Evaluating Leaf Wettability and Salt Hygroscopicity as Drivers for Foliar Absorption
Abstract
:1. Introduction
2. Results
2.1. Magnesium Salt Physico-Chemical Properties
2.2. Leaf Surface Structure, Wettability and Surface Free Energy Related Parameters
2.3. Foliar Mg Trial
2.3.1. Environmental Conditions
2.3.2. Salt Deposition after Foliar Mg Application
2.3.3. Leaf Mg Concentrations after Foliar Treatments
2.3.4. Lettuce Leaf Anion Concentrations after Foliar Treatment
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.2. Chemicals and Mg Salt Properties
5.3. Deliquescence and Efflorescence Relative Humidity of Mg Salts
5.4. Foliar Mg Absorption Trial
5.5. Scanning Electron Microscopy
5.6. Contact Angles and Surface Free Energy
5.7. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.C.; Peng, W.T.; Li, J.; Liao, H. Functional dissection and transport mechanism of magnesium in plants. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2018; Volume 74, pp. 142–152. [Google Scholar] [CrossRef]
- Hauer-Jákli, M.; Tränkner, M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis on 70 years of research. Front. Plant Sci. 2019, 10, 766. [Google Scholar] [CrossRef]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops. 2010, 94, 23–25, ISSN 0006-0089. [Google Scholar]
- Hawkesford, M.J.; Cakmak, I.; Kichey, T.; Coscun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–260. ISBN 978-0-12-819773-8. [Google Scholar]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, F.J. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef]
- Hermans, C.; Conn, S.J.; Chen, J.; Xiao, Q.; Verbruggen, N. An update on magnesium homeostasis mechanisms in plants. Metallomics 2013, 5, 1170–1183. [Google Scholar] [CrossRef]
- Kobayashi, N.I.; Saito, T.; Iwata, N.; Ohmae, Y.; Iwata, R.; Tanoi, K.; Nakanishi, T.M. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol. Plant. 2013, 148, 490–501. [Google Scholar] [CrossRef]
- Billard, V.; Maillard, A.; Coquet, L.; Jouenne, T.; Cruz, F.; Garcia-Mina, J.M.; Yvin, J.C.; Ourry, A.; Etienne, P. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus. Plant Physiol. Biochem. 2016, 107, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Zhong, Y.; Wang, Y.; Li, X. Magnesium limitation leads to transcriptional down-tuning of auxin synthesis, transport, and signaling in the tomato root. Front. Plant Sci. 2021, 12, 802399. [Google Scholar] [CrossRef]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives; Sinauer Associates: Sunderland, MA, USA, 2005; 380p, ISBN 0–87893–172–4. [Google Scholar]
- Tanoi, K.; Kobayashi, N.I. Leaf Senescence by Magnesium Deficiency. Plants 2015, 4, 756–772. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Brown, P.H. From Plant Surface to Plant Metabolism: The Uncertain Fate of Foliar-Applied Nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Gil-Pelegrín, E.; Eichert, T. Foliar Water and Solute Absorption: An Update. Plant J. 2021, 105, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Fernández, V.; Eichert, T. Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Moss, G.I.; Higgins, M.L. Magnesium influences on the fruit quality of sweet orange (Citrus sinensis L. osbeck). Plant Soil 1974, 41, 103–112. [Google Scholar] [CrossRef]
- Kanjana, D. Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. J. Plant Nut. 2020, 43, 3035–3049. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibria, M.G.; Barton, L.; Rengel, Z. Foliar application of magnesium mitigates soil acidity stress in wheat. J. Agron. Crop Sci. 2021, 207, 378–389. [Google Scholar] [CrossRef]
- Kibria, M.G.; Barton, L.; Rengel, Z. Applying foliar magnesium enhances wheat growth in acidic soil by stimulating exudation of malate and citrate. Plant Soil 2021, 464, 621–634. [Google Scholar] [CrossRef]
- Burkhardt, J.; Eiden, R. Thin water films on coniferous needles. Atmos. Environ. 1994, 28, 2001–2011. [Google Scholar] [CrossRef]
- Burkhardt, J.; Gerchau, J. A new device for the study of water-vapor condensation and gaseous deposition to plant-surfaces and particle samples. Atmos. Environ. 1994, 28, 2012–2017. [Google Scholar] [CrossRef]
- Burkhardt, J.; Hunsche, M. “Breath figures” on leaf surfaces—Formation and effects of microscopic leaf wetness. Front. Plant Sci. 2013, 4, 422. [Google Scholar] [CrossRef] [Green Version]
- Schönherr, J. Cuticular Penetration of Calcium Salts: Effects of Humidity, Anions, and Adjuvants. J. Plant Nutr. Soil Sci. 2001, 164, 225–231. [Google Scholar] [CrossRef]
- Schönherr, J.; Luber, M. Cuticular penetration of potassium salts: Effects of humidity, anions, and temperature. Plant Soil 2001, 236, 117–122. [Google Scholar] [CrossRef]
- Burkhardt, J.; Basi, S.; Pariyar, S.; Hunsche, M. Stomatal penetration by aqueous solutions—An update involving leaf surface particles. New Phytol. 2012, 196, 774–787. [Google Scholar] [CrossRef]
- Fernández, V.; Pimentel, C.; Bahamonde, H.A. Salt Hydration and Drop Drying of Two Model Calcium Salts: Implications for Foliar Nutrient Absorption and Deposition. J. Plant Nutr. Soil Sci. 2020, 183, 592–601. [Google Scholar] [CrossRef]
- Bahamonde, H.A.; Pimentel, C.; Lara, L.A.; Bahamonde-Fernández, V.; Fernández, V. Foliar Application of Potassium Salts to Olive, with Focus on Accompanying Anions. Plants 2023, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497p. Available online: https://pubs.usgs.gov/tm/06/a43/ (accessed on 17 March 2023).
- Rard, J.A.; Wijesinghe, A.M.; Wolery, T.J. Review of the Thermodynamic Properties of Mg(NO3)2(aq) and Their Representation with the Standard and Extended Ion-Interaction (Pitzer) Models at 298.15 K. J. Chem. Eng. Data 2004, 49, 1127–1140. [Google Scholar] [CrossRef]
- Almonte, L.; Pimentel, C.; Rodríguez-Cañas, E.; Abad, J.; Fernández, V.; Colchero, J. Rose petal effect: A subtle combination of nano-scale roughness and chemical variability. Nano Select 2022, 3, 977–989. [Google Scholar] [CrossRef]
- Khayet, M.; Fernández, V. Estimation of the solubility parameters of model plant surfaces and agrochemicals: A valuable tool for understanding plant surface interactions. Theor. Biol. Med. Model. 2012, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Khayet, M. Evaluation of the Surface Free Energy of Plant Surfaces: Toward Standardizing the Procedure. Front. Plant Sci. 2015, 6, 510. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Bahamonde, H.A.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Sancho-Knapik, D.; Gil, L.; Goldbach, H.; Eichert, T. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 2017, 68, 5293–5306. [Google Scholar] [CrossRef]
- Pinkerton, A.; Person, P.N. Effects of foliar application of magnesium sulphate on the quality and magnesium content of flue-cured tobacco. Aust. J. Exp. Ag. 1974, 14, 677–683. [Google Scholar] [CrossRef]
- Orlovius, K. Effect of foliar fertilisation with magnesium, sulfur, manganese and boron to sugar beet, oilseed rape, and cereals. In Plant Nutrition. Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 2001; Volume 92. [Google Scholar]
- Mostafa, E.A.M.; Sakeg, M.M.S.; El-Migeed Abd, M.M.M. Response of banana plants to soil and foliar applications of magnesium. Am. Eurasian J. Agr. Environ. Sci. 2007, 2, 141–146, ISSN 1818-67-69. [Google Scholar]
- Dordas, C. Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 2009, 29, 599–608. [Google Scholar] [CrossRef]
- Borowski, E.; Michałek, S. The effect of foliar nutrition of spinach (Spinacia oleracea L.) with magnesium salts and urea on gas exchange, leaf yield and quality. Acta Agrob. 2012, 63, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V.A.; Crusciol, C.A.C.; Bossolani, J.W.; Moretti, L.G.; Portugal, J.R.; Mundt, T.T.; de Oliveira, S.L.; Garcia, A.; Calonego, J.C.; Lollato, R.P. Magnesium Foliar Supplementation Increases Grain Yield of Soybean and Maize by Improving Photosynthetic Carbon Metabolism and Antioxidant Metabolism. Plants 2021, 10, 797. [Google Scholar] [CrossRef] [PubMed]
- Eichert, T.; Burkhardt, J. Quantification of Stomatal Uptake of Ionic Solutes Using a New Model System. J. Exp. Bot. 2001, 52, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H.E. Size Exclusion Limits and Lateral Heterogeneity of the Stomatal Foliar Uptake Pathway for Aqueous Solutes and Water-Suspended Nanoparticles. Physiol. Plant. 2008, 134, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Landorfa-Svalbe, Z.; Andersone-Ozola, U.; Ievinsh, G. Type of Anion Largely Determines Salinity Tolerance in Four Rumex Species. Plants 2023, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H. Sulfate transport systems in plants: Functional diversity and molecular mechanisms underlying regulatory coordination. J. Exp. Bot. 2019, 70, 4075–4087. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, H.A.; Aranda, I.; Peri, P.L.; Gyenge, J.; Fernández, V. Leaf wettability, anatomy and ultra-structure of Nothofagus antarctica and N. betuloides grown under a CO2 enriched atmosphere. Plant Physiol. Biochem. 2023, 194, 193–201. [Google Scholar] [CrossRef] [PubMed]
Compound | Solubility (M) | [Mg] (mM) | [anion] (mM) | DRH (%) | ERH (%) |
---|---|---|---|---|---|
MgCl2·6H2O | 7.74 1 | 100 | 200 | 41 | 15 |
Mg(NO3)2·6H2O | 6.80 2 | 100 | 200 | 62 | 32 |
MgSO4·7H2O | 3.89 1 | 100 | 100 | 92 | 83 |
Species | Leaf Side | θw (°) | θg (°) | θd (°) |
---|---|---|---|---|
Lettuce | Adaxial | 75.6 ± 7.4 aC | 54.1 ± 6.8 aC | 62.4 ± 5.1 aC |
Abaxial | 57.7 ± 11.6 bB | 58.1 ± 5.8 aB | 55.8 ± 5.7 bB | |
Broccoli | Adaxial | 131.3 ± 5.5 bB | 138.0 ± 5.0 aA | 97.9 ± 3.6 bB |
Abaxial | 137.9 ± 6.7 aA | 136.6 ± 3.7 aA | 105.4 ± 6.4 aA | |
Leek | Adaxial | 143.5 ± 5.1 aA | 133.7 ± 5.4 bB | 108.4 ± 4.9 aA |
Abaxial | 143.4 ± 3.2 aA | 139.4 ± 4.0 aA | 103.4 ± 6.8 bA |
Species | Leaf Side | γLW (mJ m−2) | γAB (mJ m−2) | γs (mJ m−2) | Polarity (γAB γs−1, %) | δ (MJ1/2 m−3/2) |
---|---|---|---|---|---|---|
Lettuce | Adaxial | 27.2 | 8.7 | 35.9 | 24.3 | 18.2 |
Abaxial | 31.0 | 8.6 | 39.6 | 21.7 | 19.6 | |
Broccoli | Adaxial | 9.4 | 3.8 | 13.3 | 28.9 | 8.6 |
Abaxial | 6.9 | 0.8 | 7.6 | 10.3 | 5.7 | |
Leek | Adaxial | 5.9 | 0.9 | 6.8 | 12.9 | 5.2 |
Abaxial | 7.5 | 0.1 | 7.6 | 0.8 | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barlas, N.T.; Bahamonde, H.A.; Pimentel, C.; Domínguez-Huidobro, P.; Pina, C.M.; Fernández, V. Evaluating Leaf Wettability and Salt Hygroscopicity as Drivers for Foliar Absorption. Plants 2023, 12, 2357. https://doi.org/10.3390/plants12122357
Barlas NT, Bahamonde HA, Pimentel C, Domínguez-Huidobro P, Pina CM, Fernández V. Evaluating Leaf Wettability and Salt Hygroscopicity as Drivers for Foliar Absorption. Plants. 2023; 12(12):2357. https://doi.org/10.3390/plants12122357
Chicago/Turabian StyleBarlas, Neriman Tuba, Héctor Alejandro Bahamonde, Carlos Pimentel, Pedro Domínguez-Huidobro, Carlos M. Pina, and Victoria Fernández. 2023. "Evaluating Leaf Wettability and Salt Hygroscopicity as Drivers for Foliar Absorption" Plants 12, no. 12: 2357. https://doi.org/10.3390/plants12122357
APA StyleBarlas, N. T., Bahamonde, H. A., Pimentel, C., Domínguez-Huidobro, P., Pina, C. M., & Fernández, V. (2023). Evaluating Leaf Wettability and Salt Hygroscopicity as Drivers for Foliar Absorption. Plants, 12(12), 2357. https://doi.org/10.3390/plants12122357