Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Measurements of Biomass
4.3.1. Measurements of Biomass in Poplar Stands and C Storage
4.3.2. Measurements of Crop Biomass and C Storage
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Millar, R.J.; Fuglestvedt, J.S.; Friedlingstein, P.; Rogelj, J.; Grubb, M.J.; Matthews, H.D.; Skeie, R.B.; Forster, P.M.; Frame, D.J.; Allen, M.R. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 2017, 10, 741–747. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global carbon budget 2022. Earth Syst. Sci. Data Discuss. 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Farooq, T.H.; Shakoor, A.; Wu, X.; Li, Y.; Rashid, M.H.U.; Zhang, X.; Gilani, M.M.; Kumar, U.; Chen, X.; Yan, W. Perspectives of plantation forests in the sustainable forest development of China. iForest 2021, 14, 166–174. [Google Scholar] [CrossRef]
- Hoover, C.M.; Smith, J.E. Current aboveground live tree carbon stocks and annual net change in forests of conterminous United States. Carbon Balance Manag. 2021, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Ménard, I.; Thiffault, E.; Kurz, W.A.; Boucher, J. Carbon storage and emission mitigation potential of afforestation and reforestation of unproductive territories. New For. 2022, 1–23. [Google Scholar] [CrossRef]
- Farooq, T.H.; Xincheng, X.; Shakoor, A.; Rashid, M.H.U.; Bashir, M.F.; Nawaz, M.F.; Kumar, U.; Shahzad, S.M.; Yan, W. Spatial distribution of carbon dynamics and nutrient enrichment capacity in different layers and tree tissues of Castanopsis eyeri natural forest ecosystem. Environ. Sci. Pollut. Res. 2022, 29, 10250–10262. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon storage: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar]
- Wang, X.; Feng, Z. Atmospheric carbon storage through agroforestry in China. Energy 1995, 20, 117–121. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerda, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon storage under the climate change scenarios—A review. Environ. Sci. Pollut Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Ghale, B.; Mitra, E.; Sodhi, H.S.; Verma, A.K.; Kumar, S. Carbon Storage Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water Air Soil Pollut. 2022, 233, 228. [Google Scholar] [CrossRef]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, A.; Jacobson, M.G. Soil carbon storage in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar]
- Farooq, T.H.; Kumar, U.; Mo, J.; Shakoor, A.; Wang, J.; Rashid, M.H.U.; Tufail, M.A.; Chen, X.; Yan, W. Intercropping of peanut–tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants 2021, 10, 881. [Google Scholar] [CrossRef]
- Takimoto, A.; Nair, P.K.R.; Nair, V.D. Carbon stock and storage potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Kalita, R.M.; Das, A.K.; Sileshi, G.W.; Nath, A.J. Ecosystem carbon stocks in different aged tea agroforestry systems: Implications for regional ecosystem management. Trop. Ecol. 2020, 61, 203–214. [Google Scholar] [CrossRef]
- Yasin, G.; Ur Rahman, S.; Farrakh, N. Estimating carbon stocks and biomass accumulation in three different agroforestry patterns in the semiarid region of Pakistan. Carbon Manag. 2021, 12, 593–602. [Google Scholar] [CrossRef]
- Cardozo, E.G.; Celentano, D.; Rousseau, G.X.; Silva, H.R.; Muchavisory, H.M.; Gehring, C. Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agrofor. Syst. 2022, 96, 941–956. [Google Scholar] [CrossRef]
- Nijmeijer, A.; Lauri, P.É.; Harmand, J.M.; Saj, S. Carbon dynamics in cocoa agroforestry systems in Central Cameroon: Afforestation of savannah as a storage opportunity. Agrofor. Syst. 2019, 93, 851–868. [Google Scholar] [CrossRef]
- Middendorp, R.S.; Vanacker, V.; Lambin, E.F. Impacts of shaded agroforestry management on carbon storage, biodiversity and farmers income in cocoa production landscapes. Landsc. Ecol. 2018, 33, 1953–1974. [Google Scholar] [CrossRef]
- Kim, D.G.; Kassahun, G.; Yimer, F.; Bruggemann, N.; Glaser, B. Agroforestry practices and on-site charcoal production enhance soil fertility and climate change mitigation in northwestern Ethiopia. Agron. Sustain. Dev. 2022, 42, 80. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Review carbon storage in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Gao, P.; Zhu, J.; Yan, Q.; Yang, K.; Zhang, J. The amelioration of degraded larch (Larix olgensis) soil depends on the proportion of Aralia elata litter in larch-A. elata agroforestry systems. J. For. Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Chowdhury, F.I.; Barua, I.; Chowdhury, A.I.; de Dios, V.R.; Alam, M.S. Agroforestry shows higher potential than reforestation for soil restoration after slash-and-burn: A case study from Bangladesh. Geol. Ecol. landsc. 2022, 6, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Eslamdoust, J.; Sadati, S.E.; Sohrabi, H. Biomass production and carbon stocks of poplar-based agroforestry with canola and wheat crops: A case study. Balt. For. 2022, 28, 560. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Gul, S.; Farooq, T.H.; Siddiqui, M.T.; Asif, M.; Ahmad, I.; Niazi, N.K. Assessing the actual status and farmer’s attitude towards agroforestry in Chiniot, Pakistan. Int. J. Bio. Eco. Engin. 2016, 10, 479–483. [Google Scholar]
- Farooq, T.H.; Nawaz, M.F.; Khan, M.W.; Gilani, M.M.; Buajan, S.; Iftikhar, J.; Tunon, N.; Wu, P. Potentials of agroforestry and constraints faced by the farmers in its adoption in District Nankana Sahib, Pakistan. Int. J. Dev. Sustain. 2017, 6, 586–593. [Google Scholar]
- Farooq, T.H.; Gautam, N.P.; Rashid, M.H.U.; Gilani, M.M.; Nemin, W.; Nawaz, M.F.; Islam, W.; Zainab, M.; Wu, P. Contributions of agroforestry on socioeconomic conditions of farmers in central Punjab, Pakistan–a case study. Cercet. Agron. Mold. 2018, 174, 91–101. [Google Scholar] [CrossRef]
- Panwar, P.; Mahalingappa, D.G.; Kaushal, R.; Bhardwaj, D.R.; Chakravarty, S.; Shukla, G.; Thakur, N.S.; Chavan, B.; Pal, S.; Nayak, B.G.; et al. Biomass production and carbon storage potential of different agroforestry systems in India: A critical review. Forests 2022, 13, 1274. [Google Scholar] [CrossRef]
- Siarudin, M.; Rahman, S.A.; Artati, Y.; Indrajaya, Y.; Narulita, S.; Ardha, M.J.; Larjavaara, M. Carbon storage potential of agroforestry systems in degraded landscapes in West Java, Indonesia. Forests 2021, 12, 714. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon storage. J. Plant. Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D.R. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Li, L.; Wei, S.; Lian, J. Distributional regularity of species diversity in plant communities at different latitudes in subtropics. Acta Ecol. Sin. 2020, 40, 1–9. [Google Scholar]
- Yan, W.; Farooq, T.H.; Chen, Y.; Wang, W.; Shabbir, R.; Kumar, U.; Riaz, M.U.; Alotaibi, S.S.; Peng, Y.; Chen, X. Soil Nitrogen Transformation Process Influenced by Litterfall Manipulation in Two Subtropical Forest Types. Front. Plant Sci. 2022, 13, 923410. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, R.H.; Dhyani, S.K.; Yadav, R.S.; Singh, R. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 2011, 100, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.T.; Su, P.X.; An, L.Z.; Shi, R.; Zhou, Z.J. Carbon stocks and biomass production of three different agroforestry systems in the temperate desert region of northwestern China. Agrofor. Syst. 2017, 91, 239–247. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.; Sikka, R. Soil organic carbon and nitrogen pools in a chronosequence of poplar (Populus deltoides) plantations in alluvial soils of Punjab, India. Agrofor. Syst. 2015, 89, 1049–1063. [Google Scholar] [CrossRef]
- Popp, M.; Nalley, L.; Fortin, C.; Smith, A.; Brye, K. Estimating Net Carbon Emissions and Agricultural Response to Potential Carbon Offset Policies. Agron. J. 2011, 103, 1132–1143. [Google Scholar] [CrossRef]
- Maissupova, I.K.; Sarsekova, D.N.; Weger, J.; Bubenik, J. Comparison of the growth of fast-growing poplar and willow in two sites of Central Kazakhstan. J. For. Sci. 2017, 63, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Li, H.; Sun, Q.; Chen, L. Biomass production and carbon stocks in poplar-crop intercropping systems: A case study in northwestern Jiangsu, China. Agrofor. Syst. 2010, 79, 213–222. [Google Scholar] [CrossRef]
- Chavan, S.B.; Dhillon, R.S.; Ajit; Rizyi, R.H.; Sirohi, C.; Handa, A.K.; Bharadwaj, K.K.; Johar, V.; Kumar, T.; Singh, P.; et al. Estimating biomass production and carbon storage of poplar-based agroforestry systems in India. Environ. Dev. Sustain. 2022, 24, 13493–13521. [Google Scholar] [CrossRef]
- Fang, S.; Xue, J.; Tang, L. Biomass production and carbon storage potential in poplar plantations with different management patterns. J. Environ. Manag. 2007, 85, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Xu, X.; Yu, X.; Li, Z. Poplar in wetland agroforestry: A case study for its ecological benefits, site productivity and economics. Wetl. Ecol. Manag. 2005, 13, 93–104. [Google Scholar] [CrossRef]
- Farooq, T.H.; Wu, W.; Tigabu, M.; Ma, X.; He, Z.; Rashid, M.H.U.; Gilani, M.M.; Wu, P. Growth, biomass production and root development of Chinese fir in relation to initial planting density. Forests 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Arevalo, C.B.M.; Bhatti, J.S.; Chang, S.X.; Sidders, D. Land use change effects on ecosystem carbon balance: From agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 2011, 141, 342–349. [Google Scholar] [CrossRef]
- Tang, X.L.; Perez-Cruzado, C.; Vor, T.; Fehrmann, L.; Alvarez-Gonzalez, J.G.; Kleinn, C. Development of stand density management diagrams for Chinese fir plantations. Forestry 2016, 89, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, Z.; Xu, Z.; Xu, L.; Xu, Q.; Lin, J. Estimated biomass carbon in thinned Cunninghamia lanceolate plantations at diferent stand-ages. J. For. Res. 2021, 32, 1489–1501. [Google Scholar] [CrossRef]
- Wall, A.J.; Kemp, P.D.; Mackay, A.D. Power, IL Evaluation of easily measured stand inventory parameters as predictors of PAR transmittance for use in poplar silvopastoral management. Agric. Ecosyst. Environ. 2010, 139, 665–674. [Google Scholar] [CrossRef]
Stand Age (yr) | Biomass of Individual Tree (kg) | Total | |||
---|---|---|---|---|---|
Leaf | Branch | Stem | Root | ||
3 | 1.85 | 10.42 | 11.75 | 6.82 | 30.84 (5.32) |
9 | 6.63 | 51.92 | 193.73 | 43.88 | 296.16 (16.35) |
13 | 8.11 | 63.84 | 199.47 | 78.25 | 349.67 (25.45) |
17 | 9.36 | 79.96 | 207.36 | 96.44 | 393.12 (19.36) |
Stand Age (yr) | Poplar Biomass (t/ha) | Crop Biomass (t/ha) | Overall Total Biomass (t/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stem | Branch | Leaf | Root | Total | Wheat | Peanut | Total | ||
3 | 4.88 | 4.32 | 0.77 | 2.83 | 12.80 (1.3) | 5.28 | 8.77 | 14.05 (0.9) | 26.85 (2.4) |
9 | 58.70 | 15.73 | 2.01 | 13.30 | 89.74 (8.3) | 6.95 | 12.30 | 19.25 (1.4) | 108.99 (10.2) |
13 | 50.86 | 16.28 | 2.07 | 19.95 | 89.17 (9.7) | 10.25 | 16.90 | 27.15 (2.5) | 116.32 (10.8) |
17 | 52.88 | 20.39 | 2.39 | 24.59 | 100.25 (11.1) | 7.55 | 13.84 | 21.39 (2.1) | 121.64 (12.2) |
Stand Age (yr) | Stand Density (Tree/ha) | DBH (cm) | Height (m) | Crown Width (m2) | Planting Spacing (m) |
---|---|---|---|---|---|
3 | 415 ± 26 | 9.0 ± 2.7 | 7.4 ± 2.8 | 2.9 × 3.1 | 3 × 8 |
9 | 303 ± 21 | 24.0 ± 3.9 | 21.9 ± 3.4 | 2.8 × 3.6 | 3 × 10 |
13 | 225 ± 27 | 40.0 ± 3.1 | 26.5 ± 3.9 | 3.7 × 7.3 | 8 × 10 |
17 | 255 ± 24 | 42.6 ± 4.8 | 27.2 ± 3.5 | 4.3 × 6.3 | 8 × 10 |
Tree Organs | a | b | R2 |
---|---|---|---|
Leaf | 0.0010 | 1.1902 | 0.9001 |
Branch | 0.0146 | 0.9174 | 0.9282 |
Stem | 0.0810 | 1.0658 | 0.9982 |
Root | 0.0199 | 0.8409 | 0.9485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yan, W.; Peng, Y.; Wan, M.; Farooq, T.H.; Fan, W.; Lei, J.; Yuan, C.; Wang, W.; Qi, Y.; et al. Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China. Plants 2023, 12, 2451. https://doi.org/10.3390/plants12132451
Wang Z, Yan W, Peng Y, Wan M, Farooq TH, Fan W, Lei J, Yuan C, Wang W, Qi Y, et al. Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China. Plants. 2023; 12(13):2451. https://doi.org/10.3390/plants12132451
Chicago/Turabian StyleWang, Zhong, Wende Yan, Yuanying Peng, Meng Wan, Taimoor Hassan Farooq, Wei Fan, Junjie Lei, Chenglin Yuan, Wancai Wang, Yaqin Qi, and et al. 2023. "Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China" Plants 12, no. 13: 2451. https://doi.org/10.3390/plants12132451
APA StyleWang, Z., Yan, W., Peng, Y., Wan, M., Farooq, T. H., Fan, W., Lei, J., Yuan, C., Wang, W., Qi, Y., & Chen, X. (2023). Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China. Plants, 12(13), 2451. https://doi.org/10.3390/plants12132451