Genetic Mechanisms for Hybrid Breeding in Vegetable Crops
Abstract
:1. Introduction
2. Heterosis in Vegetable Crops
3. Floral Characteristics of Different Vegetable Crops
4. Genes Controlling Floral Traits in Vegetable Crops
5. Pollen Biology and Development
6. Genetic Mechanisms
6.1. Self-Incompatibility (SI)
6.1.1. History of Sporophytic Self-Incompatibility (SSI)
6.1.2. Genetics of SSI
6.1.3. Breakdown of SI
6.1.4. Detection and Maintenance of SI
6.1.5. Commercial Exploitation of SI
6.2. Gynoecism
6.2.1. Genetics
6.2.2. Biotechnological Advances
6.2.3. Commercial Exploitation
6.3. Male Sterility
Crop | Hybrid/Line | System | Remark | Reference |
---|---|---|---|---|
Tomato | ‘ms33 IPA’ as female parent | GMS | Genic male sterile line with exerted stigma saved 54.4% of time. | [244] |
Hot pepper | CH-27 | GMS | Multiple-disease-resistant hybrid obtained 55% extra yield compared withCH-1. | [245] |
CH-3 | GMS | Out-yielded recommended varieties by 80–100%; multiple-disease-resistant. | [246] | |
CH-1 | GMS | Out-yielded recommended varieties by 80–100%; multiple-disease-resistant. | [246] | |
Okra | GMS | First report in the world. | [199] | |
GMS | Evaluated hybrids and reported high heterosis for yield/plant. | [247] | ||
Arka Nikita | GMS | New GMS-based okra F1 hybrid. | [248] | |
Muskmelon | Punjab Hybrid | GMS | High-yielding and disease-resistant. | [249] |
Punjab Anmol | GMS | High-yielding and disease-resistant. | [200] | |
Cauliflower | Ogu1A, Ogu2A, and Ogu3A | CMS | Ogura type. | [250] |
Kale | MS-91, MS-51, MS-11, and MS-110 | CMS | Ogura type. | [177] [251] |
Chili | KashiSurkh and Kashi Early from CCA-42-61 and PBC-473, respectively | CGMS | Suitable for green as well as dry fruit. | [252] https://iivr.icar.gov.in/hybrid-kashi-early (accessed on 26 July 2022) |
Arka Meghana, Arka Sweta, and Arka Harita | CGMS | Arka Harita; tolerant to powdery mildew and viruses. | [252] | |
Onion | Arka Kirthimaan and Arka Lalima | CGMS | IIHR; tolerant to purple blotch, basal rot diseases, and thrips. | [253] |
Hybrid-63 and Hybrid-35 | CGMS | IARI, New Delhi. | [177] | |
DOGR Hy—7 | CMS | ICAR-DOGR, Pune. | [254] | |
DOGR Hy—50 | CMS | ICAR-DOGR, Pune. | ||
DOGR Hy-1, DOGR Hy-2, DOGR Hy-3, DOGR Hy-4, DOGR Hy-5, and DOGR Hy-8 | CMS | ICAR-DOGR, Pune. | ||
Carrot | Pusa Nayanjyothi and Pusa Vasuda | Petaloid CMS | Pusa Nayanjyothi and Pusa Vasuda are the first temperate and tropical CGMS-based hybrids, respectively. | [255] |
Cucumber | CGN-19533, CGN-20256, CGN-20515, CGN-20953, CGN-20969, CGN-21585, CGN-22930, Gyne-5, and Pusa Sanyog | Gynoecism | Based on crosses among these lines, researchers suggested to exploit heterosis breeding commercially for developing high-yielding, quality parthenocarpic gynoecious hybrids. | [256] |
GBS-1 | Gynoecism | Inbred could be exploited for yield and earliness. | [160] | |
PPC2, GPC1 | Gynoecism | SSR markers closely linked to the F locus will be useful in marker-assisted backcross breeding for transferring gynoecious trait into horticulturally desirable varieties. | [164] | |
Bitter gourd | Gy263B | Gynoecism | Gynoecism in Gy263B is under the control of a single, recessive gene. | [155,157] |
DBGy-201 | Gynoecism | Used to develop Pusa Hybrid 3 and 5. | [257] | |
Cauliflower | Pusa Hybrid-2 and Pusa Karthik Sankar | SI | Field-resistant to downy mildew. | [258] |
7. Biotechnological Advancements
7.1. Novel Male Sterility–Fertility Restoration System
7.2. Marker-Assisted Selection (MAS) for C-GMS Line Development
8. Biofortification in Vegetables through Hybridization
9. Future Prospects
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Yadav, R.; Sheoran, R.; Kaushik, D.; Mohanta, T.K.; Sharma, K.; Yadav, A.; Dhanda, P.S.; Kaushik, P. Estimation of Heterosis and the Combining Ability Effect for Yield and Its Attributes in Field Pea (Pisum sativum L.) Using PCA and GGE Biplots. Horticulturae 2023, 9, 256. [Google Scholar] [CrossRef]
- Channabasava; Ganesh, P.; Siddu, C.B.; Susmitha, B.; Rao, A.M.; Ramesh, S. DNA Marker-Assisted Identification of Promising Exotic Advanced Breeding Lines as Pollen Fertility Restorers and Their Validation Based on Field and Laboratory Assayable Traits in Chilli (Capsicum annuum L.). Genet. Resour. Crop Evol. 2023, 1–13. [Google Scholar] [CrossRef]
- Herath, H.M.S.N.; Rafii, M.Y.; Ismail, S.I.; JJ, N.; Ramlee, S.I. Improvement of Important Economic Traits in Chilli through Heterosis Breeding: A Review. J. Hortic. Sci. Biotechnol. 2021, 96, 14–23. [Google Scholar] [CrossRef]
- Ji, J.; Su, H.; Cao, W.; Zhang, X.; Li, H.; Fang, Z.; Yang, L.; Zhang, Y.; Zhuang, M.; Wang, Y.; et al. Genetic Analysis and Mapping of QTLs for Isolated Microspore Embryogenesis in Cabbage. Sci. Hortic. 2023, 313, 111897. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, V.; Jain, B.T.; Kaushik, P. Heterosis Breeding in Eggplant (Solanum melongena). Plants 2020, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallikarjunarao, K.; Badu, M.; Ram, H.; Bandi, K. Heterosis Breeding in Bitter Gourd (Momordica charantia L.): A Review. J. Pharmacogn. Phytochem. 2020, 9, 308–313. [Google Scholar]
- Shull, G.H. Beginnings of the Heterosis Concept. Heterosis 1952, 23, 31–33. [Google Scholar]
- Kruse, R. Genetic Basis of Heterosis. Nacta 1964, 8, 6–13. [Google Scholar]
- Hayes, H.K.; Jones, D.F. First Generation Crosses in Cucumbers. Conn. Agric. Exp. Sta.Ann. Rep. 1916, 40, 319–322. [Google Scholar]
- Rai, N.; Rai, M. Heterosis Breeding in Vegetable Crops; New India Publishing: New Delhi, India, 2006. [Google Scholar]
- Kakizaki, Y. Hybrid Vigor in Egg-Plants and Its Practical Utilization. Genetics 1931, 16, 196. [Google Scholar] [CrossRef]
- Mulualem, T.; Abate, M. Heterotic Response in Major Cereals and Vegetable Crops. Int. J. Plant Breed. Genet. 2016, 10, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.A.; Lakshmanan, V.; Hondaiman, T.V. Botany of Vegetable Crops: Text Book; Narendra Publishing House: New Delhi, India, 2014; p. 184. [Google Scholar]
- Colombo, N.; Galmarini, C.R. The Use of Genetic, Manual and Chemical Methods to Control Pollination in Vegetable Hybrid Seed Production: A Review. Plant Breed. 2017, 136, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Enrico, S.C.; Meyerowitz, E.M. The War of the Whorls: Genetic Interactions Controlling Flower Development. Nature 1991, 353, 31. [Google Scholar]
- Theissen, G. Development of Floral Organ Identity: Stories from the MADS House. Curr. Opin. Plant Biol. 2001, 4, 75–85. [Google Scholar] [CrossRef]
- Rijpkema, A.S.; Vandenbussche, M.; Koes, R.; Heijmans, K.; Gerats, T. Variations on a Theme: Changes in the Floral ABCs in Angiosperms. Semin. Cell Dev. Biol. 2010, 21, 100–107. [Google Scholar] [CrossRef]
- Murai, K. Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat. Plants 2013, 2, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Smaczniak, C.; Immink, R.G.H.; Angenent, G.C.; Kaufmann, K. Developmental and Evolutionary Diversity of Plant MADS-Domain Factors: Insights from Recent Studies. Dev. 2012, 139, 3081–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Liu, C.; Yang, W.; Shen, H. PAP3 Regulates Stamen but Not Petal Development in Capsicum annuum L. Hortic. Plant J. 2016, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Gu, A.; Zhao, J.; Wang, Y.; Chen, X.; Shen, S. Expression Analyses of ABCDE Model Genes and Changes in Levels of Endogenous Hormones in Chinese Cabbage Exhibiting Petal-Loss. Hortic. Plant J. 2017, 3, 133–140. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Xu, L.; Nie, S.; Chen, Y.; Liang, D.; Sun, X.; Karanja, B.K.; Luo, X.; Liu, L. Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.; Li, C.; Xu, L.; Wang, Y.; Huang, D.; Muleke, E.M.; Sun, X.; Xie, Y.; Liu, L. De Novo Transcriptome Analysis in Radish (Raphanus sativus L.) and Identification of Critical Genes Involved in Bolting and Flowering. BMC Genomics 2016, 17, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Qiu, Y.; Cheng, F.; Chen, X.; Zhang, X.; Wang, H.; Song, J.; Duan, M.; Yang, H.; Li, X. Genome-Wide Identification, Characterization, and Evolutionary Analysis of Flowering Genes in Radish (Raphanus sativus L.). BMC Genomics 2017, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linke, B.; Nothnagel, T.; Börner, T. Flower Development in Carrot CMS Plants: Mitochondria Affect the Expression of MADS Box Genes Homologous to GLOBOSA and DEFICIENS. Plant J. 2003, 34, 27–37. [Google Scholar] [CrossRef]
- Budahn, H.; Barański, R.; Grzebelus, D.; Kiełkowska, A.; Straka, P.; Metge, K.; Linke, B.; Nothnagel, T. Mapping Genes Governing Flower Architecture and Pollen Development in a Double Mutant Population of Carrot. Front. Plant Sci. 2014, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, C.A.; Ma, H. Spatially and Temporally Regulated Expression of the MADS-Box Gene AGL2 in Wild-Type and Mutant Arabidopsis Flowers. Plant Mol. Biol. 1994, 26, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Pelaz, S.; Ditta, G.S.; Baumann, E.; Wisman, E.; Yanofsky, M.F. B and C Floral Organ Identity Functions Require SEPALLATTA MADS-Box Genes. Nature 2000, 405, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Honma, T.; Goto, K. Complexes of MADS-Box Proteins Are Sufficient to Convert Leaves into Floral Organs. Nature 2001, 409, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Alessandro, M.S.; Galmarini, C.R.; Iorizzo, M.; Simon, P.W. Molecular Mapping of Vernalization Requirement and Fertility Restoration Genes in Carrot. Theor. Appl. Genet. 2013, 126, 415–423. [Google Scholar] [CrossRef]
- Boualem, A.; Troadec, C.; Camps, C.; Lemhemdi, A.; Morin, H.; Sari, M.A.; Fraenkel-Zagouri, R.; Kovalski, I.; Dogimont, C.; Perl-Treves, R.; et al. A Cucurbit Androecy Gene Reveals How Unisexual Flowers Develop and Dioecy Emerges. Science 2015, 350, 688–691. [Google Scholar] [CrossRef]
- Martin, A.C.; Kaschube, M.; Wieschaus, E.F. Pulsed Contractions of an Actin-Myosin Network Drive Apical Constriction. Nature 2009, 457, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of Broad Virus Resistance in Non-Transgenic Cucumber Using CRISPR/Cas9 Technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Li, D.; Liu, X.; Qi, J.; Gao, D.; Zhao, S.; Huang, S.; Sun, J.; Yang, L. Engineering Non-Transgenic Gynoecious Cucumber Using an Improved Transformation Protocol and Optimized CRISPR/Cas9 System. Mol. Plant 2017, 10, 1575–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akoroda, M.O. Studies on the Genetics and Floral Biology of Yams (Dioscorea retundata Poir and Dioscorea cayenensis Lam.). Ph. D. Thesis, University of Ibadan, Ibadan, Nigeria, 1981; p. 298. [Google Scholar]
- Asiedu, R.; Ng, S.Y.C.; Vuylsteke, D.; Terauchi, R.; Hahn, S.K. Analysis of the Need for Biotechnology Research on Cassava, Yam and Plantain. Biotechnol. Enhancing Res. Trop. Crop. Africa 1992, 27, 70–74. [Google Scholar]
- Edlund, A.F.; Swanson, R.; Preuss, D. Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. Plant Cell 2004, 16, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Patta, S.; Vari, A.K.; Tornar, B.S.; Singh, B. Palynology Studies to Increase Efficiency of Tomato Hybrid Seed Production. Ecol. Environ. Conserv. 2016, 22, 835–838. [Google Scholar]
- Jolli, R.B.; Vyakaranahal, B.; Dharmatti, P.R.; Patil, A.A.; Shekaragouda, M. Standardization of Pollination Time In Tomato Hybrid Seed Prodcution. Research on Crops. 2006, 9, 622–626. [Google Scholar]
- Sujatha, P.; Vari, A.K.; Tomar, B.S.; Singh, B. Low-Cost Standard Technology for Tomato Hybrid Seed Crop Productivity Enhancement (ICBSM2539). In Proceedings of the 2nd International Conference Bio-Resource Stress Management, Hyderabad, India, 7–10 January 2015; p. 248. [Google Scholar]
- Kaloo, G. Vegetable Breeding; CRC Press Inc.: Boca, Raton, FL, USA, 1988; p. 1. [Google Scholar]
- Yogeesha, H.S.; Nagaraja, A.; Sharma, S.P. Pollination Studies in Hybrid Tomato Seed Production. Seed Sci. Technol. 1999, 27, 115–122. [Google Scholar]
- Devi, L.C. Determination of Optimal Conditions for the Production of Tomato Hybrid Seeds. Ph.D Thesis, Division of Seed Science Technololgy, IARI, New Delhi, India, 2000. [Google Scholar]
- Pressman, E.; Peet, M.M.; Pharr, D.M. The Effect of Heat Stress on Tomato Pollen Characteristics Is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Ann. Bot. 2002, 90, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Peet, M.M.; Willits, D.H.; Gardner, R. Response of Ovule Development and Post-Pollen Production Processes in Male-Sterile Tomatoes to Chronic, Sub-Acute High Temperature Stress. J. Exp. Bot. 1997, 48, 101–111. [Google Scholar] [CrossRef]
- Peet, M.M.; Sato, S.; Gardner, R.G. Comparing Heat Stress Effects on Male-Fertile and Male-Sterile Tomatoes. Plant Cell Environ. 1998, 21, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological Factors Limit Fruit Set of Tomato (Lycopersicon esculentum Mill.) under Chronic, Mild Heat Stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Mathad, R.C.; Patil, S.B.; Lokesh, G.Y.; Savegowda, B.A. Pollen Cryo-Preservation for Hybrid Seed Production in Hot Pepper. Seed Res. 2015, 43, 53–58. [Google Scholar] [CrossRef]
- Kristof, E.B.; Barnabes, B. Deep Freezing Storage of Paprika Pollen. Capsicum Newsl. 1986, 5, 27–28. [Google Scholar]
- Benzoickova, A. Viability of Sweet Pepper Pollen Stored at Cryogenic Temperature. Capsicum Newsl. 1988, 70, 30–31. [Google Scholar]
- Alexander, M.P.; Ganeshan, S.; Rajasekharan, P.E. Freeze Preservation of Capsicum Pollen in Liquid Nitrogen (−196 °C) for 42 Months-Effect on Pollen Viability and Fertility. Plant Cell Incompat. Newsl. 1991, 23, 1–4. [Google Scholar]
- Daniel, I.O. Exploring Storage Protocols for Yam (Dioscorea Spp.) Pollen Genebanking. African J. Biotechnol. 2011, 10, 8306–8311. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.W.; Jaskani, M.J.J.; Ko, B.R.K.; Cho, J.L.C. Collection, Germination and Storage of Watermelon (Citrullus lanatus Thunb.) Pollen for Pollination under Temperate Conditions. Asian J. Plant Sci. 2005, 4, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Matlob, A.N.; Kelly, W.C. The Effect of High Temperature on Pollen Tube Growth of Snake Melon and Cucumber. J. Am. Soc. Hortic. Sci. 1973, 98, 296–300. [Google Scholar] [CrossRef]
- Sugiyama, M.; Sakata, Y.; Kitadani, E.; Morishita, M.; Sugiyama, K. Pollen Storage for Production of Seedless Watermelon (Citrullus lanatus) Using Soft-x-Irradiated Pollen. Acta Hortic. 2002, 588, 269–272. [Google Scholar] [CrossRef]
- Nasrabadi, H.N.; Nemati, H. Temperature Affects Vigour and Pollen Viability of Melon. Agric. Biol. Sci. J. 2015, 1, 183–185. [Google Scholar]
- Shaukat, A.K.; Anjum, P. Germination Capacity of Stored Pollen of Solanum melongena L., (Solanaceae) and Their Maintenance. Pakistan J. Bot. 2006, 38, 917–920. [Google Scholar]
- Shivanna, K.R.; Rangaswamy, N.S. Pollen Biology a Laboratory Manual; Springer-Verlag: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Erickson, E.H.; Peterson, C.E.; Werner, P. Honey Bee Foraging and Resultant Seed Set among Male-Fertile and Cytoplasmically Male-Sterile Carrot Inbreds and Hybrid Seed Parents1,2. J. Am. Soc. Hortic. Sci. 2022, 104, 635–638. [Google Scholar] [CrossRef]
- Rodet, G.; Torre Grossa, J.P. Foraging Behaviour of Apis mellifera L. on Male Sterile and Male Fertile Inbred Lines of Carrot (Daucus carota L.) in Gridded Enclosures. Acta Hortic. 1991, 288, 371–375. [Google Scholar] [CrossRef]
- Funari, S.R.; Silva, N.; Carmo, M.; Funari, A.; Souza, J.; Da-Silva, N.; Do Carmo, M.; De-Souza, J. Collection Activity of Africanised Bees, Apis mellifera, in Fertile and Cytoplasmically Male Sterile Lines of Cauliflower (Brassica oleraceae L.) and Its Influence on Seed Production. Bol. De Ind. Anim. 1994, 51, 69–75. [Google Scholar]
- Brown, P. Pollination and Seed Development in Hybrid Vegetable Seed Crops; Project Number VG03084; Horticulture Australia Limited: Sydney, Australia, 2006; pp. 1–107. [Google Scholar]
- Whitford, R.; Fleury, D.; Reif, J.C.; Garcia, M.; Okada, T.; Korzun, V.; Langridge, P. Hybrid Breeding in Wheat: Technologies to Improve Hybrid Wheat Seed Production. J. Exp. Bot. 2013, 64, 5411–5428. [Google Scholar] [CrossRef] [Green Version]
- Koelreuter, J. Descriptions Piscium Rariorum e Museo Petripolitano Exceptorum Continuatio. Novi Comment. Acad. Sci. Imp. Petropolitanae 1764, 9, 420–470. [Google Scholar]
- Darwin, C. The Different Forms of Flowers on Plants of the Same Species. D. Applet. 1977.
- Dodds, P.N.; Clarke, A.E.; Newbigin, E. Molecules Involved in Self-Incompatibility in Flowering Plants. Plant Breed. Rev. 1997, 19–42. [Google Scholar]
- Thompson, K.F.; Taylor, J.P. The Breakdown of Self-Incompatibility in Cultivars of Brassica oleracea. Heredity 1966, 21, 637–648. [Google Scholar] [CrossRef] [Green Version]
- East, E.M. The Distribution of Self-Sterility in the Flowering Plants. Proc. Am. Philos. Soc. 1940, 82, 449–518. [Google Scholar]
- Bateman, A.J. Self-Incompatibility Systems in Angiosperms. I.Theory. Heredity 1952, 6, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Watts, L.E. Investigations into the Breeding System of Cauliflower Brassica oleracea Var. Botrytis (L.)—I. Studies of Self-Incompatibility. Euphytica 1963, 12, 323–340. [Google Scholar] [CrossRef]
- Ockendon, D.J.; Currah, L. Time of Cross- and Self-Pollination Affects the Amount of Self-Seed Set by Partially Self-Incompatible Plants of Brassica oleracea. Theor. Appl. Genet. 1978, 52, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Pearson, O.H. Heterosis in Vegetable Crops. Heterosis 1983, 6, 138–188. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Swarup, V. Self-Incompatibility in Indian Cauliflower. Crucif. Newsl. 1984, 25–27. [Google Scholar]
- Nasrallah, M.E.; Wallace, D.H. The Influence of Modifier Genes on the Intensity and Stability of Self-Incompatibility in Cabbage. Euphytica 1968, 17, 495–503. [Google Scholar] [CrossRef]
- Nieuwhof, M. The Occurrence of Self-Incompatibility in Cauliflower (Brassica oleracea Var. Botrytis L. Subvar. Cauliflora Dc.) and the Possibilities to Produce Uniform Varieties. Euphytica 1974, 23, 473–478. [Google Scholar] [CrossRef]
- Vidyasagar Self-Incompatibility and S-Alleles in Indian Cauliflower. Ph.D. Thesis, Indian Agricultural Research Insitute, New Delhi, India, 1981.
- Tripathi, S.K.; Singh, P.K. Hybrid Seed Production of Cauliflower. J. New Seeds 2000, 2, 43–49. [Google Scholar] [CrossRef]
- Singh, P.K. Utilization and Seed Production of Hybrid Vegetable Varieties in India. J. New Seeds 2000, 2, 37–42. [Google Scholar] [CrossRef]
- Singh, P.K.; Tripathi, S.K.; Somani, K.V. Hybrid Seed Production of Radish (Raphanus sativus L.). J. New Seeds 2001, 3, 51–58. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, P.K. Mechanisms for Hybrid Development in Vegetables. J. New Seeds 2004, 6, 383–409. [Google Scholar] [CrossRef]
- Takayama, S.; Isogai, A. Self-Incompatibility in Plants. Annu. Rev. Plant Biol. 2005, 56, 467–489. [Google Scholar] [CrossRef] [Green Version]
- Odland, M.L.; Noll, C.J. The Utilization of Cross-Compatibility and Self-Incompatibility in the Production of F1 Hybrid Cabbage. Proceedings. Am. Soc. Hortic. Sci. 1950, 55, 391–402. [Google Scholar]
- Gerstel, D.U. Self-Incompatibility Studies in Guayule; Inheritance. Genetics 1950, 35, 482–506. [Google Scholar] [CrossRef]
- Bateman, A.J. Self-Incompatibility Systems in Angiosperms. II. Iberis Amara. Heredity 1954, 8, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.J. Self-Incompatibility Systems in Angiosperms. Heredity 1955, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.A.; Thurling, N. The Genetics of Self-Incompatibility in Brassica campestris L. Ssp. Oleifera Metzg. II. Genotypic and Environmental Modification of S Locus Control. Genetica 1973, 44, 439–453. [Google Scholar] [CrossRef]
- Mackay, G.R. The Introgression of S Alleles into Forage Rape (Brassica napus L.) from Turnip (Brassica campestris L. Ssp. Rapifera). Euphytica 1977, 26, 511–519. [Google Scholar] [CrossRef]
- Adamson, R.M. Self and Cross-Incompatibility in Early Round-Headed Cabbage. Can J. Plant Sci. 1965, 45, 493–497. [Google Scholar] [CrossRef]
- Nou, S.; Watanabe, M.; Isogai, A.; Hinata, K. Comparison of S-Alleles and S-Glycoproteins between Two Wild Populations of Brassica campestris in Turkey and Japan. Sex. Plant Reprod. 1993, 6, 79–86. [Google Scholar] [CrossRef]
- Lawrence, M.J. Population Genetics of the Homomorphic Self-Incompatibility Polymorphisms in Flowering Plants. Ann. Bot. 2000, 85, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Nishio, T. Distribution of S Haplotypes in Commercial Cultivars of Brassica rapa. Plant Breed 2001, 120, 155–161. [Google Scholar] [CrossRef]
- Kachroo, A.; Nasrallah, M.E.; Nasrallah, J.B. Self-Incompatibility in the Brassicaceae: Receptor-Ligand Signaling and Cell-to-Cell Communication. Plant Cell 2002, 14, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, R.; Gaude, T. Brassica Self-Incompatibility: A Glimpse below the Surface. Plant Signal. Behav. 2009, 4, 996–998. [Google Scholar] [CrossRef]
- Tarutani, Y.; Shiba, H.; Iwano, M.; Kakizaki, T.; Suzuki, G.; Watanabe, M.; Isogai, A.; Takayama, S. Trans-Acting Small RNA Determines Dominance Relationships in Brassica Self-Incompatibility. Nature 2010, 466, 983–986. [Google Scholar] [CrossRef]
- Stone, S.L.; Anderson, E.M.; Mullen, R.T.; Goring, D.R. ARC1 Is an E3 Ubiquitin Ligase and Promotes the Ubiquitination of Proteins during the Rejection of Self-Incompatible Brassica Pollen. Plant Cell 2003, 15, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Castric, V.; Vekemans, X. Evolution under Strong Balancing Selection: How Many Codons Determine Specificity at the Female Self-Incompatibility Gene SRK in Brassicaceae? BMC Evol. Biol. 2007, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K. Self-Incompatibility in Marrow-Stem Kale, Brassica oleracea Var. Acephala. I. Demonstration of a Sporophytic System. J. Genet 1957, 55, 45–60. [Google Scholar]
- Thompson, K.F.; Howard, H.W. Self-Incompatibility in Narrow-Stem Kale, Brassica oleracea Var. ‘Acephala’. II. Methods for the Recognition in Inbred Lines of Plants Homozygous for S Alleles. J. Genet. 1959, 56, 324–340. [Google Scholar] [CrossRef]
- Wallace, D.H. Procedures for Identifying S-Allele Genotypes of Brassica. Theor. Appl. Genet. 1979, 54, 193–201. [Google Scholar] [CrossRef]
- Tatebe, T. Studies on the Genetics of Self-and Cross-Incompatibility in the Japanese Radish. IV. J. Jpn. Soc. Hortic. Sci. 1962, 31, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Sampson, D.R. The Genetics of Self- and Cross-Incompatibility in Brassica oleracea. Genetics 1957, 42, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Sampson, D.R. The Genetics of Self-Incompatibility in the Radish. J. Hered. 1957, 48, 26–29. [Google Scholar] [CrossRef]
- Haruta, T. Studies on the Genetics of Self-and Cross Incompatibility in Cruciferous Vegetables. Res. Bull. Tak. Plant Breed. Exp. Stn 1962, 2, 164–169. [Google Scholar]
- Hoser-Krauze, J. Inheritance of Self-Incompatibility and the Use of It in the Production of F1 Hybrids of Cauliflower (Brassica oleracea Var Botrytis L Subvar Cauliflora Dc). Genet. Pol. 1979, 20, 341–367. [Google Scholar]
- Negi, S. Studies on Self-Incompatibility In Low Chill Requiring Genotypes Of Cabbage (Brassica oleracea L. Var. Capitata L.); Vegetable Science, CSKHPKV: Palampur, India, 2005. [Google Scholar]
- Thompson, K.F.; Taylor, J.P. Self-Compatibility in Kale. Heredity 1971, 27, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Lawson, J.; Williams, W. Environmental and Genetic Effects on Pseudocompatibility in Brassica oleracea in Relation to the Production of Hybrid Seed. J. Hortic. Sci. 1976, 51, 123–132. [Google Scholar] [CrossRef]
- Hadj-Arab, H.; Chèvre, A.M.; Gaude, T.; Chable, V. Variability of the Self-Incompatibility Reaction in Brassica oleracea L. with S15 Haplotype. Sex. Plant Reprod. 2010, 23, 141–151. [Google Scholar] [CrossRef]
- Litzow, M.; Ascher, P.D. Potential Method for Producing F1 Hybrid Seed with the Sporophytic Self Incompatibility System. Incompat. Newsl. 1977, 8, 83–86. [Google Scholar]
- Sampson, D.R. Genetics of Self-Incompatibility in Broccoli. Genetics 1956, 41, 659. [Google Scholar]
- de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 3. [Google Scholar] [CrossRef]
- Kakizaki, T.; Takada, Y.; Ito, A.; Suzuki, G.; Shiba, H.; Takayama, S.; Isogai, A.; Watanabe, M. Linear Dominance Relationship among Four Class-II S Haplotypes in Pollen Is Determined by the Expression of SP11 in Brassica Self-Incompatibility. Plant Cell Physiol. 2003, 44, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyenoyama, M.K. Evolutionary Dynamics of Self-Incompatibility Alleles in Brassica. Genetics 2000, 156, 351–359. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Takasaki, T.; Suzuki, G.; Nishio, T.; Watanabe, M.; Isogai, A.; Hinata, K. The S Receptor Kinase Gene Determines Dominance Relationships in Stigma Expression of Self-Incompatibility in Brassica. Plant J. 2001, 26, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Shiba, H.; Iwano, M.; Entani, T.; Ishimoto, K.; Shimosato, H.; Che, F.S.; Satta, Y.; Ito, A.; Takada, Y.; Watanabe, M.; et al. The Dominance of Alleles Controlling Self-Incompatibility in Brassica Pollen Is Regulated at the RNA Level. Plant Cell 2002, 14, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, K.F. Competitive Interaction between Two S Alleles in a Sporophytically Controlled Incompatibility System. Heredity 1972, 28, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ockendon, D.J. Distribution of Self-Incompatibility Alleles and Breeding Structure of Open-Pollinated Cultivars of Brussels Sprouts. Heredity 1974, 33, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Ockendon, D.J. Dominance Relationships between S-Alleles in the Stigmas of Brussels Sprouts (Brassica oleracea Var. Gemmifera). Euphytica 1975, 24, 165–172. [Google Scholar] [CrossRef]
- Mable, B.K. Genetic Causes and Consequences of the Breakdown of Self-Incompatibility: Case Studies in the Brassicaceae. Genet. Res. 2008, 90, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Horisaki, A.; Niikura, S. Developmental and Environmental Factors Affecting Level of Self-Incompatibility Response in Brassica rapa L. Sex. Plant Reprod. 2008, 21, 123–132. [Google Scholar] [CrossRef]
- Zur, I.W.; Klein, M.A.; Dubert, F.R.; Samek, L.U.; Waligorska, H.A.; Zuradzka, I.Z.; Zawislak, E. Environmental Factors and Genotypic Variation of Self-Incompatibility in Brassica oleracea L. Var. Capitata. Acta Biol. Cracoviensia Ser. Bot. 2003, 45, 49–52. [Google Scholar]
- Johnson, A.G. Self-Incompatibility in Inbred Lines of Brussels Sprouts. Euphytica 1971, 20, 561–573. [Google Scholar] [CrossRef]
- Ockendon, D.J. Selection for High Self-Incompatibility in Inbred Lines of Brussels Sprouts. Euphytica 1973, 22, 503–509. [Google Scholar] [CrossRef]
- Roggen, H.P.J.R.; Van Dijk, A.J. “Thermally Aided Pollination”: A New Method of Breaking Self-Incompatibility in Brassica oleracea L. Euphytica 1976, 25, 643–646. [Google Scholar] [CrossRef]
- Roggen, H.P.J.R.; Van Dijk, A.J. Breaking Incompatibility of Brassica oleracea L. by Steel-Brush Pollination. Euphytica 1972, 21, 424–425. [Google Scholar] [CrossRef]
- Roggen, H.P.J.R.; van Dijk, A.J.; Dorsman, C. “Electric Aided” Pollination: A Method of Breaking Incompatibility in Brassica oleracea L. Euphytica 1972, 21, 181–184. [Google Scholar] [CrossRef]
- Hoser-Krauze, J. Samoniezgodność u Roślin Krzyżowych i Wykorzystanie Jej w Hodowli Heterozyjnej. Postępy Nauk Rol. 1968, 15, 47–60. [Google Scholar]
- Watts, L.E. Investigations into the Breeding System of Cauliflower: II. Adaptation of the System to Inbreeding. Euphytica 1965, 14, 67–77. [Google Scholar] [CrossRef]
- Crehu, G.D. Early Testing of Pollen-Stigma Compatibility Relationships in Brassica oleracea by Fluorescence. In Proceedings of the Brassica Meeting of Eucarpia, Wellesboume, UK, 4–6 September 1968; pp. 34–36. [Google Scholar]
- Vinay, T.R.; Varalakshmi, B. Identification of Self-Incompatibility in Early Cauliflower Using Fluorescence Microscopy. Indian J. Hortic. 2011, 68, 270–274. [Google Scholar]
- GongJun, S.; XiLin, H. Identification of a RAPD Marker Tightly Linked to a Self- Incompatibility Gene in Non-Heading Chinese Cabbage. Acta Hortic. 2004, 637, 279–283. [Google Scholar]
- Mohring, S.; Horstmann, V.; Esch, E. Development of a Molecular CAPS Marker for the Self-Incompatibility Locus in Brassica napus and Identification of Different S Alleles. Plant Breed. 2005, 124, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Park, J.I.; Lee, S.S.; Watanabe, M.; Takahata, Y.; Nou, I.S. Identification of S-Alleles Using Polymerase Chain Reaction-Cleaved Amplified Polymorphic Sequence of the S-Locus Receptor Kinase in Inbreeding Lines of Brassica oleracea. Plant Breed. 2002, 121, 192–197. [Google Scholar] [CrossRef]
- Pearson, O.H. Breeding Plants of the Cabbage Group. Calif. Agric. Exp. Stn. Bull. 1933, 532, 3–22. [Google Scholar]
- Nieuwhof, M. Breeding Hybrid Varieties of Vegetables. Breed. Hybrid Var. Veg. 1965, 1497, 98–107. [Google Scholar]
- Thompson, K.F. Triple-Cross Hybrid Kale. Euphytica 1964, 13, 173–177. [Google Scholar] [CrossRef]
- Gusakova, G.A.; Gorodilov, N.A. Selection of White Head Cabbage [Brassica oleracea Capitata] on the Basis of Self Incompatability. [Russian]; Food and Agriculture Organization: Rome, Italy, 1996. [Google Scholar]
- Ruffio-Chable, V.; Gaude, T. S-Haplotype Polymorphism in Brassica oleracea. In International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture 546; ISHS Acta Horticulturae: Leuven, Belgium, 2001; pp. 257–261. [Google Scholar] [CrossRef]
- Ram, H.H. Level of Self-Incompatibility in Cauliflower (Brassica oleracea Var Botrytis L.). South Indian Hortic. 1975, 64–66. [Google Scholar]
- Hoser-Krauze, J. Comparison of Suitability of Sources of Cytoplasmic Male Sterility (CMS) and Self-Incompatibility for Hybrid Breeding of Cauliflower. Biul. Warzyniczy Suppl. 1989, 1–29. [Google Scholar]
- Hoser-Krauze, J.; Gabryl, J.; Antosik, J. Influence of the Cytoplasm of Indian Self-Incompatible Lines on the Earliness and Quality of F1 Cauliflower Curds. Eucarpia Crucif. Newsl. 1982, 7, 12. [Google Scholar]
- Gangopadhyay, K.K.; Gill, H.S.; Sharma, S.R. Heterosis and Combining Ability Studies in Early Group of Indian Cauliflower Involving Self-Incompatible Lines. Veg. Sci. 1997, 24, 26–28. [Google Scholar]
- Sharma, S.R.; Singh, R.; Vinod, S.D.K.; Edison, S.J. Self-Incompatibility Level in Different Maturity Groups in Indian Cauliflower. In Proceedings of the Diamond Jubily. Symposium–Hundred Years Post Mendelian Genetic Plant Breeding, New Delhi, India, 6–9 November 2001; pp. 155–156. [Google Scholar]
- Singh, B.; Singh, A.; Pal, A.K.; Banerjee, M.K. Evaluation of Self Incompatibility in Indian Cauliflower (Brassica oleracea L. Var. Botrytis). Veg. Sci. 2002, 29, 142–145. [Google Scholar]
- Sharma, S.; Thakur, J.C.; Khattra, A.S. Studies on Self-Incompatibility and Its Stability in Open Pollinated Varieties of Indian Cauliflower. Veg. Sci. 2003, 27, 152–154. [Google Scholar]
- Selvakumar, P.; Sinha, S.N.; Pandita, V.K. Hybrid Seed Production in Cauliflower (Brassica oleracea Var Botrytis Subvar Cauliflora). Indian J. Agric. Sci. 2011, 77, 649–651. [Google Scholar]
- Nieuwhof, M. Effect of Temperature on the Expression of Male Sterility in Brussels Sprouts (Brassica oleracea L. Var. Gemmifera DC.). Euphytica 1968, 17, 265–273. [Google Scholar] [CrossRef]
- Hinata, K. Effect of CO2 Gas for Overcoming Self-Incompatibility of Different S Genotypes in Brassica oleracea L. Incompat. Newsl. 1975, 5, 60–62. [Google Scholar]
- Monteiro, A.A.; Gabelman, W.H.; Williams, P.H. Use of Sodium Chloride Solution to Overcome Self-Incompatibility in Brassica campestris. HortScience 1988, 23, 876–877. [Google Scholar] [CrossRef]
- Kucera, V. Overcoming Self Incompatibility in Brassica oleracea with a Sodium Chloride Solution. Sborník ÚVTIZ Zahrad. 1990, 17, 13–16. [Google Scholar]
- Carafa, M.A.; Carratu, G. Stigma Treatment with Saline Solutions: A New Method to Overcome Self-Incompatibility in Brassica oleracea L. J. Hortic. Sci. 1997, 72, 531–535. [Google Scholar] [CrossRef]
- Faulkner, G.J. The Behaviour of Honeybees (Apis mellifera) on Flowering Brussels Sprout Inbreds in the Production of F1 Hybrid Seed. Hortic. Res. 1971, 11, 60–62. [Google Scholar]
- Singh, P.K.; Rathore, S.V.S.; Tripathi, S.K. Studies on Self-Incompatibility and Heterotic Response in Sprouting Broccoli (Brassica oleracea Var. Italica Plenck). IV Int. Symp. Brassicas XIV Crucif. Genet. Work. 2004, 706, 179–188. [Google Scholar] [CrossRef]
- Horisaki, A.; Niikura, S. Diallel Analysis of the Level of Self-Incompatibility Evaluated by Insect-Pollination in Brassica rapa L. Breed. Sci. 2007, 57, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Ram, D.; Kumar, S.; Singh, M.; Rai, M.; Kalloo, G. Inheritance of Gynoecism in Bitter Gourd (Momordica charantia L.). J. Hered. 2006, 97, 294–295. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.W.; Decker-Walters, D.S. Cucurbits. Cab Int. 1997, 226, 103–108. [Google Scholar]
- Ram, D.; Kumar, S.; Banerjee, M.K.; Singh, B.; Singh, S. Developing Bitter Gourd (Momordica charantia L.) Populations with a Very High Proportion of Pistillate Flowers. Cucurbit Genet. Coop. Rep. 2002, 25, 65–66. [Google Scholar]
- Behera, T.K.; Dey, S.S.; Munshi, A.D.; Gaikwad, A.B.; Pal, A.; Singh, I. Scientia Horticulturae Sex Inheritance and Development of Gynoecious Hybrids in Bitter Gourd (Momordica charantia L.). Sci. Hortic. 2009, 120, 130–133. [Google Scholar] [CrossRef]
- Robinson, R.W.; Munger, H.M.; Whitaker, T.W.; Bohn, G.W. Genes of the Cucurbitaceae 1. HortScience 1976, 11, 554–568. [Google Scholar] [CrossRef]
- Pati, K.; Munshi, A.D.; Behera, T.K. Inheritance of Gynoecism in Cucumber (Cucumis sativus L.) Using Genotype GBS-1 AS Gynoecious Parent. Genetika 2015, 47, 349–356. [Google Scholar] [CrossRef]
- Behera, T.; Dey, S.; Sirohi, P. DBGy-201 and DBGy-202: Two Gynoecious Lines in Bitter Gourd (Momordica charantia L.) Isolated from Indigenous Source. Indian J. Genet. Plant Breed. 2006, 66, 61–62. [Google Scholar]
- Mishra, S.; Behera, T.K.; Munshi, A. Das Induction and Morphological Characterization of Hermaphrodite Flowers in a Gynoecious Line of Bitter Gourd by Silver Nitrate, Gibberellic Acid, and Silver Thiosulfate. Int. J. Veg. Sci. 2015, 21, 204–211. [Google Scholar] [CrossRef]
- Iwamoto, E.; Ishida, T. Effect of Ethephon on Seed Emergence of Balsam Pear (Momordica charantia L.). Hortic. Res. 2005, 4, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Jat, G.S.; Munshi, A.D.; Behera, T.K.; Choudhary, H.; Dash, P.; Ravindran, A.; Kumari, S. Genetics and Molecular Mapping of Gynoecious (F) Locus in Cucumber (Cucumis sativus L.). J. Hortic. Sci. Biotechnol. 2019, 94, 24–32. [Google Scholar] [CrossRef]
- Robinson, R.W.; Robinson, R.W. Rationale and Methods for Producing Hybrid Cucurbit Seed Rationale and Methods for Producing Hybrid Cucurbit Seed. J. New Seeds 1999, 1, 1–47. [Google Scholar] [CrossRef]
- Peterson, C.E.; Anhder, L.M.D. Induction of Staminate Flowers on Gynoecious Cucumbers with Gibberellin A3. Science 1960, 131, 1673–1674. [Google Scholar] [CrossRef]
- Beyer, E.J. Silver Ion: A Potent Antiethylene Agent in Cucumber and Tomato. Hortic. Sci. 1976, 11, 195–196. [Google Scholar] [CrossRef]
- Kohli, U.K.; Vikram, A. Hybrid Cucumber. J. New Seeds 2005, 6, 375–380. [Google Scholar] [CrossRef]
- Singh, H.; Khar, A. Onion (Allium cepa L.) Hybrid Breeding In India: Status and Prospects. Acta Horticulturae. 2023, 1362, 547–552. [Google Scholar]
- Johnson, A.G. Male Sterility in Brassica. Nature 1958, 182, 1523. [Google Scholar] [CrossRef]
- Nieuwhof, M. Male Sterility in Some Cole Crops. Euphytica 1961, 10, 351–356. [Google Scholar] [CrossRef]
- Sampson, D.R. Linkage of Genetic Male Sterility With a Seedling Marker and Its Use in Producing F 1 Hybrid Seed of Brassica oleracea (Cabbage, Broccoli, Kale, Etc.). Can. J. Plant Sci. 1966, 46, 703. [Google Scholar] [CrossRef] [Green Version]
- Delourme, R.; Budar, F. Male Sterility. In Biology Brassica coenospecies; Gómez-Campo, C., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1999; pp. 185–216. [Google Scholar]
- Budar, F.; Berthomé, R. Cytoplasmic Male Sterilities and Mitochondrial Gene Mutations in Plants. Plant Mitochondria Annu. Plant Rev. 2007, 31, 278–307. [Google Scholar]
- Chase, C.D. Cytoplasmic Male Sterility: A Window to the World of Plant Mitochondrial-Nuclear Interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Prakash, S.; Bhat, S.R.; Fu, T. Wild Germplasm and Male Sterility. Biol. Breed. Crucif. 2009, 113–127. [Google Scholar]
- Dhall, R.K. Status of Male Sterility in Vegetables for Hybrid Development. A Review. Adv. Hortic. Sci. 2010, 24, 263–279. [Google Scholar]
- Dhaliwal, M.S. Exploitation of Male Sterility Systems. Adv. Chill. Res. 2010, 133–144. [Google Scholar]
- Kumar, S.; Banerjee, M.K.; Kalloo, G. Male Sterility: Mechanisms and Current Status on Identification, Characterization and Utilization in Vegetables. Veg. Sci. 2000, 27, 1–24. [Google Scholar]
- Gabay-Laughnan, S.; Newton, K.J. Plant Mitochondrial Mutations. Genom. Chloroplasts Mitochondria 2012, 267–291. [Google Scholar]
- Yamagishi, H.; Bhat, S.R. Cytoplasmic Male Sterility in Brassicaceae Crops. Breed. Sci. 2014, 64, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mopidevi, M.N.; Thompson, T.; Rao, G.K.; Siva, M. Role of Male Sterility in Vegetable Hybrid Seed Production. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 134–141. [Google Scholar]
- Singh, H.; Khar, A. Perspectives of Onion Hybrid Breeding in India: An Overview. Indian J. Agric. Sci. 2021, 91, 1426–1432. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kang, J.H.; Zhao, M.; Kwon, J.K.; Choi, H.S.; Bae, J.H.; Lee, H.A.; Joung, Y.H.; Choi, D.; Kang, B.C. Tomato Male Sterile 1035 Is Essential for Pollen Development and Meiosis in Anthers. J. Exp. Bot. 2014, 65, 6693–6709. [Google Scholar] [CrossRef] [Green Version]
- Atanassova, B.; Georgiev, H. Investigation of Tomato Male Sterile Lines in Relation to Hybrid Seed Production. Acta Hortic. 1986, 190, 553–557. [Google Scholar] [CrossRef]
- Atanassova, B. Functional Male Sterility (Ps-2) in Tomato (Lycopesicon esculentum Mill.) and Its Application in Breeding and Hybrid Seed Production. Euphytica 1999, 107, 13–21. [Google Scholar] [CrossRef]
- Phatak, S.C.; Jaworski, C.A. UGA 1-MS Male-Sterile Eggplant Germplasm. HortScience 1989, 24, 1050. [Google Scholar] [CrossRef]
- Toppino, L.; Kookier, M.; Lindner, M.; Dreni, L.; Rotino, G.L.; Kater, M.M. Reversible Male Sterility in Eggplant (Solanum melongena L.) by Artificial MicroRNA-Mediated Silencing of General Transcription Factor Genes. Plant Biotechnol. J. 2011, 9, 684–692. [Google Scholar] [CrossRef]
- Deshpande, A.A.; Pathak, C.S.; Singh, D.P. Types of Male Sterility in Chilli Pepper Capsicum Spp. Capsicum Newsl. 1983, 2, 104–105. [Google Scholar]
- Singh, P.; Cheema, D.S.; Dhaliwal, M.S.; Garg, N. Heterosis and Combining Ability for Earliness, Plant Growth, Yield and Fruit Attributes in Hot Pepper (Capsicum annuum L.) Involving Genetic and Cytoplasmic-Genetic Male Sterile Lines. Sci. Hortic. 2014, 168, 175–188. [Google Scholar] [CrossRef]
- Reddy, K.M.; Deshpande, A.A.; Sadashiva, A.T. Cytoplasmic Genetic Male Sterility in Chilli (Capsicum annuum L.). J. Genet. 2002, 62, 363–364. [Google Scholar]
- Liu, W.Y.; Gniffke, P.A. Stability of AVRDC‟s Cytoplasmic Male Sterile (CMS) Pepper Lines Grown under Low Temperatures. Capsicum Eggplant Newsl. 2004, 23, 85–88. [Google Scholar]
- Kim, D.H.; Kang, J.G.; Kim, B.D. Isolation and Characterization of the Cytoplasmic Male Sterility-Associated Orf456 Gene of Chili Pepper (Capsicum annuum L.). Plant Mol. Biol. 2007, 63, 519–532. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, V.; Singh, M.; Rai, S.; Kumar, S.; Rai, S.K.; Rai, M. Genetics and Distribution of Fertility Restoration Associated RAPD Markers in Inbreds of Pepper (Capsicum annuum L.). Sci. Hortic. 2007, 111, 197–202. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, S.P.; Pandey, T.; Singh, R.R.; Sawant, S.V. A Novel Male Sterility-Fertility Restoration System in Plants for Hybrid Seed Production. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Tembhurne, B.V.; Rao, S.K. Heterosis and Combining Ability in CMS Based Hybrid Chilli (Capsicum annuum L.). J. Agric. Sci. 2012, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Boaxi, Z.; Sanwen, H.; Guimei, Y.; Jiazhen, G. Two RAPD Markers Linked to a Major Fertility Restorer Gene in Pepper. Euphytica 2000, 113, 155–169. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Rai, S.K.; Kumar, V.; Kumar, R. Considerable Amount of Natural Cross Pollination on Male Sterile Lines of Chilli (Capsicum annuum L.). Capsicum Eggplant Newsl. 2002, 21, 48–51. [Google Scholar]
- Pitchaimuthu, M.; Dutta, O.P.; Swamy, K.R.M.; Anamika, A.; Kranti, P.; Abhay, A. Studies on Inheritance of Geneic Male Sterility ( GMS ) and Hybrid Seed Production in Okra [ Abelmoschus esculentus ( L.) Moench.]. J. Hortic. Sci. 2012, 7, 199–202. [Google Scholar]
- Lal, T.; Vashisht, V.K.; Dhillion, N.P.S. Punjab Anmol: A New Hybrid of Muskmelon (Cucumis melo L.). J. Res. Punjab Agric. Univ. 2007, 44, 83. [Google Scholar]
- McCreight, J.D. Linkage of Red Stem and Male Sterile-1 in Muskmelon. Cucurbit Genet. Coop Rep. 1983, 6, 48. [Google Scholar]
- Lecouviour, M.; Pitrat, M.; Risser, G. A Fifth Gene for Male Sterility in Cucumis melo. Cucurbit Genet Coop Rep. 1990, 13, 34–35. [Google Scholar]
- Zhang, X.P.; Rhodes, B.B.; Baird, W.V.; Skorupska, H.T.; Bridges, W.C. Development of Genic Male-Sterile Watermelon Lines with Delayed-Green Seedling Marker. HortSci. 1996, 31, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.B.; Bang, A.G.; Thompson, W.F. The Watermelon Mitochondrial URF-1 Gene: Evidence for a Complex Structure. Curr. Genet. 1986, 10, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Ogura, H. Studies on the New Male-Sterility in Japanese Radish, with Special Reference to the Utilization of This Sterility towards the Practical Raising of Hybrid Seeds. Mem. Fac. Agric.Kagoshima Univ. 1968, 6, 39–78. [Google Scholar]
- Brown, G.G.; Formanová, N.; Jin, H.; Wargachuk, R.; Dendy, C.; Patil, P.; Laforest, M.; Zhang, J.; Cheung, W.Y.; Landry, B.S. The Radish Rfo Restorer Gene of Ogura Cytoplasmic Male Sterility Encodes a Protein with Multiple Pentatricopeptide Repeats. Plant J. 2003, 35, 262–272. [Google Scholar] [CrossRef]
- Desloire, S.; Gherbi, H.; Laloui, W.; Marhadour, S.; Clouet, V.; Cattolico, L.; Falentin, C.; Giancola, S.; Renard, M.; Budar, F.; et al. Identification of the Fertility Restoration Locus, Rfo, in Radish, as a Member of the Pentatricopeptide-Repeat Protein Family. EMBO Rep. 2003, 4, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Koizuka, N.; Imai, R.; Fujimoto, H.; Hayakawa, T.; Kimura, Y.; Kohno-Murase, J.; Sakai, T.; Kawasaki, S.; Imamura, J. Genetic Characterization of a Pentatricopeptide Repeat Protein Gene, Orf687, That Restores Fertility in the Cytoplasmic Male-Sterile Kosena Radish. Plant J. 2003, 34, 407–415. [Google Scholar] [CrossRef]
- Bett, K.E.; Lydiate, D.J. Mapping and Genetic Characterization of Loci Controlling the Restoration of Male Fertility in Ogura CMS Radish. Mol. Breed. 2004, 13, 125–133. [Google Scholar] [CrossRef]
- Nahm, S.H.; Lee, H.J.; Lee, S.W.; Joo, G.Y.; Harn, C.H.; Yang, S.G.; Min, B.W. Development of a Molecular Marker Specific to a Novel CMS Line in Radish (Raphanus sativus L.). Theor. Appl. Genet. 2005, 111, 1191–1200. [Google Scholar] [CrossRef]
- Giancola, S.; Rao, Y.; Chaillou, S.; Hiard, S.; Martin-Canadell, A.; Pelletier, G.; Budar, F. Cytoplasmic Suppression of Ogura Cytoplasmic Male Sterility in European Natural Populations of Raphanus raphanistrum. Theor. Appl. Genet. 2007, 114, 1333–1343. [Google Scholar] [CrossRef]
- Yasumoto, K.; Matsumoto, Y.; Terachi, T.; Yamagishi, H. Restricted Distribution of Orf687 as the Pollen Fertility Restorer Gene for Ogura Male Sterility in Japanese Wild Radish. Breed. Sci. 2008, 58, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Yasumoto, K.; Terachi, T.; Yamagishi, H. A Novel Rf Gene Controlling Fertility Restoration of Ogura Male Sterility by RNA Processing of Orf138 Found in Japanese Wild Radish and Its STS Markers. Genome 2009, 52, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Ding, D.; Mei, S.; Wang, J. A Comparative Light and Electron Microscopic Analysis of Microspore and Tapetum Development in Fertile and Cytoplasmic Male Sterile Radish. Protoplasma 2010, 241, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.; Davis, A.R.; Kim, S.; Leskovar, D.I.; King, S.R. Flesh Color Inheritance and Gene Interactions among Canary Yellow, Pale Yellow, and Red Watermelon. J. Am. Soc. Hortic. Sci. 2010, 135, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Tsuda, M.; Yasumoto, K.; Yamagishi, H.; Terachi, T. A Complete Mitochondrial Genome Sequence of Ogura-Type Male-Sterile Cytoplasm and Its Comparative Analysis with That of Normal Cytoplasm in Radish (Raphanus sativus L.). BMC Genomics 2012, 13, 352. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Lee, Y.P.; Lee, J.; Choi, B.S.; Kim, S.; Yang, T.J. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Radish (Raphanus sativus L.) Containing DCGMS Cytoplasm. Theor. Appl. Genet. 2013, 126, 1763–1774. [Google Scholar] [CrossRef]
- Hawlader, M.S.H.; Mian, M.A.K.; Ali, M. Identification of Male Sterility Maintainer Lines for Ogura Radish (Raphanus sativus L.). Euphytica 1997, 96, 299–300. [Google Scholar]
- Sato, Y. PCR Amplification of CMS-Specific Mitochondrial Nucleotide Sequences to Identify Cytoplasmic Genotypes of Onion (Allium cepa L.). Theor. Appl. Genet. 1998, 96, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Holford, P.; Croft, J.H.; Newbury, H.J. Differences between, and Possible Origins of, the Cytoplasms Found in Fertile and Male-Sterile Onions (Allium cepa L.). Theor. Appl. Genet. 1991, 82, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. Diversity among Male-Sterility-Inducing and Male-Fertile Cytoplasms of Onion. Theor. Appl. Genet. 2000, 101, 778–782. [Google Scholar] [CrossRef]
- Havey, M.J.; Bark, O.H. Molecular Confirmation That Sterile Cytoplasm Has Been Introduced into Open-Pollinated Grano Onion Cultivars. J. Am. Soc. Hortic. Sci. 1994, 119, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Gökçe, A.F.; McCallum, J.; Sato, Y.; Havey, M.J. Molecular Tagging of the Ms Locus in Onion. J. Am. Soc. Hortic. Sci. 2002, 127, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Engelke, T.; Terefe, D.; Tatlioglu, T. A PCR-Based Marker System Monitoring CMS-(S), CMS-(T) and (N)-Cytoplasm in the Onion (Allium cepa L.). Theor. Appl. Genet. 2003, 107, 162–167. [Google Scholar] [CrossRef]
- Kim, S.; Lee, E.T.; Cho, D.Y.; Han, T.; Bang, H.; Patil, B.S.; Ahn, Y.K.; Yoon, M.K. Identification of a Novel Chimeric Gene, Orf725, and Its Use in Development of a Molecular Marker for Distinguishing among Three Cytoplasm Types in Onion (Allium cepa L.). Theor. Appl. Genet. 2009, 118, 433–441. [Google Scholar] [CrossRef]
- Bang, H.; Cho, D.Y.; Yoo, K.S.; Yoon, M.K.; Patil, B.S.; Kim, S. Development of Simple PCR-Based Markers Linked to the Ms Locus, a Restorer-of-Fertility Gene in Onion (Allium cepa L.). Euphytica 2011, 179, 439–449. [Google Scholar] [CrossRef]
- Bang, H.; Kim, S.; Park, S.O.; Yoo, K.S.; Patil, B.S. Development of a Codominant CAPS Marker Linked to the Ms Locus Controlling Fertility Restoration in Onion (Allium cepa L.). Sci. Hortic. 2013, 153, 42–49. [Google Scholar] [CrossRef]
- Khar, A.; Zimik, M.; Verma, P.; Singh, H.; Mangal, M.; Singh, M.C.; Gupta, A.J. Molecular Marker-Based Characterization of Cytoplasm and Restorer of Male Sterility (Ms) Locus in Commercially Grown Onions in India. Mol. Biol. Rep. 2022, 49, 5535–5545. [Google Scholar] [CrossRef] [PubMed]
- Etoh, T. Studies on the Sterility in Garlic, Allium sativum L. Mem. Fac. Agric. Kagoshima Univ. 1985, 21, 77–132. [Google Scholar]
- Kitagawa, J.; Posluszny, U.; Gerrath, J.M.; Wolyn, D.J. Developmental and Morphological Analyses of Homeotic Cytoplasmic Male Sterile and Fertile Carrot Flowers. Sex. Plant Reprod. 1994, 7, 41–50. [Google Scholar] [CrossRef]
- Shemesh Mayer, E.; Winiarczyk, K.; Błaszczyk, L.; Kosmala, A.; Rabinowitch, H.D.; Kamenetsky, R. Male Gametogenesis and Sterility in Garlic (Allium sativum L.): Barriers on the Way to Fertilization and Seed Production. Planta 2013, 237, 103–120. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, F.; Gao, S.; Wang, X.; Wei, A.; Chen, Z.; Liu, N.; Tong, X.; Fu, X.; Wen, C.; et al. Fine Mapping of a Male Sterility Gene Ms-3 in a Novel Cucumber (Cucumis sativus L.) Mutant. Theor. Appl. Genet. 2018, 131, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, S.A.; Chase, C.D. Fertility Restoration Is Associated with Loss of a Portion of the Mitochondrial Genome in Cytoplasmic Male-Sterile Common Bean. Plant Cell 1990, 2, 905–912. [Google Scholar] [CrossRef]
- Johns, C.; Lu, M.; Lyznik, A.; Mackenzie, S. A Mitochondrial DNA Sequence Is Associated with Abnormal Pollen Development in Cytoplasmic Male Sterile Bean Plants. Plant Cell 1992, 4, 435–449. [Google Scholar] [CrossRef] [Green Version]
- Janska, H.; Sarria, R.; Woloszynska, M.; Arrieta-Montiel, M.; Mackenzie, S.A. Stoichiometric Shifts in the Common Bean Mitochondrial Genome Leading to Male Sterility and Spontaneous Reversion to Fertility. Plant Cell 1998, 10, 1163–1180. [Google Scholar] [CrossRef] [Green Version]
- Ruffio-Chable, V.; Bellis, h.; Herve, Y. Male Sterile Broccoli (Brassica Oleracea Var. Italica) Induced by in Vitro Mutagenesis. Crucif. Newsl 1987, 12, 50–51. [Google Scholar]
- Ruffio-Chable, V.; Bellis, H.; Herve, Y. A Dominant Gene for Male Sterility in Cauliflower (Brassica oleracea Var. Botrytis): Phenotype Expression, Inheritance, and Use in F1 Hybrid Production. Euphytica 1993, 67, 9–17. [Google Scholar] [CrossRef]
- Chamola, R.; Balyan, H.S.; Bhat, S.R. Transfer of Cytoplasmic Male Sterility from Alloplasmic Brassica Juncea and B. Napus to Cauliflower (B. oleracea Var. Botrytis) through Interspecific Hybridization and Embryo Culture. Indian J. Genet. Plant Breed. 2013, 73, 203–210. [Google Scholar] [CrossRef]
- Kalia, P. Exploring Cytoplasmic Male Sterility for F1 Hybrid Development in Indian Cauliflower. Crucif. Newsl. 2008, 27, 75–76. [Google Scholar]
- Kinoshita, T.; Nagao, S. Use of Male Sterility in Triploid Sugar Beets. Proc. XII. Int. Cong. Genet 1968, 232–233. [Google Scholar]
- Tatlioglu, T. Cytoplasmic Male Sterility in Chives (Allium schoenoprasum L.). Z Pflanzenzüchtung 1982, 89, 251–262. [Google Scholar]
- Swarup, V.; Gill, H.S. The Use of Marker Gene in Hybrid Seed Production in Cabbage. Curr. Sci. 1964, 33, 315–316. [Google Scholar]
- Parkash, C.; Kumar, S.; Singh, R.; Kumar, A.; Kumar, S.; Dey, S.S.; Bhatia, R.; Kumar, R. ‘Ogura’-Based ‘CMS’ Lines with Different Nuclear Backgrounds of Cabbage Revealed Substantial Diversity at Morphological and Molecular Levels. 3 Biotech 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, M.S.; Cheema, D.S. Development of Male Sterile Lines of Tomato and Assessment of Their Utility in Hybrid Development. Indian J. Genet. Plant Breed. 2008, 68, 44–46. [Google Scholar]
- Dhaliwal, M.; Jindal, S.K.; Cheema, D.S. CH-27: A Multiple Disease Resistant Chilli Hybrid. Agric. Res. J. 2015, 52, 127. [Google Scholar] [CrossRef]
- Hundal, J.S.; Khurana, D.S. A New Hybrid of Chilli ‘CH-3’-Suitable for Processing. J. Res. Punjab Agric. Univ. 2001, 39, 326. [Google Scholar]
- Badiger, M.; Pujer, P.; Rao, G.; Jatav, P.K. Heterosis and Potence Ratio of Male Sterility and Fertility Line Based Hybrids of Okra [Abelmoschus esculentus (L.) Moench ] for Yield and Its Components. Int. J. Des. Nat. 2017, 8, 186–192. [Google Scholar]
- Pitchaimuthu, M. Breeding for Yellow Vein Mosaic Virus Resistance in Okra (Abelomoschus esculentus (L.) Moench]. InCrop Improvement in Okra and Tuber Crops; IARI: Delhi, India, 2020. [Google Scholar]
- Nandapuri, K.S.; Singh, S.; Lal, T. ‘Punjab Hybrid’ a Variety of Muskmelon. Prog. Farming 1982, 18, 3–4. [Google Scholar]
- Kumar, P.R.; Sharma, S.R.; Shekhawat, A.K.S.; Rana, S.S.D.A. Evaluation of ‘ Ogura ’ Based Cytoplasmic Male Sterile Lines for Use as Parental Lines in Hybrid Seed Production of Cauliflower Evaluation of ‘ Ogura ’ Based Cytoplasmic Male Sterile Lines for Use as Parental Lines in Hybrid Seed Production of Cauliflower. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 484–488. [Google Scholar]
- Singh, P.K.; Pandey, V.; Singh, M.; Sharma, S.P. Genetic Improvement of Cauliflower. Veg. Sci. 2013, 40, 121–136. [Google Scholar]
- Dhall, R.K.; Cheema, D.S. Use of Male Sterility in Hybrid Seed Production of Chilli (Capsicum annuum L.): A Review. J. Res. Punjab Agric. Univ. 2010, 47, 46–52. [Google Scholar]
- Gowda, R.V.; Pathak, C.S.; Singh, D.P.; Deshpande, D.A. Onion Hybrids Arka Kirthiman and Arka Lalima. Indian Hort. 1998, 43, 20. [Google Scholar]
- Gupta, A.J.; Mahajan, V.; Singh, M. Onion Hybrids for More Yield. Indian Farming 2017, 24–27. [Google Scholar]
- Prasanth, K.; Kumary, I.S. Utilization of Male Sterility for Hybrid Seed Production in Vegetables. Curr. Hortic. 2014, 2, 3–14. [Google Scholar]
- Kumar, S.; Kumar, R.; Kumar, D.; Gautam, N.; Dogra, R.K.; Mehta, D.K.; Sharma, H.D.; Kansal, S. Parthenocarpic Gynoecious Parental Lines of Cucumber Introduced from Netherlands for Developing High-Yielding, Quality Hybrids. J. Crop Improv. 2016, 30, 352–369. [Google Scholar] [CrossRef]
- Mishra, S.; Behera, T.K.; Munshi, A.D.; Bharadwaj, C.; Rao, A.R. Inheritance of Gynoecism and Genetics of Yield and Yield Contributing Traits through Generation Mean Analysis in Bitter Gourd. Indian J. Hortic. 2015, 72, 218–222. [Google Scholar] [CrossRef]
- Kalia, P. Advances in Improvement of Cauliflower. Recent Adv. Improv. Veg. Crop. 2015, 10. [Google Scholar]
- Singh, P.; Cheema, D.S.; Dhaliwal, M.S.; Garg, N.; Jindal, S.K.; Chawla, N. Combining Ability and Heterosis for Quality and Processing Traits in Chili Pepper (Capsicum annuum L.) Involving Male Sterile Lines. J. Crop Improv. 2015, 29, 379–404. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, B.D. Development of SCAR Markers for Early Identification of Cytoplasmic Male Sterility Genotype in Chili Pepper (Capsicum annuum L.). Mol. Cells 2005, 20, 416–422. [Google Scholar]
- Lee, Y.P.; Kim, S.; Lim, H.; Ahn, Y.; Sung, S.K. Identification of Mitochondrial Genome Rearrangements Unique to Novel Cytoplasmic Male Sterility in Radish (Raphanus sativus L.). Theor. Appl. Genet. 2009, 118, 719–728. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Huo, Y.M.; Miao, J.; Liu, B.J.; Kong, S.P.; Gao, L.M.; Liu, C.; Wang, Z.B.; Tahara, Y.; Kitano, H.; et al. Identification of Two SCAR Markers Co-Segregated with the Dominant Ms and Recessive Ms Alleles in Onion (Allium cepa L.). Euphytica 2013, 190, 267–277. [Google Scholar] [CrossRef]
- Havey, M.J. Single Nucleotide Polymorphisms in Linkage Disequilibrium with the Male-Fertility Restoration (Ms) Locus in Open-Pollinated and Inbred Populations of Onion. J. Am. Soc. Hortic. Sci. 2013, 138, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, C.W.; Park, M.; Choi, D. Identification of Candidate Genes Associated with Fertility Restoration of Cytoplasmic Male-Sterility in Onion (Allium cepa L.) Using a Combination of Bulked Segregant Analysis and RNA-Seq. Theor. Appl. Genet. 2015, 128, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.M.; Liu, B.J.; Yang, Y.Y.; Miao, J.; Gao, L.M.; Kong, S.P.; Wang, Z.B.; Kitano, H.; Wu, X. AcSKP1, a Multiplex PCR-Based Co-Dominant Marker in Complete Linkage Disequilibrium with the Male-Fertility Restoration (Ms) Locus, and Its Application in Open-Pollinated Populations of Onion. Euphytica 2015, 204, 711–722. [Google Scholar] [CrossRef]
- Kim, S. A Codominant Molecular Marker in Linkage Disequilibrium with a Restorer-of-Fertility Gene ( Ms ) and Its Application in Reevaluation of Inheritance of Fertility Restoration in Onions. Mol. Breed. 2014, 34, 769–778. [Google Scholar] [CrossRef]
- Von Kohn, C.; Kiełkowska, A.; Havey, M.J.; Bonen, L. Sequencing and Annotation of the Chloroplast DNAs and Identification of Polymorphisms Distinguishing Normal Male-Fertile and Male-Sterile Cytoplasms of Onion. Genome 2013, 56, 737–742. [Google Scholar] [CrossRef]
- Khar, A.; Saini, N. Limitations of PCR-Based Molecular Markers to Identify Male-Sterile and Maintainer Plants from Indian Onion (Allium cepa L.) Populations. Plant Breed. 2016, 135, 519–524. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Santos, C.A.F. Partial Success of Marker-Assisted Selection of ‘A’ and ‘B’ Onion Lines in Brazilian Germplasm. Sci. Hortic. 2018, 242, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Manjunathagowda, D.C.; Anjanappa, M. Identification and Development of Male Sterile and Their Maintainer Lines in Short-Day Onion (Allium cepa L.) Genotypes. Genet. Resour. Crop Evol. 2020, 67, 357–365. [Google Scholar] [CrossRef]
- Khaber, M.S.; Aboohanah, M.A. Response of Bean Plant Phaseolus Vulgaris l. To Spray with Hornwort Extract and Nano Potassium on Growth and Yield Parameters. Plant Arch. 2020, 20, 946–950. [Google Scholar]
- Tripathy, B.; Tripathy, P.; Sahu, P.; Rout, S. Biofortification of Vegetable Crops—A New Tool to Alleviate Micronutrient Malnutrition. Agric. Rural. Dev. Spat. Issues Chall. Approaches 2020, 14, 83–97. [Google Scholar]
- Gregorio, G.B.; Senadhira, D.; Htut, H.; Graham, R.D. Breeding for Trace Mineral Density in Rice. Food Nutr. Bull. 2000, 21, 382–386. [Google Scholar] [CrossRef]
- Jena, A.K. Biofortification of Vegetables. Int. J. Pure Appl. Biosci. 2018, 6, 205–212. [Google Scholar] [CrossRef]
- Hakala, M.; Lapveteläinen, A.; Huopalahti, R.; Kallio, H.; Tahvonen, R. Effects of Varieties and Cultivation Conditions on the Composition of Strawberries. J. Food Compos. Anal. 2003, 16, 67–80. [Google Scholar] [CrossRef]
- Tayeh, N.; Aluome, C.; Falque, M.; Jacquin, F.; Klein, A.; Chauveau, A.; Bérard, A.; Houtin, H.; Rond, C.; Kreplak, J.; et al. Development of Two Major Resources for Pea Genomics: The GenoPea 13.2K SNP Array and a High-Density, High-Resolution Consensus Genetic Map. Plant J. 2015, 84, 1257–1273. [Google Scholar] [CrossRef] [Green Version]
- Fridman, E.; Carrari, F.; Liu, Y.; Fernie, A.; Zamir, D. Zooming in on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science 2004, 305, 1786–1789. [Google Scholar] [CrossRef]
- Ronen, G.; Carmel-Goren, L.; Zamir, D.; Hirschberg, J. An Alternative Pathway to β-Carotene Formation in Plant Chromoplasts Discovered by Map-Based Cloning of Beta and Old-Gold Color Mutations in Tomato. Proc. Natl. Acad. Sci. USA 2000, 97, 11102–11107. [Google Scholar] [CrossRef] [Green Version]
- Ronen, G.; Cohen, M.; Zamir, D.; Hirschberg, J. Regulation of Carotenoid Biosynthesis during Tomato Fruit Development: Expression of the Gene for Lycopene Epsilon-Cyclase Is down-Regulated during Ripening and Is Elevated in the Mutant Delta. Plant J. 1999, 17, 341–351. [Google Scholar] [CrossRef]
- Fray, R.G.; Grierson, D. Molecular Genetics of Tomato Fruit Ripening. Trends Genet. 1993, 9, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, T.; Ronen, G.; Zamir, D.; Hirschberg, J. Cloning of Tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of β-Carotene and Xanthophylls in Plants. Plant Cell 2002, 14, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustilli, A.C.; Fenzi, F.; Ciliento, R.; Alfano, F.; Bowler, C. Phenotype of the Tomato High Pigment-2 Mutant Is Caused by a Mutation in the Tomato Homolog of DEETIOLATED1. Plant Cell 1999, 11, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, I.; Frankel, P.; Gilboa, N.; Tanny, S.; Lalazar, A. The Tomato Dark Green Mutation Is a Novel Allele of the Tomato Homolog of the DEETIOLATED1 Gene. Theor. Appl. Genet. 2003, 106, 454–460. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Mackinney, G. Carotenoids of the Apricot Tomato and Its Hybrids With Yellow and Tangerine. Genetics 1955, 40, 715–720. [Google Scholar] [CrossRef]
- Giorgiev, C. Anthocyanin Fruit Tomato. Rep Tomato. Genet Coop 1972, 22, 10. [Google Scholar]
- Jones, C.M.; Mes, P.; Myers, J.R. Characterization and Inheritance of the Anthocyanin Fruit (Aft) Tomato. J. Hered. 2003, 94, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Clayberg, C.D. Preliminary Mapping of Three Chromosome 7 Genes. Rep. Tomato Genet. Coop 1972, 22, 4. [Google Scholar]
- Rick, C.M.; Cisneros, P.; Chetelat, R.T.; DeVerna, J.W. Abg—A Gene on Chromosome 10 for Purple Fruit Derived from S. lycopersicoides. Rep. Tomato Genet. Coop. 1994, 44, 29–30. [Google Scholar]
- Lefebvre, V.; Kuntz, M.; Camara, B.; Palloix, A. The Capsanthin-Capsorubin Synthase Gene: A Candidate Gene for the y Locus Controlling the Red Fruit Colour in Pepper. Plant Mol. Biol. 1998, 36, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Kang, B.C.; Nahm, S.H.; Kim, S.; Ha, K.S.; Lee, M.H.; Kim, B.D. A Candidate Gene Approach Identified Phytoene Synthase as the Locus for Mature Fruit Color in Red Pepper (Capsicum Spp.). Theor. Appl. Genet. 2001, 102, 524–530. [Google Scholar] [CrossRef]
- Borovsky, Y.; Oren-Shamir, M.; Ovadia, R.; De Jong, W.; Paran, I. The A Locus That Controls Anthocyanin Accumulation in Pepper Encodes a MYB Transcription Factor Homologous to Anthocyanin2 of Petunia. Theor. Appl. Genet. 2004, 109, 23–29. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Wolters-Arts, M.; Feron, R.; Mariani, C.; Vriezen, W.H. The Solanum Lycopersicum Auxin Response Factor 7 (SlARF7) Regulates Auxin Signaling during Tomato Fruit Set and Development. Plant J. 2009, 57, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yoo, K.S.; Pike, L.M. Development of a Co-Dominant, PCR-Based Marker for Allelic Selection of the Pink Trait in Onions (Allium cepa), Based on the Insertion Mutation in the Promoter of the Anthocyanidin Synthase Gene. Theor. Appl. Genet. 2005, 110, 628–633. [Google Scholar] [CrossRef]
- Li, L.; Garvin, D.F. Molecular Mapping of Or, a Gene Inducing Beta-Carotene Accumulation in Cauliflower (Brassica oleracea L. Var. Botrytis). Genome 2003, 46, 588–594. [Google Scholar] [CrossRef]
- Chiu, L.W.; Li, L. Characterization of the Regulatory Network of BoMYB2 in Controlling Anthocyanin Biosynthesis in Purple Cauliflower. Planta 2012, 236, 1153–1164. [Google Scholar] [CrossRef]
- Liu, X.-P.; Gao, B.-Z.; Han, F.-Q.; Fang, Z.-Y.; Yang, L.-M.; Zhuang, M.; Lv, H.-H.; Liu, Y.-M.; Li, Z.-S.; Cai, C.-C.; et al. Genetics and Fine Mapping of a Purple Leaf Gene, BoPr, in Ornamental Kale (Brassica oOleracea L. Var. Acephala). BMC Genomics 2017, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.A.F.; Simon, P.W. Merging Carrot Linkage Groups Based on Conserved Dominant AFLP Markers in F2 Populations. J. Am. Soc. Hortic. Sci. 2004, 129, 211–217. [Google Scholar] [CrossRef]
- Gutierrez, N.; Avila, C.M.; Moreno, M.T.; Torres, A.M. Development of SCAR Markers Linked to Zt-2, One of the Genes Controlling Absence of Tannins in Faba Bean. Aust. J. Agric. Res. 2008, 59, 62–68. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W. Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food Nutr. Bull. 2009, 32, S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding Crops for Better Nutrition. Crop Sci. 2007, 47, S88. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Beeching, J.R.; Cahoon, E.B.; Egesi, C.; Fauquet, C.; Fellman, J.; Fregene, M.; Gruissem, W.; Mallowa, S.; Manary, M.; et al. The Biocassava plus Program: Biofortification of Cassava for Sub-Saharan Africa. Annu. Rev. Plant Biol. 2011, 62, 251–272. [Google Scholar] [CrossRef]
- Gilchrist, E.; Haughn, G. Reverse Genetics Techniques: Engineering Loss and Gain of Gene Function in Plants. Brief. Funct. Genomics 2010, 9, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Khosa, J.S.; McCallum, J.; Dhatt, A.S.; Macknight, R.C. Enhancing Onion Breeding Using Molecular Tools. Plant Breed. 2016, 135, 9–20. [Google Scholar] [CrossRef]
Crop | Lines | Remarks | Reference |
---|---|---|---|
Brassica oleracea var. botrytis L. | Aghani, Pusi, and Hisar-1 | Complete SI | [139] |
74-6C | High and stable SI | [145] | |
Early Kunwari (September maturity) | High and stable SI | [145] | |
Brassica oleracea var. italica | Palam Samriddhi, Calabrese Sutton, BR-76018, DPGB-5, EC-10356, Broccoli Green Head, BI-80167, BI-80336, and Punjab Broccoli 1 | SI | [153] |
Brassica rapa | Kal-22, Kal-3, and Ch1-504 | High level of SI | [154] |
Crop | Wild Relatives/Landraces/Varieties/Accessions | Nutrient |
---|---|---|
Tomato | S. pimpinellifolium and Caro Red (Rugers×S. hirsutum) | Vitamin A |
Caro Rich, F-7045, VRT-35, CGT, and VRT-5 | Beta carotene | |
High-pigment mutants (hp), Crimpson (og), Pusa Rohini, | Lycopene | |
S. pennellii IL6-2, IL7-2, and | Phenolics | |
S. pennellii IL12-4 | Ascorbic acid | |
S. chilense and atroviolacium (atv) from S. cheesmaniae | Anthocyanin | |
Chili | C. annuum var. IC: 119262(CA2), Bayadaggi (kaddi), and | Ascorbic acid |
Paprika | KTPL-19 | Capsanthin |
Cucumber | Xishuangbanna gourd (C. sativus var. Xishuangbananesis) | Beta carotene |
Muskmelon | Honeydew 32 and | Ascorbic acid |
Canary yellow | Flavons (Naringenin chalcone) | |
Spine gourd | Momordica dioca | Protein |
M. chochinchinenesis | Lycopene | |
Bitter gourd | DRAR-1 and DVBTH-5 | Beta carotene |
DRAR-1 and DVBTG-5 | Ascorbic acid | |
Sweet potato | Resisto, Zambezi, and Chiwoko | Beta carotene |
Cassava | UMUCASS 44, UMUCASS 45, and UMUCASS 46 | Vitamin A |
Broccoli | Brassica villosa | Glucosinolates |
Crop | Traits | Gene/QTL | References |
---|---|---|---|
Tomato | Vitamin C | Vtc 9.1 (higher vitamin C) | [277] |
Fruit color/carotenoids | B (Beta) (yellow fruits) | [278] | |
ogc (old gold-crimson) (higher lycopene content) | |||
Del (Delta) (orange fruits) | [279] | ||
r (yellow flesh) (yellow fruits) | [280] | ||
t (tangerine) (orange fruits) | [281] | ||
hp-2 (high pigment) (higher lycopene content) | [282] | ||
Dg (darkgreen) (higher lycopene content y-uncolored epidermis) | [283] | ||
Apricot (at) | [284] | ||
Anthocyanins | Anthocyanin fruit (Aft) (anthocyanin in the skin and outer pericarp) | [285] | |
[286] | |||
Atroviolacium (atv) | [287] | ||
Aubergine (Abg) | [288] | ||
Chili | Fruit color | Y (yellow fruit color) | [289] |
C2 (orange fruit color) | [290] | ||
A (purple fruit color) | [291] | ||
Brinjal | Anthocyanin | fap10.1 | [292] |
Onion | Bulb color | P (pink color) | [293] |
Cauliflower | Curd color | β-carotene accumulation/Or gene | [294] |
Pr (high anthocyanin content) | [295] | ||
Kale | Leaf color | BoPr (purple leaf) | [296] |
Carrot | Carotenoids | PSY | [297] |
Watermelon | Lycopene | LCYB | [215] |
Broad bean | Tannins | zt-1 and zt-2 (reduced tannins) | [298] |
Crop | Variety | Description | Chief Nutrient Element | Nutrient Content | Institute Developed | |
---|---|---|---|---|---|---|
Carrot | Pusa Nayanjyoti | First orange-colored temperate carrot hybrid | β-carotene | 1.89 mg/100 g | 7.55 mg/100 g | IARI, New Delhi |
Pusa Meghali | Selection from Local red × Nantes Half Long cross | β-carotene | 1.89 mg/100 g | 11571 IU/100 g | IARI, New Delhi | |
Sweet potato | Sree Kanaka | Tubers with dark orange flesh color Inter-varietal hybrid | β-carotene | 2.0–3.0 mg per 100 g | 9–10 mg/100 g FW | CTCRI (2017) |
Tomato | Punjab Red Cherry | Following pedigree selection, interspecific hybridization between Solanum esculentum and Solanum pimpinellifolium | Lycopene | 2.57 mg per 100 g of fresh weight | 4.9 mg per 100 g of fresh weight | PAU (2015) |
Potato | Kufri Neelkanth | Developed through hybridization and selection method | Anthocyanin | Negligible | >100 µg/100 g fresh wt | CPRI, Shimla |
Cassava | Sree Visakham | A hybrid between a local cultivar and a Madagascar variety | Carotene | - | 466 IU 100 per gm | CTCRI, Thiruvanantpuram |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, H.; Sekhon, B.S.; Kumar, P.; Dhall, R.K.; Devi, R.; Dhillon, T.S.; Sharma, S.; Khar, A.; Yadav, R.K.; Tomar, B.S.; et al. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. Plants 2023, 12, 2294. https://doi.org/10.3390/plants12122294
Singh H, Sekhon BS, Kumar P, Dhall RK, Devi R, Dhillon TS, Sharma S, Khar A, Yadav RK, Tomar BS, et al. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. Plants. 2023; 12(12):2294. https://doi.org/10.3390/plants12122294
Chicago/Turabian StyleSingh, Hira, Bhallan Singh Sekhon, Pradeep Kumar, Rajinder Kumar Dhall, Ruma Devi, Tarsem Singh Dhillon, Suman Sharma, Anil Khar, Ramesh Kumar Yadav, Bhoopal Singh Tomar, and et al. 2023. "Genetic Mechanisms for Hybrid Breeding in Vegetable Crops" Plants 12, no. 12: 2294. https://doi.org/10.3390/plants12122294
APA StyleSingh, H., Sekhon, B. S., Kumar, P., Dhall, R. K., Devi, R., Dhillon, T. S., Sharma, S., Khar, A., Yadav, R. K., Tomar, B. S., Ntanasi, T., Sabatino, L., & Ntatsi, G. (2023). Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. Plants, 12(12), 2294. https://doi.org/10.3390/plants12122294