Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge
Abstract
:1. Introduction
2. Results
2.1. Soil Micronutrients
2.2. Plant
2.2.1. Leaf Micronutrient Concentrations
2.2.2. Extraction and Export of Micronutrients
2.2.3. Grain Productivity
3. Discussion
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design and Treatments
4.3. Obtaining and Characterizing Sewage Sludge Compost
4.4. Installation and Development of the Study
4.5. Soil and Plant Analysis
4.5.1. Available Levels of Micronutrients in the Soil
4.5.2. Nutritional Parameters of Bean Culture
4.5.3. Export of Micronutrients and Grain Yield
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crops. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 October 2022).
- Conab. National Supply Company. Monitoring of the Brazilian Grain Harvest. 2022/23. Available online: https://www.conab.gov.br/info-agro/safras/graos (accessed on 7 November 2022).
- Coêlho, J.D.; Ximenes, L.F. Feijão: Produção e Mercado. Fortaleza: Banco do Nordeste do Brasil. Caderno Setorial ETEN 2020, 143, 1–7. [Google Scholar]
- Vidal, V.L.; Asuncion, A.; Coelho, M.; Sales, R.N.; Peixoto, N. Bush snap bean genotypes under conventional and organic cultivation. J. Neotrop. Agric. 2022, 9, 6827. [Google Scholar] [CrossRef]
- Silva, O.F.; Wander, A.E. Characterization and economic evaluation of the irrigated common bean cropping system in the Cerrado the case of the BRS Estilo cultivar. In Characterization and Economic Evaluation of Grain Production and Cultivation Systems in Brazilian Biomes; Tôsto, S.G., Belarmino, L.C., Castro, G.S.A., Mangabeira, J.A.C., Silva, O.F., Eds.; Embrapa: Brasilia, Brazil, 2018; pp. 47–68. [Google Scholar]
- Neves, J.C.B.; Santanta, M.J.; Fernandes, A.L.T.; Assis, M.P.; Van Kempen, J.C. Economic viability of common bean under irrigation depths and nitrogen rates. Native 2022, 9, 202–208. [Google Scholar] [CrossRef]
- Richetti, A.; Ito, M.A. Economic Viability of the Common Bean Crop, 2016 Drought Season. In Mato Grosso do Sul. Embrapa Agropecuária Oeste; Technical Communiqué: Dourados, Brazil, 2015; 12p. [Google Scholar]
- Mumbach, G.L.; Oliveira, D.A.; Warmling, M.I.; Gatiboni, L.C. Phosphorus extraction by Mehlich 1, Mehlich 3 and Anion Exchange Resin in soils with different clay contents. Revista Ceres 2018, 65, 546–554. [Google Scholar] [CrossRef]
- Souza, H.A.; Hernandes, A.; Romualdo, L.M.; Rozane, D.E.; Natale, W.; Barbosa, J.C. Diagnostic sheet for evaluating the nutritional status of common bean. Braz. Mag. 2011, 15, 1243–1250. [Google Scholar]
- Carvalho, M.C.S.; Nunes, R.S.; Nascente, A.S.; Silveira, P.M. Nutrition and fertilization of common bean in the Cerrado region. In Nutrition and Fertilization: Of Large Crops in the Cerrado Region, 1st ed.; Flores, R.A., Cunha, P.P., Marchão, R.L., Moraes, M.F., Eds.; Gráfica UFG: Goiânia, Brazil, 2019; pp. 325–368. [Google Scholar]
- Boaretto, R.M.; Quaggio, J.A.; Mellis, E.V.; Cantarella, H. Micronutrients. In Fertilization and Liming Recommendations for the State of São Paulo; Cantarella, H., Quaggio, J.A., Mattos Junior, D., Boaretto, R.M., van Raij, B., Eds.; Campinas Agronomic Institute: Campinas, Brazil, 2022; pp. 121–129. [Google Scholar]
- Fageria, N.K.; Stone, L.F.; Santos, A.B.; Carvalho, M.C.S. Mineral Nutrition of Common Bean, 1st ed.; Embrapa: Brasília, Brazil, 2015; 394p. [Google Scholar]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 137, 109256. [Google Scholar] [CrossRef]
- Corioletti, N.S.D.; Corioletti, S.; Silva, V.L. Influence of boric fertilization on common bean crop. Sci. Electron. Arch. 2021, 14, 89–98. [Google Scholar] [CrossRef]
- Associação Nacional para Difusão de Adubos (ANDA). Main Indicators of the Fertilizer Sector. Available online: https://anda.org.br/wp-content/uploads/2022/09/Princicipais_Indicadores_2022.pdf (accessed on 8 September 2022).
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global wastewater and sludge production, treatment and use. In Wastewater: Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. [Google Scholar]
- Abreu, A.H.M.; Alonso, J.M.; Melo, L.A.; Leles, P.S.S.; Santos, G.R. Biosolid characterization and potential use in the production of Schinus terebinthifolia Raddi seedlings. Eng. Sanit. Amb. 2019, 24, 591–599. [Google Scholar] [CrossRef]
- Nascimento, A.L.; Souza, A.J.; Oliveira, F.C.; Coscione, A.R.; Viana, D.G.; Regitano, J.B. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. J. Clean. Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; Figueiredo, C.C.; Silva, J.; Paz-Ferreiro, J. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef]
- Nguyen, T.; Shima, K. Composting of sewage sludge with a simple aeration method and its utilization as a soil fertilizer. Environ. Manag. 2019, 63, 455–465. [Google Scholar] [CrossRef]
- Brazil. Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 61, of 8 July 2020. (2020). Rules on Definitions, Requirements, Specifications, Guarantees, Tolerances, Registration, Packaging of Organic Fertilizers and Biofertilizers Intended for Agriculture Are Established, in the Form of this Normative Instruction and Its Annexes I and II. Federal Official Gazette of 07/15/2020a. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-61-de-8-7-2020-organicos-e-biofertilizantes-dou-15-7-20.pdf (accessed on 23 May 2023).
- Jakubus, M.; Bakinowsk, E. Visualization of long-term quantitative changes of microelements in soils amended with sewage sludge compost evaluated with two extraction solutions. Commun. Soil Sci. Plant Anal. 2018, 49, 1355–1369. [Google Scholar] [CrossRef]
- Prates, A.R.; Coscione, A.R.; Teixeira Filho, M.C.M.; Miranda, B.G.; Arf, O.; Abreu-Júnior, C.H.; Oliveira, F.C.; Moreira, A.; Galindo, F.S.; Sartori, M.M.P.; et al. Composted sewage sludge enhances soybean production and agronomic performance in naturally infertile soils (Cerrado Region, Brazil). Agronomy 2020, 10, 1677. [Google Scholar] [CrossRef]
- Prates, A.R.; Kawakami, K.C.; Coscione, A.R.; Filho, M.C.M.T.; Arf, O.; Abreu-Junior, C.H.; Oliveira, F.C.; Moreira, A.; Galindo, F.S.; He, Z.; et al. Composted Sewage Sludge Sustains High Maize Productivity on an Infertile Oxisol in the Brazilian Cerrado. Land 2022, 11, 1246. [Google Scholar] [CrossRef]
- Elsalam, H.E.A.; El-Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. Effect of Sewage Sludge Compost Usage on Corn and Faba Bean Growth, Carbon and Nitrogen Forms in Plants and Soil. Agronomy 2021, 11, 628. [Google Scholar] [CrossRef]
- Silva, R.S.; Jalal, A.; Nascimento, R.E.N.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted Sewage Sludge Application Reduces Mineral Fertilization Requirements and Improves Soil Fertility in Sugarcane Seedling Nurseries. Sustainability 2022, 14, 4684. [Google Scholar] [CrossRef]
- Silva, R.D.S.; Jalal, A.; Nascimento, R.E.N.D.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted sewage sludge application in a sugarcane seedling nursery: Crop nutritional status, productivity, and technological quality implications. Sustainability 2022, 14, 4682. [Google Scholar] [CrossRef]
- Ambrosano, E.J.; Tanaka, R.T.; Mascarenhas, H.A.A.; Raij, V.B.; Quaggio, J.A.; Cantarella, H. Legumes and oilseeds. In Fertilization and Liming Recommendations for the State of São Paulo, 2nd ed.; Raij, B.V., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Agronomic Institute of Campinas: Campinas, Brazil, 1997; pp. 189–191. [Google Scholar]
- Conab. National Supply Company. Monitoring of the Brazilian Grain Harvest. 2021/22 Harvest, 1st Survey. 2019. Available online: https://www.conab.gov.br/info-agro/safras/graos (accessed on 7 October 2021).
- Yamada, T. Stunted Root Syndrome II. Boron Deficiency. 2016. Available online: https://docplayer.com.br/52567382-Sindrome-das-raizes-atrofiadas-ii-deficiencia-de-boro.html (accessed on 4 September 2022).
- Raij, B.V.; Andrande, J.C.; Cantarella, H.; Guaggio, J.A. Chemical Analysis for Fertility Assessment of Tropical Soils; Agronomic Institute: Campinas, Brazil, 2001; 285p. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual of Soil Analysis Methods, 3rd ed.; Embrapa Technological Information: Brasília, Brazil, 2017. [Google Scholar]
- Mapa-Ministry of Agriculture, Livestock and Supply. Normative Instruction n. 61, of 8 July 2016. In Official Gazette of the Union; Executive Secretariat: Brasília, Brazil, 14 July 2020; Section 1; p. 5. [Google Scholar]
- Mendoza-Cózatl, D.G.; Jobe, T.O.; Hauser, F.; Schroeder, J.I. Longdistance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr. Opin. Plant Biol. 2011, 14, 554–562. [Google Scholar] [CrossRef]
- Bertolazi, K.B.; Souza Afáz, D.C.; Viani, R.A.G.; Souza, C.F. Feasibility of the application of sewage sludge compost in the initial cultivation of eucalyptus. Sci. Technol. Environ. Mag. 2017, 4, 72–78. [Google Scholar]
- Jakubus, M.; Graczyk, M. Microelement variability in plants as an effect of sewage sludge compost application evaluated by different statistical methods. Agronomy 2020, 10, 642. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The effect of different organic fertilizer on yield and soil and crop nutrient concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef]
- Pereira, G.L.; Siqueira, J.A.; Batista-Silva, W.; Cardoso, F.B.; Nunes-Nesi, A.; Araujo, W.L. Boron: More than an essential element for land plants? Front. Plant Sci. 2021, 11, 610307. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.A.G.; Soratto, R.P.; Manzatto, N.P.; Souza, E.F.C. Extraction and export of nutrients by common bean fertilized with nitrogen, at different times of implementation of the no-tillage system. Braz. J. Soil Sci. 2013, 37, 1276–1287. [Google Scholar]
- Fernandes, A.M.; Soratto, R.P.; Santos, L.A. Nutrient extraction and exportation by common bean cultivars under different fertilization levels: II—Micronutrients. Braz. J. Soil Sci. 2013, 37, 1027–1042. [Google Scholar] [CrossRef]
- Fageria, N.K.; Stone, L.F.; Melo, L.C. Resposta de genótipos de feijão à aplicação de cobre response of common bean genotypes to copper application. In Congresso Nacional de Pesquisa de Feijão; Embrapa Arroz E Feijão; IAPAR: Londrina, Brazil, 2014; pp. 1–4. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Zobel, R.W. Yield, nutrient uptake, and soil Chemical properties as influenced by liming and boron application in common bean in no-tillage system. Commun. Soil Sci. Plant Anal. 2007, 11, 1637–1653. [Google Scholar] [CrossRef]
- Silva, W.R.; Birth, C.W.A.; Silva, F.B.V.; Souza, A.A.B.; Fracetto, G.G.M.; Sa Veloso Ximenes, D.H. Effects of sewage sludge stabilization processes on soil fertility, mineral composition, and grain yield of maize in successive cropping. J. Soil Sci. Plant Nutr. 2021, 21, 1076–1088. [Google Scholar] [CrossRef]
- Rodrigues, M.N.; Sampaio, R.A.; Junio, G.R.Z.; Oliveira, A.L.G. Nutrients and heavy metals in corn fertilized with natural phosphate and biosolid. Eng. Agric. Mag.-Reveng. 2017, 25, 50–62. [Google Scholar]
- Sandrini, F.O.T.; Leal, F.T.; Coelho, A.P.; Lemos, L.B.; Rosalen, D.L. Índices de vegetação na estimativa da produtividade do feijoeiro cultivado sob doses de nitrogênio. Rev. Bras. De Ciências Agrárias 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Lombardi, G.F.; Drugowich, M. Technical manual of management and conservation of soil and water. CATI 1994, 2, 168p. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Conama. National Environment Council—Resolution No. 498, of 19 August 2020. 2020. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-n-498-de-19-de-agosto-de-2020-273467970 (accessed on 12 September 2022).
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Fertilization and Liming Recommendations for the State of São Paulo, 2nd ed.; Instituto Agronomico de Campinas: Campinas, Brazil, 1997.
- Ambrosano, E.J.; Wutke, E.B.; Bulisani, E.A.; Cantarella, H. Feijão. In Fertilization and Liming Recommendations for the State of São Paulo, 2nd ed.; Raij, B.V., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Agronomic Institute of Campinas: Campinas, Brazil, 1997; pp. 194–195. [Google Scholar]
- Abreu, M.F.; Abreu, C.A.; Andrade, J.C. Determination of boron in hot water using microwave heating. In Chemical Analysis to Evaluate the Fertility of Tropical Soils, 1st ed.; Raij, B.V., Andrande, J.C., Cantarella, H., Guaggio, J.A., Eds.; Agronomic Institute: Campinas, Brazil, 2001; pp. 231–239. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Evaluation of the Nutritional Status of Plants: Principles and Applications, 2nd ed.; Potafos: Piracicaba, Brazil, 1997. [Google Scholar]
- Saundjian, M.T.; Arf, O.; Meirelles, F.C.; Birth, V.; Kaneko, F.H.; Tarumoto, M.B. Nitrogen fertilization on the agronomic performance of winter common bean in succession to summer grasses. J. Agric. Sci. 2016, 59, 152–161. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 26 January 2023).
Attributes | Unit | Depth (m) | |
---|---|---|---|
0–0.20 | 0.20–0.40 | ||
pH (CaCl2) | - | 4.5 ± 0.06 | 4.7 ± 0.06 |
Organic matter | g dm−3 | 19 ± 1.16 | 14 ± 0.58 |
Phosphor | mg dm−3 | 16 ± 0.58 | 9 ± 0.00 |
Potassium | mmolc dm−3 | 1.7 ± 0.17 | 0.7 ± 0.15 |
Calcium | mmolc dm−3 | 13 ± 0.58 | 11 ± 0.58 |
Magnesium | mmolc dm−3 | 12 ± 1.00 | 10 ± 0.00 |
Aluminum | mmolc dm−3 | 4 ± 0.00 | 2 ± 0.58 |
H + Al | mmolc dm−3 | 37 ± 2.31 | 32 ± 1.73 |
SB | mmolc dm−3 | 27.0 ± 1.69 | 22.1 ± 0.72 |
S-SO4 | mg dm−3 | 15 ± 0.58 | 8 ± 0.58 |
CEC | mmolc dm−3 | 63.7 ± 0.86 | 54.1 ± 2.45 |
BS | % | 42 ± 3.21 | 41 ± 0.58 |
Boron | mg dm−3 | 0.22 ± 0.04 | 0.15 ± 0.02 |
Copper (DTPA) | mg dm−3 | 1.8 ± 0.05 | 1.4 ± 0.10 |
Iron (DTPA) | mg dm−3 | 15 ± 0.58 | 8 ± 0.58 |
Manganese (DTPA) | mg dm−3 | 18.8 ± 0.59 | 7.3 ± 0.72 |
Zinc (DTPA) | mg dm−3 | 0.6 ± 0.06 | 0.2 ± 0.00 |
Sand (>0.05 mm) | g kg−1 | 553 ± 12.86 | |
Silt (>0.002 and <0.05 mm) | g kg−1 | 81 ± 3.21 | |
Clay (<0.002 mm) | g kg−1 | 372 ± 19.05 | |
Texture | - | clayey |
Unit | Values | Limits 1 | ||
---|---|---|---|---|
Chemical Features | 2017/18 | 2018/19 | ||
pH (CaCl2) | - | 7.0 ± 0.1 | 7.3 ± 0.1 | - |
Moisture (60–65 °C) | % | 41.0 ± 0.3 | 34.4 ± 0.5 | - |
Total moisture | % | 45.5 ± 0.2 | 35.8 ± 0.6 | - |
Total OM | g kg−1 | 308.7 ± 10.0 | 255.0 ± 7.4 | - |
CEC | mmolc kg−1 | 520.0 ± 20.0 | -- | - |
C/N | - | 12.0 ± 0.8 | 9.0 ± 0.6 | - |
Total N | g kg−1 | 13.9 ± 0.3 | 15.3 ± 1.5 | - |
Total P | g kg−1 | 12.3 ± 1.4 | 14.1 ± 0.0 | - |
Total S | g kg−1 | 4.8 ± 0.3 | 8.4 ± 1.4 | - |
Na | mg kg−1 | 3930.0 ± 32.0 | 3915.0 ±32.0 | - |
K | g kg−1 | 6.0 ± 2.2 | 8.2 ± 0.4 | - |
Ca | g kg−1 | 19.4 ± 4.4 | 31.1 ± 1.1 | - |
Mg | g kg−1 | 5.2 ± 0.5 | 9.9 ± 0.2 | - |
As | mg kg−1 | 3.2 ± 1.8 | - | 20.0 |
B | mg kg−1 | 94.0 ± 4.5 | 94.0 ± 4.6 | NR |
Cd | mg kg−1 | 1.0 ± 0.1 | - | 3.0 |
Cu | mg kg−1 | 237.0 ± 16.5 | 191.2 ± 5.8 | NR |
Pb | mg kg−1 | 18.1 ± 1.6 | - | 150.0 |
Cr | mg kg−1 | 54.3 ± 1.8 | - | 2.0 |
Fe | mg kg−1 | 16,400 ± 1300 | 14,708 ± 249 | NR |
Mn | mg kg−1 | 246.0 ± 37.0 | 310.0 ± 15.0 | NR |
Hg | mg kg−1 | 0.22 ± 0.1 | - | 1.0 |
Mo | mg kg−1 | 5.26 ± 0.2 | - | NR |
Ni | mg kg−1 | 26.5 ± 0.5 | - | 70.0 |
Zn | mg kg−1 | 456 ± 8 | 684 ± 7 | NR |
biological analysis | ||||
Salmonella sp. | MPN 10 g−1 | Absent | Absent | |
fecal coliform | MPN g−1 | 0 | <103 MPN g−1 on dry weight | |
Viable helminth eggs | Eggs g−1 on dry weight | 0.12 | <10 Eggs g−1 on dry weight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.S.d.; Jalal, A.; Prates, A.R.; Teixeira Filho, M.C.M.; Alves, R.S.; Silva, L.C.; Nascimento, R.E.N.d.; Silva, P.S.T.; Arf, O.; Galindo, F.S.; et al. Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge. Plants 2023, 12, 2153. https://doi.org/10.3390/plants12112153
Oliveira GSd, Jalal A, Prates AR, Teixeira Filho MCM, Alves RS, Silva LC, Nascimento RENd, Silva PST, Arf O, Galindo FS, et al. Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge. Plants. 2023; 12(11):2153. https://doi.org/10.3390/plants12112153
Chicago/Turabian StyleOliveira, Gabriela Souza de, Arshad Jalal, Adrielle Rodrigues Prates, Marcelo Carvalho Minhoto Teixeira Filho, Rodrigo Silva Alves, Luana Corrêa Silva, Raimunda Eliane Nascimento do Nascimento, Philippe Solano Toledo Silva, Orivaldo Arf, Fernando Shintate Galindo, and et al. 2023. "Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge" Plants 12, no. 11: 2153. https://doi.org/10.3390/plants12112153
APA StyleOliveira, G. S. d., Jalal, A., Prates, A. R., Teixeira Filho, M. C. M., Alves, R. S., Silva, L. C., Nascimento, R. E. N. d., Silva, P. S. T., Arf, O., Galindo, F. S., Oliveira, F. C., Abreu-Junior, C. H., Jani, A. D., Capra, G. F., & Nogueira, T. A. R. (2023). Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge. Plants, 12(11), 2153. https://doi.org/10.3390/plants12112153