization process Angiogenesis Non-toxic to skin | [87] |
Urtica dioica | Urticaceae | Leaves | -In vitro Antibacterial -Excision wound model in Wistar rat Re-epithelialization process Angiogenesis | [88] |
Zanthoxylum nitidum (Roxb.) DC. | Rutaceae | Dried roots | -In vitro Antibacterial -Wound infection in Kunming mouse Antibacterial | [89] |
Zataria multiflora | Lamiaceae | Essential oil | -In vitro Antibacterial | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morguette, A.E.B.; Bartolomeu-Gonçalves, G.; Andriani, G.M.; Bertoncini, G.E.S.; Castro, I.M.d.; Spoladori, L.F.d.A.; Bertão, A.M.S.; Tavares, E.R.; Yamauchi, L.M.; Yamada-Ogatta, S.F. The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections. Plants 2023, 12, 2147. https://doi.org/10.3390/plants12112147
Morguette AEB, Bartolomeu-Gonçalves G, Andriani GM, Bertoncini GES, Castro IMd, Spoladori LFdA, Bertão AMS, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections. Plants. 2023; 12(11):2147. https://doi.org/10.3390/plants12112147
Chicago/Turabian StyleMorguette, Ana Elisa Belotto, Guilherme Bartolomeu-Gonçalves, Gabriella Maria Andriani, Giovana Elika Silveira Bertoncini, Isabela Madeira de Castro, Laís Fernanda de Almeida Spoladori, Ariane Mayumi Saito Bertão, Eliandro Reis Tavares, Lucy Megumi Yamauchi, and Sueli Fumie Yamada-Ogatta. 2023. "The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections" Plants 12, no. 11: 2147. https://doi.org/10.3390/plants12112147
APA StyleMorguette, A. E. B., Bartolomeu-Gonçalves, G., Andriani, G. M., Bertoncini, G. E. S., Castro, I. M. d., Spoladori, L. F. d. A., Bertão, A. M. S., Tavares, E. R., Yamauchi, L. M., & Yamada-Ogatta, S. F. (2023). The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections. Plants, 12(11), 2147. https://doi.org/10.3390/plants12112147