Comparative Study of the Nutritional and Chemical Composition of New Oil Rape, Safflower and Mustard Seed Varieties Developed and Grown in Serbia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition
2.2. Fatty Acid Composition
2.3. Minerals Composition
2.4. Total Polyphenols Content, Total Flavonoids Content and Antioxidant Activity
2.5. Chlorophyll Contents
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Samples and Sample Preparation
3.3. Proximate Analysis
3.4. Fatty Acid Analysis
3.5. Mineral Composition Analysis
3.6. Antioxidant Properties
3.7. Estimation of Chlorophyll Content
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.C.; Fine, F. Rapeseed and Sunflower Meal: A Review on Biotechnology Status and Challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Wroniak, M.; Rękas, A. Nutritional Value of Cold-Pressed Rapeseed Oil during Long Term Storage as Influenced by the Type of Packaging Material, Exposure to Light & Oxygen and Storage Temperature. J. Food Sci. Technol. 2016, 53, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Fleddermann, M.; Fechner, A.; Rößler, A.; Bähr, M.; Pastor, A.; Liebert, F.; Jahreis, G. Nutritional Evaluation of Rapeseed Protein Compared to Soy Protein for Quality, Plasma Amino Acids, and Nitrogen Balance-A Randomized Cross-over Intervention Study in Humans. Clin. Nutr. 2013, 32, 519–526. [Google Scholar] [CrossRef]
- Zhou, Q.; Jia, X.; Deng, Q.; Chen, H.; Tang, H.; Huang, F. Quality Evaluation of Rapeseed Oil in Chinese Traditional Stir-Frying. Food Sci. Nutr. 2019, 7, 3731–3741. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current Research Developments on Polyphenolics of Rapeseed/Canola: A Review. Food Chem. 1998, 62, 489–502. [Google Scholar] [CrossRef]
- Mayerhofer, M.; Mayerhofer, R.; Topinka, D.; Christianson, J.; Good, A.G. Introgression Potential between Safflower (Carthamus tinctorius) and Wild Relatives of the Genus Carthamus. BMC Plant Biol. 2011, 11, 47. [Google Scholar] [CrossRef]
- Kiprovski, B.; Jacimovic, S.; Grahovac, N.L.; Zeremski, T.M.; Marjanović Jeromela, A. Seed Nutrients and Bioactive Compounds of Underuttilised Oil Crop Carthamus tinctorius L. Ratar. I Povrt. 2021, 58, 46–52. [Google Scholar] [CrossRef]
- Patrascoiu, M.; Rathbauer, J.; Negrea, M.; Zeller, R. Perspectives of Safflower Oil as Biodiesel Source for South Eastern Europe (Comparative Study: Safflower, Soybean and Rapeseed). Fuel 2013, 111, 114–119. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M.; Al Juhaimi, F.Y. Fatty Acid Composition and Tocopherol Profiles of Safflower (Carthamus tinctorius L.) Seed Oils. Nat. Prod. Res. 2015, 29, 193–196. [Google Scholar] [CrossRef]
- Lietzow, J. Biologically Active Compounds in Mustard Seeds: A Toxicological Perspective. Foods 2021, 10, 2089. [Google Scholar] [CrossRef] [PubMed]
- Grygier, A. Mustard Seeds as a Bioactive Component of Food. Food Rev. Int. 2022, 1–14. [Google Scholar] [CrossRef]
- Martinović, N.; Polak, T.; Ulrih, N.P.; Abramovič, H. Mustard Seed: Phenolic Composition and Effects on Lipid Oxidation in Oil, Oil-in-Water Emulsion and Oleogel. Ind. Crops Prod. 2020, 156, 112851. [Google Scholar] [CrossRef]
- Gagour, J.; Ahmed, M.N.; Bouzid, H.A.; Oubannin, S.; Bijla, L.; Ibourki, M.; Hajib, A.; Koubachi, J.; Harhar, H.; Gharby, S. Proximate Composition, Physicochemical, and Lipids Profiling and Elemental Profiling of Rapeseed (Brassica napus L.) and Sunflower (Helianthus annuus L.) Grown in Morocco. Evid.-Based Complement. Altern. Med. 2022, 2022, 3505943. [Google Scholar] [CrossRef] [PubMed]
- Samanci, B.; Özkaynak, E. Effect of Planting Date on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius) Cultivars Grown in the Mediterranean Region of Turkey. J. Agron. Crop Sci. 2003, 189, 359–360. [Google Scholar] [CrossRef]
- Ben Moumen, A.; Mansouri, F.; Richard, G.; Abid, M.; Fauconnier, M.L.; Sindic, M.; El Amrani, A.; Serghini Caid, H. Biochemical Characterisation of the Seed Oils of Four Safflower (Carthamus tinctorius) Varieties Grown in North-Eastern of Morocco. Int. J. Food Sci. Technol. 2015, 50, 804–810. [Google Scholar] [CrossRef]
- Sagan, A.; Blicharz-Kania, A.; Szmigielski, M.; Andrejko, D.; Sobczak, P.; Zawiślak, K.; Starek, A. Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-Linolenic Acid. Sustainability 2019, 11, 5638. [Google Scholar] [CrossRef]
- Romano, R.; Filosa, G.; Pizzolongo, F.; Durazzo, A.; Lucarini, M.; Severino, P.; Souto, E.B.; Santini, A. Oxidative Stability of High Oleic Sunflower Oil during Deep-Frying Process of Purple Potato Purple Majesty. Heliyon 2021, 7, e06294. [Google Scholar] [CrossRef]
- Sharafi, Y.; Majidi, M.M.; Goli, S.A.H.; Rashidi, F. Oil Content and Fatty Acids Composition in Brassica Species. Int. J. Food Prop. 2015, 18, 2145–2154. [Google Scholar] [CrossRef]
- Günç Ergönül, P.; Aksoylu Özbek, Z. Identification of Bioactive Compounds and Total Phenol Contents of Cold Pressed Oils from Safflower and Camelina Seeds. J. Food Meas. Charact. 2018, 12, 2313–2323. [Google Scholar] [CrossRef]
- Vosoughkia, M.; Hossainchi Ghareaghag, L.; Ghavami, M.; Gharachorloo, M.; Delkhosh, B. Evaluation of Oil Content and Fatty Acid Composition in Seeds of Different Genotypes of Safflower. Int. J. Agric. Sci. Res. 2012, 2, 59–66. [Google Scholar]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty Acids and Sterols Composition, and Antioxidant Activity of Oils Extracted from Plant Seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Kok, W.; Mainal, A.; Chuah, C.; Cheng, S. Content of Erucic Acid in Edible Oils and Mustard by Quantitative 13 C NMR. Eur. J. Lipid Sci. Technol. 2018, 120, 1700230. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, X.; Zhang, X.; Wu, G.; Liu, F. A Review of Erucic Acid Production in Brassicaceae Oilseeds: Progress and Prospects for the Genetic Engineering of High and Low-Erucic Acid Rapeseeds (Brassica napus). Front. Plant Sci. 2022, 13, 899076. [Google Scholar] [CrossRef]
- Zealand, F.S.A.N. Erucic Acid in Food: A Toxicological Review and Risk Assessment. Canberra Food Stand. Aust. Newzeal. 2003, 17–23. [Google Scholar]
- Euroepan Food Safety Authority EFSA/Erucic Acid a Possible Health Risk for Highly Exposed Children. Available online: https://www.efsa.europa.eu/en/press/news/161109 (accessed on 12 April 2023).
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Erucic Acid in Feed and Food. EFSA J. 2016, 14, 4593. [Google Scholar] [CrossRef]
- Rastogi, T.; Reddy, K.S.; Vaz, M.; Spiegelman, D.; Prabhakaran, D.; Willett, W.C.; Stampfer, M.J.; Ascherio, A. Diet and Risk of Ischemic Heart Disease in India. Am. J. Clin. Nutr. 2004, 79, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Chugh, B.; Dhawan, K. Storage Studies on Mustard Oil Blends. J. Food Sci. Technol. 2014, 51, 762–767. [Google Scholar] [CrossRef]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.M.; Veljković, V.B. White Mustard (Sinapis Alba L.) Oil in Biodiesel Production: A Review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef]
- Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M.; Czupryński, B.; Apiecionek, Ł. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites. Polymers 2019, 11, 1431. [Google Scholar] [CrossRef]
- Hendrix, K.M.; Morra, M.J.; Lee, H.B.; Min, S.C. Defatted Mustard Seed Meal-Based Biopolymer Film Development. Food Hydrocoll. 2012, 26, 118–125. [Google Scholar] [CrossRef]
- Dukarska, D.; Łecka, J.; Szafoni, K. Straw of White Mustard (Sinapis Alba) as an Alternative Raw Material in the Production of Particle Boards Resinated with UF Resin. Acta Sci. Pol.-Silvarum Colendarum Ratio Ind. Lignaria 2011, 10, 19–28. [Google Scholar]
- Szczepaniak, W.; Grzebisz, W.; Barłóg, P.; Przygocka-Cyna, K. Mineral Composition of Winter Oilseed Rape (Brassica napus L.) Seeds as a Tool for Oil Yield Prognosis. J. Cent. Eur. Agric. 2017, 18, 196–213. [Google Scholar] [CrossRef]
- Singh, B.; Schulze, D.G. Soil Minerals and Plant Nutrition. Nat. Educ. Knowl. 2015, 6, 1. [Google Scholar]
- Zago, E.; Lecomte, J.; Barouh, N.; Aouf, C.; Carré, P.; Fine, F.; Villeneuve, P. Influence of Rapeseed Meal Treatments on Its Total Phenolic Content and Composition in Sinapine, Sinapic Acid and Canolol. Ind. Crops Prod. 2015, 76, 1061–1070. [Google Scholar] [CrossRef]
- Ny, A.S.; Rah, E.D. Chemical and Nutritional Aspects of Some Safflower Seed Varieties. J. Food Process. Technol. 2016, 7, 585. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, G.; Chen, S.; Chen, Y.; Jiang, J.; Wang, Y.P. Correlation Analysis of Phenolic Contents and Antioxidation in Yellow- and Black-Seeded Brassica napus. Molecules 2018, 23, 1815. [Google Scholar] [CrossRef]
- Abiodun, O.A. The Role of Oilseed Crops in Human Diet and Industrial Use. In Oilseed Crops: Yield and Adaptations under Environmental Stress; Ahmad, P., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 249–263. [Google Scholar]
- Johnson-Flanagan, A.M.; Spence, M.S. Ethylene Production during Development of Mustard (Brassica iuncea) and Canola (Brassica napus) Seed. Plant Physiol. 1994, 106, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Tańska, M.; Ambrosewicz-Walacik, M.; Jankowski, K.; Rotkiewicz, D. Possibility Use of Digital Image Analysis for the Estimation of the Rapeseed Maturity Stage. Int. J. Food Prop. 2018, 20, S2379–S2394. [Google Scholar] [CrossRef]
- Daun, J.K. The Relationship between Rapeseed Chlorophyll, Rapeseed Oil Chlorophyll and Percentage Green Seeds. J. Am. Oil Chem. Soc. 1982, 59, 15–18. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Novotny, J.A.; Gebauer, S.K.; Baer, D.J. Discrepancy between the Atwater Factor Predicted and Empirically Measured Energy Values of Almonds in Human Diets. Am. J. Clin. Nutr. 2012, 96, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Kravic, S.; Suturovic, Z.; Svarc-Gajic, J.; Stojanovic, Z.; Pucarevic, M.; Nikolic, I. Fatty Acid Composition Including Trans Isomers of Serbian Biscuits. Hem. Ind. 2011, 65, 139–146. [Google Scholar] [CrossRef]
- Kravic, S.; Suturovic, Z.; Svarc-Gajic, J.; Stojanovic, Z.; Pucarevic, M. Determination of Trans Fatty Acids in Foodstuffs by Gas Chromatography-Mass Spectrometry after Simultaneous Microwave-Assisted Extraction-Esterification. J. Serb. Chem. Soc. 2010, 75, 803–812. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Rybicka, I. Fast and Sensitive Method for Phosphorus Determination in Dairy Products. J. Consum. Prot. Food Saf. 2021, 16, 213–218. [Google Scholar] [CrossRef]
- Rahman, M.J.; Costa de Camargo, A.; Shahidi, F. Phenolic Profiles and Antioxidant Activity of Defatted Camelina and Sophia Seeds. Food Chem. 2018, 240, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
Sample/Species | Proximate Analysis (g/100 g) 1 | Energy 2 (KJ/100 g) | ||||
---|---|---|---|---|---|---|
Moisture | Ash | Proteins | Crude Fats | Carbohydrates | ||
Rapeseed NS Svetlana | 5.44 ± 0.07 a,c,* | 4.44 ± 0.07 a,c | 21.58 ± 0.76 a | 33.23 ± 0.13 a | 35.31 ± 0.90 a | 2196.49 |
Rapeseed Jovana | 5.98 ± 0.09 b,d | 4.35 ± 0.25 a,b,c | 27.21 ± 0.50 b | 32.28 ± 0.31 a | 30.18 ± 1.15 b | 2170.13 |
Safflower NS Lana | 5.14 ± 0.08 c | 4.07 ± 0.13 a,b | 26.31 ± 0.64 b | 27.83 ± 0.32 b | 36.65 ± 1.01 a | 2100.08 |
Safflower NS Una | 5.70 ± 0.07 a,d | 3.49 ± 0.20 b | 26.65 ± 0.58 b | 27.77 ± 0.26 b | 36.65 ± 0.60 a | 2099.06 |
White mustard NS Bela | 6.27 ± 0.06 b | 5.00 ± 0.33 a,c | 34.63 ± 1.49 c | 25.41 ± 0.15 c | 28.69 ± 1.60 b | 2016.67 |
Black mustard NS Crna | 5.87 ± 0.07 d | 5.09 ± 0.27 c | 28.12 ± 1.24 b | 25.37 ± 0.40 c | 35.55 ± 1.04 a | 2021.20 |
Fatty Acid | Fatty Acid Content (%) 1 | |||||
---|---|---|---|---|---|---|
Rapeseed | Safflower | White Mustard | Black Mustard | |||
NS Svetlana | Jovana | NS Lana | NS Una | NS Bela | NS Crna | |
14:0 | - | - | 0.08 ± 0.00 | 0.09 ± 0.00 | - | - |
16:0 | 4.29 ± 0.02 | 3.43 ± 0.19 | 6.37 ± 0.09 | 7.27 ± 0.02 | 2.24 ± 0.06 | 2.35 ± 0.07 |
16:1 | 0.15 ± 0.01 | 0.10 ± 0.01 | - | - | 0.09 ± 0.00 | 0.08 ± 0.00 |
18:0 | 1.35 ± 0.01 | 1.85 ± 0.01 | 3.01 ± 0.03 | 4.75 ± 0.02 | 0.72 ± 0.01 | 1.03 ± 0.05 |
18:1c | 62.63 ± 0.52 | 67.55 ± 0.12 | 18.3 ± 0.14 | 17.56 ± 0.02 | 19.28 ± 0.42 | 13.64 ± 0.36 |
18:2n6c | 20.97 ± 0.47 | 19.05 ± 0.34 | 70.06 ± 0.26 | 68.21 ± 0.06 | 8.93 ± 0.19 | 15.19 ± 0.16 |
18:3n3 | 7.10 ± 0.16 | 5.41 ± 0.10 | 0.26 ± 0.01 | 0.13 ± 0.02 | 6.45 ± 0.15 | 8.03 ± 0.04 |
20:0 | 0.64 ± 0.03 | 0.65 ± 0.02 | 0.54 ± 0.00 | 0.73 ± 0.00 | 0.57 ± 0.00 | 0.88 ± 0.01 |
20:1 | 1.54 ± 0.03 | 1.14 ± 0.05 | 0.33 ± 0.02 | 0.26 ± 0.01 | 9.79 ± 0.18 | 11.06 ± 0.05 |
20:2n6 | - | - | - | - | 0.23 ± 0.00 | 0.86 ± 0.01 |
20:3n3 | - | - | - | - | - | 0.12 ± 0.01 |
22:0 | 0.45 ± 0.05 | 0.34 ± 0.03 | 0.38 ± 0.02 | 0.44 ± 0.02 | 0.63 ± 0.02 | 0.90 ± 0.02 |
22:1 | 0.54 ± 0.11 | 0.17 ± 0.03 | - | - | 46.13 ± 0.50 | 41.82 ± 0.49 |
22:2 | - | - | - | - | 0.40 ± 0.01 | 0.85 ± 0.02 |
24:0 | 0.17 ± 0.12 | 0.31 ± 0.06 | 0.28 ± 0.07 | 0.28 ± 0.01 | 0.53 ± 0.10 | 0.66 ± 0.04 |
24:1 | 0.16 ± 0.11 | - | 0.41 ± 0.31 | 0.26 ± 0.02 | 4.01 ± 0.63 | 2.54 ± 0.29 |
SFA | 6.9 | 6.58 | 10.66 | 13.56 | 4.69 | 5.82 |
UFA | 93.09 | 93.42 | 89.36 | 86.42 | 95.08 | 93.33 |
MUFA | 65.02 | 68.96 | 19.04 | 18.08 | 79.3 | 69.14 |
PUFA | 28.07 | 24.46 | 70.32 | 68.34 | 15.78 | 24.19 |
Mineral | Mineral Content (mg/100 g) 1 | |||||
---|---|---|---|---|---|---|
Rapeseed | Safflower | White Mustard | Black Mustard | |||
NS Svetlana | Jovana | NS Lana | NS Una | NS Bela | NS Crna | |
Na | 25.53 ± 1.71 a,* | 26.22 ± 1.89 a | 37.36 ± 1.78 b | 15.32 ± 1.16 c | 26.72 ± 1.90 a | 32.86 ± 2.12 a,b |
K | 1052.04 ± 30.66 a | 1094.96 ± 4.47 a | 1022.66 ± 67.65 a,b | 924.14 ± 31.83 b | 1195.04 ± 7.23 a | 1082.40 ± 19.13 a |
Ca | 335.09 ± 0.40 a | 435.84 ± 1.46 b | 158.96 ± 8.03 c | 155.17 ± 3.48 c | 508.93 ± 30.45 b,d | 532.58 ± 12.26 d |
Mg | 204.79 ± 2.12 a | 275.41 ± 1.75 b | 316.35 ± 10.89 c | 297.98 ± 17.95 b,c | 229.22 ± 3.24 d | 293.69 ± 6.79 b,c |
Zn | 2.71 ± 0.10 a | 3.23 ± 0.09 b | 4.53 ± 0.30 c,d | 5.30 ± 0.09 d | 3.62 ± 0.05 c | 3.58 ± 0.47 b,c |
Fe | 3.05 ± 0.22 a | 3.32 ± 0.03 a | 5.77 ± 0.37 b | 6.97 ± 0.01 c | 3.42 ± 0.13 a | 4.24 ± 0.17 d |
Mn | 2.73 ± 0.33 a,c,d | 3.17 ± 0.18 a,d | 1.44 ± 0.09 b | 1.92 ± 0.12 c | 2.16 ± 0.11 c,d | 2.73 ± 0.18 d |
Cu | 0.32 ± 0.03 a | 0.52 ± 0.04 b | 1.42 ± 0.05 c | 1.84 ± 0.01 d | 0.28 ± 0.01 a | 0.24 ± 0.01 a |
P | 1282.58 ± 124.87 a | 843.82 ± 35.24 b | 1081.15 ± 71.77 c | 1172.23 ± 74.34 a,c | 907.07 ± 39.42 b | 1212.24 ± 108.39 a,c |
Seed Samples | Sample Genotype | Total Phenolic Compounds (mg GAE/g DM) 1 | Total Flavonoid Compounds (mg QE/g DM) 1 | DPPH (mg AAE/g DM) 1 |
---|---|---|---|---|
Rapeseed | NS Svetlana | 7.58 ± 0.28 a,* | 6.11 ± 0.21 a | 2.94 ± 0.03 a |
Jovana | 7.29 ± 0.11 a | 5.54 ± 0.46 a,b | 3.06 ± 0.10 a | |
Safflower | NS Lana | 5.97 ± 0.33 b | 5.08 ± 0.12 b | 1.85 ± 0.07 b |
NS Una | 5.46 ± 0.11 b | 5.06 ± 0.14 b | 2.06 ± 0.09 b,c | |
White mustard | NS Bela | 11.09 ± 0.28 c | 5.58 ± 0.23 a,b | 2.39 ± 0.14 c |
Black mustard | NS Crna | 4.94 ± 0.31 b | 4.56 ± 0.22 b | 1.23 ± 0.04 d |
Variables | Pearson’s Coefficient |
---|---|
Total polyphenolics × Total flavonoids | 0.6374 * |
Total polyphenolics × DPPH | 0.5236 * |
Total flavonoids × DPPH | 0.9060 ** |
Seed Samples | Sample Genotype | Chlorophyll a (µg/g DM) 1 | Chlorophyll b (µg/g DM) 1 | Chlorophyll Total (µg/g DM) 1 |
---|---|---|---|---|
Rapeseed | NS Svetlana | 0.94 ± 0.04 a,* | 0.88 ± 0.08 a | 1.82 ± 0.13 |
Jovana | 0.95 ± 0.04 a | 1.04 ± 0.14 a | 1.99 ± 0.10 | |
Safflower | NS Lana | 0.59 ± 0.04 b | 1.13 ± 0.08 a | 1.72 ± 0.13 |
NS Una | 0.35 ± 0.04 a | 0.98 ± 0.08 a | 1.33 ± 0.13 | |
White mustard | NS Bela | 1.69 ± 0.12 c | 2.30 ± 0.20 b | 3.99 ± 0.08 |
Black mustard | NS Crna | 1.88 ± 0.13 c | 2.50 ± 0.02 b | 4.38 ± 0.15 |
Seed Samples | Sample Genotype | Year of Registration 1 |
---|---|---|
Rapeseed | NS Svetlana | 2016 |
Jovana | 2007 | |
Safflower | NS Lana | 2019 |
NS Una | 2019 | |
White mustard | NS Bela | 2008 |
Black mustard | NS Crna | 2008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, Z.S.; Uletilović, D.D.; Kravić, S.Ž.; Kevrešan, Ž.S.; Grahovac, N.L.; Lončarević, I.S.; Đurović, A.D.; Marjanović Jeromela, A.M. Comparative Study of the Nutritional and Chemical Composition of New Oil Rape, Safflower and Mustard Seed Varieties Developed and Grown in Serbia. Plants 2023, 12, 2160. https://doi.org/10.3390/plants12112160
Stojanović ZS, Uletilović DD, Kravić SŽ, Kevrešan ŽS, Grahovac NL, Lončarević IS, Đurović AD, Marjanović Jeromela AM. Comparative Study of the Nutritional and Chemical Composition of New Oil Rape, Safflower and Mustard Seed Varieties Developed and Grown in Serbia. Plants. 2023; 12(11):2160. https://doi.org/10.3390/plants12112160
Chicago/Turabian StyleStojanović, Zorica S., Dajana D. Uletilović, Snežana Ž. Kravić, Žarko S. Kevrešan, Nada L. Grahovac, Ivana S. Lončarević, Ana D. Đurović, and Ana M. Marjanović Jeromela. 2023. "Comparative Study of the Nutritional and Chemical Composition of New Oil Rape, Safflower and Mustard Seed Varieties Developed and Grown in Serbia" Plants 12, no. 11: 2160. https://doi.org/10.3390/plants12112160
APA StyleStojanović, Z. S., Uletilović, D. D., Kravić, S. Ž., Kevrešan, Ž. S., Grahovac, N. L., Lončarević, I. S., Đurović, A. D., & Marjanović Jeromela, A. M. (2023). Comparative Study of the Nutritional and Chemical Composition of New Oil Rape, Safflower and Mustard Seed Varieties Developed and Grown in Serbia. Plants, 12(11), 2160. https://doi.org/10.3390/plants12112160