Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Content of Phenolic Compounds, Tannins, Flavonoids, Flavonols and Evaluation of Antioxidant Activity
2.3. Analysis by LC-DAD
2.4. Analysis by GC-MS
2.5. Toxicity
2.6. Antimicrobial Activity
2.7. Determination of the Minimum Inhibitory Concentration (MIC)
3. Conclusions
4. Experimental Section
4.1. Plant Material
4.2. Preparation of Extracts
4.3. Phytochemical Screening
4.4. Determination of the Content of Phenolic Compounds
4.5. Determination of Tannin Content
4.6. Determination of Flavonoid Content
4.7. Determination of Flavonols
4.8. Assessment of Antioxidant Activity
4.9. Analysis by Liquid Chromatography with Diode Array Detection (LC-DAD)
4.10. Analysis by Gas Chromatography Coupled to Mass Spectrometry (GC-MS)
4.11. Toxicity Evaluation
4.12. Antimicrobial Activity Evaluation
4.13. Antimicrobial Test by the Agar Diffusion Method (Well)
4.14. Determination of the Minimum Inhibitory Concentration (MIC)
4.15. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coslovsky, S. Promoting Forest-Friendly Exports in the Brazilian Amazon. NACLA Rep. Am. 2023, 55, 169–175. [Google Scholar] [CrossRef]
- Fatima, I.; Safdar, N.; Akhtar, W.; Munir, A.; Saqib, S.; Ayaz, A.; Bahadur, S.; Alrefaei, A.F.; Ullah, F.; Zaman, W. Evaluation of Potential Inhibitory Effects on Acetylcholinesterase, Pancreatic Lipase, and Cancer Cell Lines Using Raw Leaves Extracts of Three Fabaceae Species. Heliyon 2023, 9, e15909. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Zafar, M.; Ahmad, M.; Sultana, S.; Akhter, M.S.; Zaman, W.; Saqib, S.; Ullah, F. Micromorphology, Phytochemical and Pharmacological Evaluation of Isodon Rugosus (Wall. Ex Benth.) Codd. J. Anim. Plant Sci. 2021, 32, 736–745. [Google Scholar] [CrossRef]
- Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022, 27, 6728. [Google Scholar] [CrossRef]
- Santos, S.S.; Silva, J.V.; Boniface, P.K.; Giarolla, J. Amazon Rainforest; a Natural Source for New Therapeutic Alternatives against Neglected Tropical Diseases. Nat. Prod. J. 2022, 12, e280222201500. [Google Scholar] [CrossRef]
- Milutinovici, R.-A.; Chioran, D.; Buzatu, R.; Macasoi, I.; Razvan, S.; Chioibas, R.; Corlan, I.V.; Tanase, A.; Horia, C.; Popovici, R.A.; et al. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. Plants 2021, 10, 2148. [Google Scholar] [CrossRef]
- Moghaddam, A.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, M.; Abbasi, K.; Hosseini, Z.S.; Tebyaniyan, H. The Current Antimicrobial and Antibiofilm Activities of Synthetic/Herbal/Biomaterials in Dental Application. BioMed Res. Int. 2022, 2022, 8856025. [Google Scholar] [CrossRef]
- Yazdanian, M.; Rostamzadeh, P.; Rahbar, M.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Yazdanian, A. The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg. Chem. Appl. 2022, 2022, 2311910. [Google Scholar] [CrossRef] [PubMed]
- Primasari, A.; Apriyanti, E.; Ambardhani, N.; Satari, M.H.; Herdiyati, Y.; Kurnia, D. Formulation and Antibacterial Potential of Sarang Semut (Myrmecodia Pendans) against Oral Pathogenic Bacteria: An In Vitro Study. Open Dent. J. 2022, 16, e187421062112140. [Google Scholar] [CrossRef]
- Eita, A.A.B. Milk Thistle (Silybum marianum (L.) Gaertn.): An Overview about Its Pharmacology and Medicinal Uses with an Emphasis on Oral Diseases. J. Oral Biosci. 2022, 64, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Jalil, V.; Khan, M.; Haider, S.Z.; Shamim, S. Investigation of the Antibacterial, Anti-Biofilm, and Antioxidative Effect of Piper Betle Leaf Extract against Bacillus Gaemokensis MW067143 Isolated from Dental Caries, an in Vitro-in Silico Approach. Microorganisms 2022, 10, 2485. [Google Scholar] [CrossRef]
- Ramzan, M.; Karobari, M.I.; Heboyan, A.; Mohamed, R.N.; Mustafa, M.; Basheer, S.N.; Desai, V.; Batool, S.; Ahmed, N.; Zeshan, B. Synthesis of Silver Nanoparticles from Extracts of Wild Ginger (Zingiber Zerumbet) with Antibacterial Activity against Selective Multidrug Resistant Oral Bacteria. Molecules 2022, 27, 2007. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, H. Arvores Brasileiras Vol. 1: Manual de Identificaçao E Cultivo de Plantas Arboreas Nativas Do Brasil, 8th ed.; Plantarum: Nova Odessa, SP, Brazil, 2020; Volume 1, p. 386. ISBN 9786587655000. [Google Scholar]
- Kaushik, N.K.; Bagavan, A.; Rahuman, A.A.; Zahir, A.A.; Kamaraj, C.; Elango, G.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S.; et al. Evaluation of Antiplasmodial Activity of Medicinal Plants from North Indian Buchpora and South Indian Eastern Ghats. Malar. J. 2015, 14, 65. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiquién-Rivera, M.A.; Cañigueral, S. First Survey on the Medicinal Plants of the Chazuta Valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef]
- Sheba, L.A.; Anuradha, V.; Ali, M.S.; Yogananth, N. Wound Healing Potential of Couroupita Guianensis Aubl. Fruit Pulp Investigated on Excision Wound Model. Appl. Biochem. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Ngo, Q.L.; Nguyen, P.T.; Nguyen, V.M.E.; Nguyen, T.N.T.; Phan, N.T.; Ngo, K.K.M.; Ngo, T.N.; Phan, N.M.; Nguyen, T.P. Isolation and Identification of Triterpenoid Compounds from Couroupita Guianensis Aubl. Can Tho Univ. J. Sci. 2023, 15, 91–97. [Google Scholar] [CrossRef]
- Rodrigues, G.C.S.; Dos Santos Maia, M.; de Souza, T.A.; de Oliveira Lima, E.; Dos Santo, L.E.C.G.; Silva, S.L.; da Silva, M.S.; Filh, J.M.B.; da Silva Rodrigues Junior, V.; Scotti, L.; et al. Antimicrobial Potential of Betulinic Acid and Investigation of the Mechanism of Action against Nuclear and Metabolic Enzymes with Molecular Modeling. Pathogens 2023, 12, 449. [Google Scholar] [CrossRef] [PubMed]
- Spivak, A.Y.; Khalitova, R.R.; Nedopekina, D.A.; Gubaidullin, R.R. Antimicrobial Properties of Amine- and Guanidine-Functionalized Derivatives of Betulinic, Ursolic and Oleanolic Acids: Synthesis and Structure/Activity Evaluation. Steroids 2020, 154, 108530. [Google Scholar] [CrossRef]
- Khusnutdinova, E.F.; Sinou, V.; Babkov, D.A.; Kazakova, O.; Brunel, J.M. Development of New Antimicrobial Oleanonic Acid Polyamine Conjugates. Antibiotics 2022, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.; Bandeira, P.N.; Lemos, T.L.G.; Santos, H.S.D.; Scherf, J.R.; Rocha, J.E.; Pereira, R.L.S.; Freitas, T.S.; Freitas, P.R.; Pereira-Junior, F.N.; et al. In Silico and in Vitro Evaluation of Efflux Pumps Inhibition of α,β-Amyrin. J. Biomol. Struct. Dyn. 2021, 40, 12785–12799. [Google Scholar] [CrossRef]
- Han, G.; Lee, D.G. Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-like Death in Escherichia Coli by Producing Reactive Oxygen Species. J. Microbiol. Biotechnol. 2022, 32, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.O.; Solomon, A.O.; Abidemi, O.T.; Oladele, O.A.; Zhiqiang, L. Chemical Constituents and Antibacterial Activity of Cissus Aralioides. Lett. Org. Chem. 2021, 18, 281–286. [Google Scholar] [CrossRef]
- Akther, T.; Khan, M.S.; Hemalatha, S. Extraction of flavonoid from various parts of Couroupita guianensis and its efficacy against pathogenic bacteria. Asian J. Pharm. Clin. Res. 2017, 10, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.C.; Chang, H.C.; Yang, H.W.; Chen, G.L. Evaluation of total antioxidant activity of several popular vegetables and chinese herbs: A fast approach with ABTS/H2O2/HRP system in microplates. J. Food Drug Anal. 2004, 12, 29–33. [Google Scholar] [CrossRef]
- Aleluia, C.; de Cássia Procópio, V.; Oliveira, M.T.G.; Furtado, P.G.S.; Giovannini, J.F.G.; de Mendonça, S.M.S. Fitoterápicos na odontologia. Rev. Odont. Univers. Cid. Sao Paulo 2017, 27, 126–134. [Google Scholar] [CrossRef]
- Achika, J.I.; Ayo, R.G.; Habila, J.D.; Oyewale, A.O. Terpenes with antimicrobial and antioxidant activities from Lannea humilis (Oliv.). Sci. Afr. 2020, 10, e00552. [Google Scholar] [CrossRef]
- Singh, R.; Kumari, N.; Gangwar, M.; Nath, G. Qualitative characterization of phytochemicals and in vitro antimicrobial evaluation of leaf extract of Couroupita guianensis aubl.—A threatened medicinal tree. Int. J. Pharm. Pharm. Sci. 2015, 7, 212–215. [Google Scholar]
- Sirisha, M.; Jaishree, V. Phytochemical screening, antioxidant and antiproliferative activities of successive extracts of Couroupita guianensis Aubl. Plant. Ind. J. Nat. Prod. Res. 2018, 9, 22–27. [Google Scholar]
- Pandurangan, P.; Sahadeven, M.; Sunkar, S.; Dhana, S.K.N.M. Comparative analysis of biochemical compounds of leaf, flower and fruit of Couroupita guianensis and synthesis of silver nanoparticles. Pharmacogn. J. 2018, 10, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, A.; Bargavi, K.; Krishna, S.; Eswaraiah, M.C. Evaluation of anti-oxidant and hepatoprotective activity of Couroupita guianensis leaves. J. Cell Tissue Res. 2013, 13, 3745. [Google Scholar]
- Silva, F.R.P.; Almeida, S.S.M. Análise fitoquímica e microbiológica da atividade do extrato bruto etanólico da andiroba, Carapa guianensis aubl. Biota Amaz. 2014, 4, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Duque, C. Available online: https://bv.fapesp.br/pt/bolsas/186095/efeito-antimicrobiano-e-anti-inflamatorio-de-acidos-fenolicos-isolados-combinados-e-incorporados-em/ (accessed on 17 May 2022).
- Sathishkumar, G.; Pradeep, K.J.; Vignesh, V.; Rajkuberan, C.; Jeyaraj, M.; Selvakumar, M.; Rakhi, J.; Sivaramakrishnan, S. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 2016, 215, 229–236. [Google Scholar]
- Bhuvaneswari, S.; Aravind, K.R.; Ramkumar, B.; Raja, N.V.; Neelakandan, A.; Kumar, P.M.; Prakash, N.K.U. Studies on the phytochemistry and bioactivity of leaves of trees in Chennai. Int. J. ChemTech Res. 2014, 6, 4078–4083. [Google Scholar]
- Pinheiro, M.M.G.; Fernandes, S.B.O.; Fingolo, C.E.; Boylan, F.; Fernandes, P.D. Anti-inflammatory activity of ethanol extract and fractions from Couroupita guianensis Aublet leaves. J. Ethnopharm. 2013, 146, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, H.L.; Kekuda, T.R.P.; Pushpavathi, D.; Shilpa, M.; Petkar, T.; Siddiqha, A. Antimicrobial, radical scavenging, and insecticidal activity of leaf and flower extracts of Couroupita guianensis Aubl. Int. J.Green Pharm. 2017, 11, 171–179. [Google Scholar]
- Oliveira, D.M.; Bastos, D.H.M. Biodisponibilidade de ácidos fenólicos. Quim. Nova 2014, 34, 1051–1056. [Google Scholar] [CrossRef]
- Oliveira, L.M.N.; Silva, L.M.R.; Lima, A.C.S.; Almeida, R.R.; Ricardo, N.M.P.S.; Figueiredo, E.A.T.; Figueiredo, R.W. Characterization of rutin, phenolic compounds and antioxidant capacity of pulps and by-products of tropical fruits. Res. Soc. Dev. 2020, 9, e42942812. [Google Scholar] [CrossRef] [Green Version]
- Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef] [PubMed]
- Lago, J.H.G.; Ito, A.T.; Fernandes, C.M.; Young, M.C.M.; Kato, M.J. Secondary metabolites isolated from Piper chimonanti folium and their antifungal activity. Nat. Prod. Res. 2012, 26, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Facundo, V.A.; Pollli, A.R.; Rodrigues, R.V.; Militão, J.S.T.; Stabelli, R.G.; Cardoso, C.T. Constituintes químicos fixos e voláteis dos talos e frutos de Piper tuberculatum Jacq. e das raízes de P. hispidum HBK. Acta Amazon. 2008, 38, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.; Pinheiro, M.C.O.; Teixeira, I.E.A.Z.; Riachi, L.G.; Rocha, C.B.; De Maria, C.A.; Moreira, R.F.A. Volatile and semi-volatile composition of the ripe Brazilian Couroupita guianensis fruit. Nat. Prod. J. 2014, 4, 280–289. [Google Scholar]
- Venkatraman, A.; Sheba, L.A. Antioxidant potential and chromatographic profiling of Couroupita guianensis fruit pulp. J. Adv. Sci. Res. 2022, 13, 286–293. [Google Scholar] [CrossRef]
- Lavanya, R.; John, S.A. Investigation of secondary metabolites from Couroupita guianensis through GC-MS. Int. J. Phytopharm. 2015, 5, 81–85. [Google Scholar]
- Young, B.J.; Riera, N.I.; Beily, M.E.; Bres, P.A.; Crespo, D.C.; Ronco, A.E. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol. Environ. Saf. 2021, 76, 82–186. [Google Scholar] [CrossRef] [PubMed]
- Sivapragasam, G.; Soundararajan, V.; Yeng, C.; Ngit, S.L.; Habibah, A.W.; Hariri, F.; Subramaniam, S.; Sreenivasan, S. In vitro and in vivo-scientific evaluation on cytotoxicity and genotoxicity of traditional medicinal plant Couroupita guianensis aubl. Flower. Pharmacol. Online 2019, 2, 24–38. [Google Scholar]
- Sheba, L.A.; Venkatraman, A. An updated review on Couroupita guianensis aubl: A sacred plant of India with myriad medicinal properties. J. Herb. Pharmacol. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Soares, I.M.; Ribeiro, M.F.; Costa, O.J.; Souza, A.E.; Aguiar, A.A.; Barbosa, R.S.; Alvim, T.C.; Ascêncio, S.D.; Aguiar, R.W.S. Application of a degreasing process and sequential ultrasound-assisted extraction to obtain phenolic compounds and elucidate of the potential antioxidant of Siparuna guianensis Aublet. J. Med. Plant. Res. 2017, 11, 357–366. [Google Scholar]
- Saraiva, L.C.F.; Maia, W.M.N.; Leal, F.R.; Filho, A.L.M.M.; Feitosa, C.M. Triagem fitoquímica das folhas de Moringa oleifera. Bol. Inf. Geum 2018, 9, 12–19. [Google Scholar]
- Simões, C.M.O.; Schenkel, E.P.; de Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do Produto Natural ao Medicamento; Ed. Artmed: Porto Alegre, RS, Brazil, 2016. [Google Scholar]
- Silva, L.C.O.; Lima, R.A. Identificação das classes de metabólitos segundários no extrato etanólico dos frutos e folhas de Eugenia uniflora L. Rev. Reget 2016, 20, 288–381. [Google Scholar]
- Amorim, E.L.; Castro, V.T.N.A.; Melo, J.; Corrêa, A.; Sobrinho, T.J.S.P. Standard operating procedures (SOP) for the spectrophotometric determination of phenolic compounds contained in plant sample. In Latest Research into Quality Control; Ed. Intechopen: Rijeka, Croatia, 2012; Volume 1, pp. 47–66. [Google Scholar]
- Amorim, E.L.; Nascimento, J.E.; Monteiro, J.M.; Sobrinho, T.J.S.P.; Araújo, T.A.; Albuquerque, U.P. A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Funct. Ecosyst. Commun. 2008, 2, 88–94. [Google Scholar]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food. Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Sobrinho, T.J.P.; Castro, V.T.; Saraiva, A.M.; Almeida, D.M.; Tavares, E.A.; Amorim, E.L. Phenolic content and antioxidant capacity of four Cnidoscolus species (Euphorbiaceae) used as ethnopharmacologicals in Caatinga, Brazil. Afr. J. Pharm. Pharmacol. 2011, 5, 2310–2316. [Google Scholar]
- Chen, Y.; Huang, B.; He, J.; Han, L.; Zhan, Y.; Wang, Y. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita. J. Ethnopharmacol. 2011, 136, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rabêlo, S.V.; Costa, M.M.D.; Libório, R.C.; Almeida, J.R.G.D.S. Antioxidant and antimicrobial activity of extracts from atemoia (Annona cherimola Mill. x A. squamosa L.). Rev. Bras. Fruticult. 2014, 36, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.A.L.; de Castro, T.L.A.; Goneli, A.L.D.; Verdan, M.H. Chemical Composition and Photoprotective Potential of Infusion Extract from Casearia sylvestris var. lingua (Cambess.) Eichler Leaves. Orbital Electron. J. Chem. 2022, 14, 89–94. [Google Scholar] [CrossRef]
- Meneguetti, D.U.; da Silva, F.C.; Zan, R.A.; Ramos, L.J. Adaptation of the micronucleus technique in Allium cepa, for mutagenicity analysis of the Jamari river valley, western Amazon, Brazil. J. Environ. Anal. Toxicol. 2012, 2, 2161-0525. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- Nguta, J.M.; Mbaria, J.M.; Gathumbi, P.K.; Kabasa, J.D.; Kiama, S.G. Biological screening of Kenya medicinal plants using Artemia salina (ARTEMIIDAE). Pharmacologyonline 2011, 2, 458–478. [Google Scholar]
- Oliveira, A.I.T.D.; Mahmoud, T.S.; Nascimento, G.N.L.D.; Silva, J.F.M.D.; Pimenta, R.S.; Morais, P.B.D. Chemical composition and antimicrobial potential of palm leaf extracts from Babaçu (Attalea speciosa), Buriti (Mauritia flexuosa), and Macaúba (Acrocomia aculeata). Sci. World J. 2016, 2016, 9734181. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.I.T.; Cabral, J.B.; Mahmoud, T.S.; Nascimento, G.N.L.D.; Da Silva, J.F.M.; Pimenta, R.S.; De Morais, P.B. In vitro antimicrobial activity and fatty acid composition through gas chromatography-mass spectrometry (GC-MS) of ethanol extracts of Mauritia flexuosa (Buriti) fruits. J. Med. Plants Res. 2017, 11, 635–641. [Google Scholar]
- Wikler, M.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard; National Committee for Clinical Laboratory Standards (NCCLS): Wayne, PA, USA, 2000; Volume 26, pp. M5–M7. [Google Scholar]
- Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, D.F. Sisvar: Um programa para análises e ensino de estatística. Rev. Cient. Symp. 2008, 6, 36–41. [Google Scholar]
Chemical Group | Extract | ||
---|---|---|---|
CUE | CSE | ESE | |
Flavonoids | + | + | + |
Tannins | + | + | + |
Phytosterols | − | − | − |
Triterpenoids | + | + | + |
Quinones | − | − | − |
Saponins | + | + | + |
Alkaloids | − | + | + |
Extract | Control | ||||
---|---|---|---|---|---|
CUE Mean ± SD | CSE Mean ± SD | ESE Mean ± SD | Gallic Acid Mean ± SD | Rutin Mean ± SD | |
Phenolic compounds (mg GAE/g) | 85.58 ± 0.51 a | 90.19 ± 0.29 a | 92.31 ± 0.38 a | - | - |
Tannins (mg GAE/g) | 20.96 ± 0.62 a | 17.69 ± 0.29 a | 19.62 ± 0.88 a | - | - |
Flavonoids (mg RE/g) | 307.21 ± 1.05 a | 101.07 ± 1.99 b | 65.63 ± 0.53 c | - | |
Flavonols (mg RE/g) | 100.89 ± 1.05 a | 88.61 ± 0.80 b | 56.33 ± 0.80 c | - | - |
DPPH• IC50 (μg/mL) | 59.51 ± 0.26 c | 31.13 ± 0.55 b | 2.98 ± 0.96 a | - | 11.92 ± 0.47 |
ABTS•+ IC50 (μg/mL) | 30.32 ± 1.60 c | 15.74 ± 1.45 b | 4.93 ± 0.90 a | 6.75 ± 0.01 | - |
Compound | Concentration (mg/g) | ||
---|---|---|---|
CUE Mean ± SD | CSE Mean ± SD | ESE Mean ± SD | |
Caffeic acid | 37.6 ± 0.1 a | 39.4 ± 0.2 a | 38.5 ± 0.2 a |
Sinapic acid | 37.1 ± 0.1 a | 38.6 ± 0.1 a | 38.1 ± 0.1 a |
Rutin | 124.1 ± 0.4 a | 138.1 ± 0.6 a | 129.2 ± 0.5 a |
Quercetin | 169.8 ± 0.6 a | 181.4 ± 0.7 a | 177.3 ± 0.4 a |
Luteolin | 100.1± 0.2 a | 103.2 ± 0.4 a | 101.8 ± 0.3 a |
Kaempferol | 94.8 ± 0.2 a | 97.4 ± 0.3 a | 96.3 ± 0.2 a |
Apigenin | 75.2 ± 0.1 a | 78.8 ± 0.2 a | 3.4 ± 0.1 b |
Compound | Concentration (mg/g) | ||
---|---|---|---|
CUE Mean ± SD | CSE Mean ± SD | ESE Mean ± SD | |
Stigmasterol | 69.7 ± 0.1 b | 85.1 ± 0.2 a | - * |
β-sitosterol | 80.3 ± 0.2 a | 91.9 ± 0.3 a | - * |
Samples | Concentration | ARL ± DP (mm) Mean ± SD | RGI | Effect | GR (%) |
---|---|---|---|---|---|
Control | 43.08 ± 5.8 | 1 | 100 | ||
CUE | 50 μg/mL | 58.44 ± 1.29 | 1.36 | GS | 135.6 |
250 μg/mL | 41.11 ± 11.72 | 0.95 | SCE | 95.4 | |
750 μg/mL | 19.24 ± 1.77 | 0.45 | GI | 44.7 | |
CSE | 50 μg/mL | 47.40 ± 11.40 | 1.10 | SCE | 110 |
250 μg/mL | 34.83 ± 7.41 | 0.81 | SCE | 80.8 | |
750 μg/mL | 20.64 ± 3.06 | 0.48 | GI | 47.9 | |
ESE | 50 μg/mL | 60.29 ± 1.70 | 1.40 | GS | 139.9 |
250 μg/mL | 44.49 ± 11.20 | 1.03 | SCE | 103.2 | |
750 μg/mL | 32.34 ± 2.00 | 0.75 | GI | 75 |
Extract | IC50 (μg/mL) | Toxicity |
---|---|---|
CUE | 2.318 | Non-toxic |
CSE | 2.308 | Non-toxic |
ESE | 1.478 | Non-toxic |
Extracts | Concentration (mg) | Microorganisms | |
---|---|---|---|
S. aureus Mean ± SD | S. mutans Mean ± SD | ||
Zone of Inibition (mm) | |||
CUE | 50 | 10.50 ± 0.70 b | 7.83 ± 0.49 b |
100 | 10.44 ± 1.75 b | 7.87 ± 0.15 b | |
200 | 12.21 ± 1.23 a | 10.31 ± 0.17 a | |
CSE | 50 | 8.09 ± 0.22 c | 4.48 ± 2.89 b |
100 | 9.61 ± 0.15 b | 9.16 ± 0.39 a | |
200 | 10.29 ± 0.04 a | 9.99 ± 1.39 a | |
ESE | 50 | 7.72 ± 2.83 b | 8.13 ± 0.15 b |
100 | 12.57 ± 0.74 a | 8.69 ± 0.62 b | |
200 | 13.41 ± 1.76 a | 9.06 ± 0.55 a | |
Chlorhexidine (+) | 10.82 ± 0.81 a | 12.37 ± 0.61 a | |
DMSO (−) | 0.00 ± 0.00 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augusco, M.A.C.; Sarri, D.A.; Panontin, J.F.; Rodrigues, M.A.M.; Fernandes, R.d.M.N.; Silva, J.F.M.d.; Cardoso, C.A.L.; Rambo, M.K.D.; Scapin, E. Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms. Plants 2023, 12, 2327. https://doi.org/10.3390/plants12122327
Augusco MAC, Sarri DA, Panontin JF, Rodrigues MAM, Fernandes RdMN, Silva JFMd, Cardoso CAL, Rambo MKD, Scapin E. Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms. Plants. 2023; 12(12):2327. https://doi.org/10.3390/plants12122327
Chicago/Turabian StyleAugusco, Marco Aurélio Carmona, Daniela Abram Sarri, Juliane Farinelli Panontin, Maria Angélica Melo Rodrigues, Rachel de Moura Nunes Fernandes, Juliana Fonseca Moreira da Silva, Claudia Andrea Lima Cardoso, Magale Karine Diel Rambo, and Elisandra Scapin. 2023. "Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms" Plants 12, no. 12: 2327. https://doi.org/10.3390/plants12122327
APA StyleAugusco, M. A. C., Sarri, D. A., Panontin, J. F., Rodrigues, M. A. M., Fernandes, R. d. M. N., Silva, J. F. M. d., Cardoso, C. A. L., Rambo, M. K. D., & Scapin, E. (2023). Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms. Plants, 12(12), 2327. https://doi.org/10.3390/plants12122327