Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage
Abstract
:1. Introduction
2. Results
2.1. Chromosomal Composition of K17-1065-4
2.2. Response to Stripe Rust
2.3. Agronomic Trait Evaluation
2.4. Development and Validation of Specific Molecular Markers
2.5. Utility of Specific Markers for Breeding
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Genomic In Situ Hybridization (GISH) and Fluorescence In Situ Hybridization (FISH) Analyses
4.3. FISH Chromosome Painting Analysis
4.4. Stripe Rust Resistance Evaluation
4.5. Agronomic Trait Evaluation
4.6. Development of Simple Sequence Repeat (SSR) Markers
4.7. Validation of Specific Molecular Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.Q.; Huang, Z.F.; Dai, Y.; Qin, S.W.; Gao, Y.Y.; Zhang, L.L.; Gao, Y.; Chen, J.M. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS ONE 2013, 8, e65122. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Knott, D.R.; Gill, B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop. Sci. 1994, 34, 400–404. [Google Scholar] [CrossRef]
- Li, H.J.; Conner, R.L.; Chen, Q.; Li, H.Y.; Laroche, A.; Graf, R.J.; Kuzyk, A.D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome 2004, 47, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, J.; Chen, K.C. Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Can. J. Genet. Cytol. 1984, 26, 128–132. [Google Scholar] [CrossRef]
- Jauhar, P.P. Durum wheat genetic stocks involving chromosome 1E of diploid wheatgrass: Resistance to Fusarium head blight. Nucl. 2014, 57, 19–23. [Google Scholar] [CrossRef]
- Liu, H.; Dai, Y.; Chi, D.; Huang, S.; Li, H.; Duan, Y.; Cao, W.; Gao, Y.; Fedak, G.; Chen, J. Production and molecular cytogenetic characterization of a durum wheat-Thinopyrum elongatum 7E disomic addition line with resistance to Fusarium head blight. Cytogenet. Genome Res. 2017, 153, 165–173. [Google Scholar] [CrossRef]
- Hu, L.J.; Li, G.R.; Zeng, Z.X.; Chang, Z.J.; Liu, C.; Yang, Z.J. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. J. Appl. Genet. 2011, 52, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Chen, Q.; Conner, R.L.; Guo, B.H.; Zhang, Y.M.; Graf, R.J.; Laroche, A.; Jia, X.; Liu, G.S.; Chu, C. Molecular characterization of a wheat Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome 2003, 46, 906–913. [Google Scholar] [CrossRef]
- Mo, Q.; Wang, C.Y.; Chen, C.H.; Wang, Y.J.; Zhang, H.; Liu, X.L.; Ji, W.Q. Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance. Cereal Res. Commun. 2017, 45, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wang, Y.Z.; Chen, C.H.; Wang, C.Y.; Zhang, A.; Peng, N.N.; Wang, Y.J.; Zhang, H.; Liu, X.L.; Ji, W.Q. Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance. Genome 2017, 60, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.T.; Zheng, Q.; Hu, P.; Li, H.W.; Luo, Q.L.; Li, B.; Li, Z.S. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat-Thinopyrum intermedium translocation line WTT11. aBIOTECH 2021, 2, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.T.; Tong, C.Y.; Li, H.W.; Li, B.; Li, Z.S.; Zheng, Q. Cytogenetic identification and molecular marker development of a novel wheat-Thinopyrum ponticum translocation line with powdery mildew resistance. Theor. Appl. Genet. 2022, 135, 2041–2057. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Xia, G.M.; Quan, T.Y.; Xiang, F.N.; Yin, J.; Chen, H.M. Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci. 2004, 167, 773–779. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Ruggeri, R.; Virili, M.E.; Rossini, F.; Ceoloni, C. Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crop. Res. 2016, 186, 86–98. [Google Scholar] [CrossRef]
- Liu, H.J. Development of Molecular Markers Specific for Tetraploid Thinopyrum elongatum and Their Ultilization in Breeding. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2022. [Google Scholar]
- Li, D.Y.; Zhang, J.W.; Liu, H.J.; Tan, B.W.; Zhu, W.; Xu, L.L.; Wang, Y.; Zeng, J.; Fan, X.; Sha, L.N.; et al. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E (1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genom. 2019, 20, 963. [Google Scholar] [CrossRef]
- Han, F.P.; Li, J.L. Morphology and cytogenetics of intergeneric hybrids of crossing Triticum durum and T. timopheevi with tetraploid Elytrigia elongatum. J. Genet. Genom. 1993, 20, 44–49. [Google Scholar]
- Guo, X.; Shi, Q.H.; Wang, J.; Hou, Y.L.; Wang, Y.H.; Han, F.P. Characterization and genome changes of new amphiploids from wheat wide hybridization. J. Genet. Genom. 2015, 42, 459–461. [Google Scholar] [CrossRef]
- Beddow, J.M.; Pardey, P.G.; Chai, Y.; Hurley, T.M.; Kriticos, D.J.; Braun, H.J.; Park, R.F.; Cuddy, W.S.; Yonow, T. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 2015, 1, 15132. [Google Scholar] [CrossRef]
- Mu, J.M.; Huang, S.; Liu, S.J.; Zeng, Q.D.; Dai, M.F.; Wang, Q.L.; Wu, J.H.; Yu, S.Z.; Kang, Z.S.; Han, D.J. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theor. Appl. Genet. 2019, 132, 443–455. [Google Scholar] [CrossRef]
- Chen, X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant. Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Yuan, F.P.; Zeng, Q.D.; Wu, J.H.; Wang, Q.L.; Yang, Z.J.; Liang, B.P.; Kang, Z.S.; Chen, X.H.; Han, D.J. QTL mapping and validation of adult plant resistance to stripe rust in Chinese wheat landrace Humai 15. Front. Plant Sci. 2018, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, V.; Chawla, H.S.; Wiebe, K.; Ens, J.; Fatiukha, A.; Govta, L.; Fahima, T.; Pozniak, C.J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun. Biol. 2022, 5, 826. [Google Scholar] [CrossRef]
- Li, J.B.; Dundas, I.; Dong, C.M.; Li, G.R.; Trethowan, R.; Yang, Z.J.; Hoxha, S.; Zhang, P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 2020, 133, 1095–1107. [Google Scholar] [CrossRef]
- Liu, R.; Lu, J.; Zhou, M.; Zheng, S.G.; Liu, Z.H.; Zhang, C.H.; Du, M.; Wang, M.X.; Li, Y.F.; Wu, Y.; et al. Developing stripe rust resistant wheat Triticum aestivum L., lines with gene pyramiding strategy and marker-assisted selection. Genet. Resour. Crop. Evol. 2020, 67, 381–391. [Google Scholar] [CrossRef]
- Chhuneja, P.; Kaur, S.; Garg, T.; Ghai, M.; Kaur, S.; Prashar, M.; Bains, N.S.; Goel, R.K.; Keller, B.; Dhaliwal, H.S.; et al. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor. Appl. Genet. 2008, 116, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Liu, L.; Wang, M.N.; Ruff, T.; See, D.R.; Hu, X.P.; Chen, X.M. Characterization and Molecular Mapping of a Gene Conferring High-temperature Adult-plant Resistance to Stripe Rust Originally from Aegilops ventricosa. Plant Dis. 2023, 107, 431–442. [Google Scholar] [CrossRef]
- Zhang, M.H.; Liu, X.; Peng, T.; Wang, D.H.; Liang, D.Y.; Li, H.Y.; Hao, M.; Ning, S.Z.; Yuan, Z.W.; Jiang, B.; et al. Identification of a recessive gene YrZ15-1370 conferring adult plant resistance to stripe rust in wheat-Triticum boeoticum introgression line. Theor. Appl. Genet. 2021, 134, 2891–2900. [Google Scholar] [CrossRef]
- Fu, D.; Uauy, C.; Distelfeld, A.; Blechl, A.; Epstein, L.; Chen, X.M.; Sela, H.; Fahima, T.; Dubcovsky, J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 2009, 323, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.C.; Zhang, L.Q.; Hao, M.; Ning, S.Z.; Yuan, Z.W.; Dai, S.F.; Huang, L.; Wu, B.H.; Yan, Z.H.; Lan, X.J.; et al. Wheat breeding in the hometown of Chinese Spring. Crop. J. 2018, 6, 82–90. [Google Scholar] [CrossRef]
- Han, D.J.; Wang, Q.L.; Zhang, L.; Wei, G.R.; Zeng, Q.D.; Zhao, J.; Wang, X.J.; Huang, L.L.; Kang, Z.S. Evaluation of resistance of current wheat cultivars to stripe rust in northwest China; north China and the middle and lower reaches of Changjiang river epidemic area. Sci. Agric. Sin. 2010, 43, 2889–2896. [Google Scholar]
- Bai, B.; Du, J.Y.; Lu, Q.L.; He, C.Y.; Zhang, L.J.; Zhou, G.; Xia, X.C.; He, Z.H.; Wang, C.S. Effective resistance to wheat stripe rust in a region with high disease pressure. Plant Dis. 2014, 98, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, R.; Mu, J.M.; Han, D.J.; Kang, Z.S. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. Crop J. 2018, 6, 321–329. [Google Scholar] [CrossRef]
- Li, D.Y.; Wu, Y.L.; Wang, Y.; Zeng, J.; Xu, L.L.; Fan, X.; Sha, L.N.; Zhang, H.Q.; Zhou, Y.H.; Kang, H.Y. Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives. Mol. Cytogenet. 2018, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, B.R.; Zhang, H.; Yang, Y.L.; Zhang, J.W.; Zhu, W.; Xu, L.L.; Wang, Y.; Zeng, J.; Fan, X.; Sha, L.N.; et al. Development and Identification of a Novel Wheat-Thinopyrum scirpeum 4E (4D) Chromosomal Substitution Line with Stripe Rust and Powdery Mildew Resistance. Plant Dis. 2022, 106, 975–983. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, C.L.; He, Z.M.; Wang, Y.; Xu, L.L.; Chen, G.D.; Zhu, W.; Zhou, Y.H.; Kang, H.Y. Disomic Substitution of 3D Chromosome with Its Homoeologue 3E in Tetraploid Thinopyrum elongatum Enhances Wheat Seedlings Tolerance to Salt Stress. Int. J. Mol. Sci. 2023, 24, 1609. [Google Scholar] [CrossRef]
- Li, D.Y.; Li, T.H.; Wu, Y.L.; Zhang, X.H.; Zhu, W.; Wang, Y.; Zeng, J.; Xu, L.L.; Fan, X.; Sha, L.N.; et al. FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front. Plant Sci. 2018, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.X.; Yang, Z.J.; Fu, S.L. Oligonucleotides replacing the roles of repetitive sequences pAs1; pSc119. 2; pTa-535; pTa71; CCS1; and pAWRC. 1 for FISH analysis. J. Appl. Genet. 2014, 55, 313–318. [Google Scholar] [CrossRef]
- Ma, J.X.; Zhou, R.X.; Dong, Y.C.; Jia, J.Z. Chromosomal location of the gene resistance to wheat stripe rust from Lophopyrum elongatum. Chin. Sci. Bull. 1999, 44, 65–69. [Google Scholar] [CrossRef]
- Hou, L.Y.; Jia, J.Q.; Zhang, X.J.; Li, X.; Yang, Z.J.; Ma, J.; Guo, H.J.; Zhan, H.X.; Qiao, L.Y.; Chang, Z.J. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis. 2016, 100, 1717–1724. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Duan, Y.; Liu, H.; Chi, D.; Cao, W.G.; Xue, A.; Gao, Y.; Fedak, G.; Chen, J.M. Molecular cytogenetic characterization of two Triticum-Secale-Thinopyrum trigeneric hybrids exhibiting superior resistance to Fusarium head blight; leaf rust; and stem rust race Ug99. Front. Plant Sci. 2017, 8, 797. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Wang, C.Y.; Wang, Y.Z.; Wang, Y.J.; Chen, C.H.; Ji, W.Q. Molecular cytogenetic identification of two wheat-Thinopyrum ponticum substitution lines conferring stripe rust resistance. Mol. Breed. 2019, 39, 143. [Google Scholar] [CrossRef]
- Yang, G.T.; Boshoff, W.H.P.; Li, H.W.; Pretorius, Z.A.; Luo, Q.L.; Li, B.; Li, Z.S.; Zheng, Q. Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat-Thinopyrum ponticum translocation line WTT34. Theor. Appl. Genet. 2021, 134, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Uauy, C.; Brevis, J.C.; Chen, X.M.; Khan, I.; Jackson, L.; Chicaiza, O.; Distelfeld, A.; Fahima, T.; Dubcovsky, J. High-temperature adult-plant HTAP, stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 2005, 112, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Bansal, U.K.; Bariana, H. Mapping of stripe rust resistance gene Yr56 in durum wheat cultivar Wollaroi. In Proceedings of the BGRI 2014 Technical workshop, Obregon, Mexico, 22–25 March 2014. [Google Scholar]
- Xu, G.H.; Su, W.Y.; Shu, Y.J.; Cong, W.W.; Wu, L.; Guo, C.H. RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E Poaceae, genome. Genet. Mol. Res. 2012, 11, 1741–1751. [Google Scholar] [CrossRef]
- Lou, H.J.; Dong, L.L.; Zhang, K.P.; Wang, D.W.; Zhao, M.L.; Li, Y.W.; Rong, C.W.; Qin, H.J.; Zhang, A.M.; Dong, Z.Y.; et al. High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat. Mol. Ecol. Resour. 2017, 17, 1318–1329. [Google Scholar] [CrossRef]
- Liu, L.Q.; Luo, Q.L.; Li, H.W.; Li, B.; Li, Z.S.; Zheng, Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet. 2018, 131, 2359–2370. [Google Scholar] [CrossRef]
- Charpentier, A.; Feldman, M.; Cauderon, Y. The effect of different doses of Phl on chromosome pairing in hybrids between tetraploid Agropyron elongatum and common wheat. Genome 1988, 30, 974–977. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.P.; Cao, S.H.; Zhang, X.Q. Genome constitution of Agropyron elongatum 4× by biochemical and SSR markers. Acta Genet. Sin. 2005, 32, 571–578. [Google Scholar]
- Komuro, S.; Endo, R.; Shikata, K.; Kato, A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 2013, 56, 131–137. [Google Scholar] [CrossRef]
- Han, F.P.; Lamb, J.C.; James, A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. USA 2006, 103, 3238–3243. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.D.; Yang, N.M.; Xiang, Q.; Zhu, M.K.; Fang, Z.Y.; Zheng, W.; Lu, J.L.; Sha, L.N.; Fan, X.; Cheng, Y.R.; et al. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int. J. Mol. Sci. 2022, 23, 14818. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.F.; Zhao, Q.Z.; Yan, W.K.; Li, M.X.; Liu, Y.X.; Cheng, C.Y.; Zhang, L.; Yu, X.Q.; Li, J.; Qian, C.T.; et al. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. Plant J. 2020, 102, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Zhang, T.; Thammapichai, P.; Weng, Y.Q.; Jiang, J.M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 2015, 200, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Line, R.F.; Qayoum, A. Virulence, Aggressiveness, Evolution, and Distribution of Races of Puccinia striiformis (the Cause of Stripe Rust of Wheat) in North America, 1968-87 (No. 1788); U.S. Department of Agriculture: Washington, DC, USA, 1788; 44p.
- Carter, A.H.; Chen, X.M.; Garland-Campbell, K.; Kidwell, K.K. Identifying QTL for high-temperature adult-plant resistance to stripe rust Puccinia striiformis f. sp. tritici, in the spring wheat Triticum aestivum L., cultivar ‘Louise’. Theor. Appl. Genet. 2009, 119, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Yu, C.; Cheng, Y.K.; Yao, F.J.; Long, L.; Wu, Y.; Li, J.; Li, H.; Wang, J.R.; Jiang, Q.T.; et al. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genom. 2021, 22, 34. [Google Scholar] [CrossRef]
Line | Growth Season | Tiller Number | Plant Height (cm) | Spike Length (cm) | Spikelet per Spike | Grains per Spike | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|---|
8801 | 2020–2021 | 8.8 ± 3.2 a | 136.5 ± 5.4 a | 16.4 ± 2.9 a | 16.4 ± 3.0 b | 17.0 ± 3.0 d | 22.3 ± 0.8 c |
2021–2022 | 6.0 ± 0.7 a | 121.5 ± 1.4 a | 16.6 ± 1.1 a | 20.6 ± 1.1 c | 18.8 ± 1.3 c | 20.6 ± 0.3 c | |
SM482 | 2020–2021 | 5.8 ± 1.1 b | 79.9 ± 3.9 b | 11.64 ± 0.7 b | 22.4 ± 1.3 a | 59.4 ± 4.3 c | 27.5 ± 0.9 b |
2021–2022 | 5.0 ± 1.9 a | 70.8 ± 2.7 d | 13.8 ± 1.1 bc | 23.0 ± 0.7 b | 64.0 ± 3.2 b | 27.4 ± 0.4 b | |
SM921 | 2020–2021 | 3.6 ± 0.9 b | 82.0 ± 4.8 b | 10.5 ± 0.9 b | 21.4 ± 1.7 a | 68.6 ± 6.6 b | 34.1 ± 0.7 a |
2021–2022 | 6.0 ± 1.6 a | 74.0 ± 2.5 c | 15.1 ± 0.6 b | 23.8 ± 1.1 ab | 66.6 ± 3.6 b | 33.6 ± 0.9 a | |
K17-1065-4 | 2020–2021 | 4.2 ± 1.3 b | 79.1 ± 4.3 b | 9.9 ± 1.6 b | 21.2 ± 1.6 a | 75.4 ± 3.4 a | 26.9 ± 0.6 b |
2021–2022 | 5.6 ± 1.7 a | 78.3 ± 1.8 b | 13.7 ± 1.2 c | 25.0 ± 1.0 a | 75.6 ± 1.5 a | 26.9 ± 0.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, B.; Zhao, L.; Zeng, C.; Zhu, W.; Xu, L.; Wu, D.; Cheng, Y.; Wang, Y.; Zeng, J.; Fan, X.; et al. Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage. Plants 2023, 12, 2311. https://doi.org/10.3390/plants12122311
Gong B, Zhao L, Zeng C, Zhu W, Xu L, Wu D, Cheng Y, Wang Y, Zeng J, Fan X, et al. Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage. Plants. 2023; 12(12):2311. https://doi.org/10.3390/plants12122311
Chicago/Turabian StyleGong, Biran, Lei Zhao, Chunyan Zeng, Wei Zhu, Lili Xu, Dandan Wu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, and et al. 2023. "Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage" Plants 12, no. 12: 2311. https://doi.org/10.3390/plants12122311
APA StyleGong, B., Zhao, L., Zeng, C., Zhu, W., Xu, L., Wu, D., Cheng, Y., Wang, Y., Zeng, J., Fan, X., Sha, L., Zhang, H., Chen, G., Zhou, Y., & Kang, H. (2023). Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage. Plants, 12(12), 2311. https://doi.org/10.3390/plants12122311