Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. BBD Method Optimization of Extraction Conditions
2.2. Statistical Analysis and Model Fitting
2.3. Effect of Independent Variables (A, B, C, and D) of Ultrasound-Assisted Extraction on R1, R2, R3, and R4
2.4. Response Surface Analysis of R1, R2, R3, and R4
2.5. Verification of the Model
2.6. Optimized Conditions of the Extraction Parameters
3. Material and Methods
3.1. Apparatus and Reagents
3.2. Plant Material
3.3. Ultrasound-Assisted Extraction of M. oleifera leaves
3.4. Determination of Total Flavonoid Content (TFC)
3.5. Determination of Total Phenolic Content (TPC)
3.6. Insulin-Resistant Antidiabetic Assay of BBD-Run M. oleifera Extract Samples
3.7. BBD Experimental Design
3.7.1. Single-Factor Experimental Design
3.7.2. Optimization of Extraction Variables Using the BBD Method and Method Validity Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 310, 451–465. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J. Med. Food 2010, 13, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Lako, J.; Trenerry, V.C.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 2007, 101, 1727–1741. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 2009, 47, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Suri, S.; Upadhyay, G.; Singh, B.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int. J. Food Sci. Nutr. 2007, 58, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Fattore, M.; Montesano, D.; Pagano, E.; Teta, R.; Borrelli, F.; Mangoni, A.; Seccia, S.; Albrizio, S. Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J. Food Compos. Anal. 2016, 53, 61–68. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Tanase, C.; Domokos, E.; Coșarcă, S.; Miklos, A.; Imre, S.; Domokos, J.; Dehelean, C.A. Study of the Ultrasound-assisted Extraction of Polyphenols from Beech (Fagus sylvatica L.) Bark. BioResources 2018, 13, 2247–2267. [Google Scholar] [CrossRef]
- Zhao, B.; Deng, J.; Li, H.; He, Y.; Lan, T.; Wu, D.; Gong, H.; Zhang, Y.; Chen, Z. Optimization of phenolic compound extraction from chinese moringa oleifera leaves and antioxidant activities. J. Food Qual. 2019, 2019, 5346279. [Google Scholar] [CrossRef] [Green Version]
- Hamed, Y.S.; Abdin, M.; Akhtar, H.M.S.; Chen, D.; Wan, P.; Chen, G.; Zeng, X. Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. S. Afr. J. Bot. 2019, 124, 270–279. [Google Scholar] [CrossRef]
- Yong-Bing, X.; Gui-Lin, C.; Ming-Quan, G. Antioxidant and anti-inflammatory activities of the crude extracts of moringa oleifera from kenya and their correlations with flavonoids. Antioxidants 2019, 8, 296. [Google Scholar]
- Daghaghele, S.; Kiasat, A.R.; Safieddin Ardebili, S.M.; Mirzajani, R. Intensification of Extraction of Antioxidant Compounds from Moringa Oleifera Leaves Using Ultrasound-Assisted Approach: BBD-RSM Design. Int. J. Fruit Sci. 2021, 21, 693–705. [Google Scholar] [CrossRef]
- Pollini, L.; Tringaniello, C.; Ianni, F.; Blasi, F.; Manes, J.; Cossignani, L. Impact of ultrasound extraction parameters on the antioxidant properties of Moringa oleifera leaves. Antioxidants 2020, 9, 277. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, W.; Chen, G.; Luo, Y. Optimization of extraction conditions for maximal phenolic, flavonoid and antioxidant activity from melaleuca bracteata leaves using the response surface methodology. PLoS ONE 2016, 11, e0162139. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, H.; Yousif, E.; Khan, N.; Mahmud, R.; Murugaiyah, V.; Asmawi, M. Optimizing Extraction Conditions of Moringa oleifera Lam Leaf for Percent Yield, Total Phenolics Content, Total Flavonoids Content and Total Radical Scavenging Activity. Int. J. Adv. Res. 2016, 4, 682–695. Available online: http://www.journalijar.com/article/13133/optimizing-extraction-conditions-of-moringa-oleifera-lam-leaf-for-percent-yield,-total-phenolics-content,-total-flavonoids-content-and-total-radical-scavenging-activity./ (accessed on 20 February 2023). [CrossRef] [PubMed] [Green Version]
- Patle, D.; Vyas, M.; Khatik, G.L. A review on natural products and herbs used in the management of diabetes. Curr. Diabetes Rev. 2021, 17, 186–197. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101500616&doi=10.2174%2f1573399816666200408090058&partnerID=40&md5=d6f519e798a0e01325ab2e5dab19d7bc (accessed on 1 March 2023). [PubMed]
- Vyas, S.; Kachhwaha, S.; Kothari, S.L. Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam. Pharmacogn. J. 2015, 7, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Li, Q.; Zhang, S.; Liu, H.; Zhao, L.; Cheng, H.; Zhang, Y.; Zhou, J.; Zhang, H. Identification of dipeptidyl peptidase IV inhibitors: Virtual screening, synthesis and biological evaluation. Chem. Biol. Drug Des. 2014, 84, 364–377. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, G.; Zhang, J.; Jia, S.; Li, F.; Wang, Y.; Wu, S. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Formato, A.; Gallo, M.; Ianniello, D.; Montesano, D.; Naviglio, D. Supercritical fluid extraction of α- And β-acids from hops compared to cyclically pressurized solid-liquid extraction. J. Supercrit. Fluids 2013, 84, 113–120. [Google Scholar] [CrossRef]
- Naviglio, D.; Montesano, D.; Gallo, M. Laboratory production of lemon liqueur (Limoncello) by conventional maceration and a two-syringe system to illustrate rapid solid-liquid dynamic extraction. J. Chem. Educ. 2015, 92, 911–915. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Galanakis, C.M.; Brnčić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci. Technol. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Nwidu, L.L.; Elmorsy, E.; Thornton, J.; Wijamunige, B.; Wijesekara, A.; Tarbox, R.; Warren, A.; Carter, W.G. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. Pharm. Biol. 2017, 55, 1875–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aromat. Plants 2018, 11, 12–17. [Google Scholar] [CrossRef]
- Parmar, H.S.; Jain, P.; Chauhan, D.S.; Bhinchar, M.K.; Munjal, V.; Yusuf, M.; Choube, K.; Tawani, A.; Tiwari, V.; Manivannan, E.; et al. DPP-IV inhibitory potential of naringin: An in silico, in vitro and in vivo study. Diabetes Res. Clin. Pract. 2012, 97, 105–111. [Google Scholar] [CrossRef] [PubMed]
Independent Variable | Factor Level | Dependent Variable | |||||
---|---|---|---|---|---|---|---|
−1 | 0 | +1 | |||||
A | 0 | 25 | 50 | Extraction yield (% w/w) (R1) | TFC (mg QE/g extract) (R2) | TPC (mg GAE/g extract) (R3) | DPP IV enzyme inhibitory activity (% inhibition) (R4) |
B | 30 | 45 | 60 | ||||
C | 10 | 35 | 60 | ||||
D | 30 | 45 | 60 |
Response | Equation |
---|---|
R1 | R1 = 85.76 + 0.5233 A + 0.1925 B + 7.59 C − 0.4033 D − 2.53 AB − 0.7100 AC − 0.0075 AD − 0.3025 BC − 0.2075 BD − 0.4400 CD + 0.3383 A2 + 0.7746 B2 − 0.9804 C2 − 2.2142 D2 |
R2 | R2 = 62.38 + 0.9508 A + 9.72 B − 0.6917 C + 2.07 D − 2.38 AB + 6.44 AC + 1.92 AD − 1.43 BC + 0.5350 BD − 2.82 CD − 0.365 8A2 + 1.81 B2 + 1.09 C2 + 0.4654 D2 |
R3 | R3 = 88.62 + 3.32 A − 2.16 B + 0.2000 C + 6.10 D − 0.8850 AB + 9.55 AC − 1.05 AD + 3.52 BC + 0.2025 BD + 0.7500 CD + 2.58 A2 + 1.18 B2 + 5.79 C2 − 12.96 D2 |
R4 | R4 = 72.69 − 7.02 A − 3.33 B − 5.78 C − 0.6458 D − 6.14A B − 6.46 AC − 0.9875 AD − 4.76 BC − 5.18 BD − 10.87 CD − 4.29 A2 − 0.3296 B2 − 4.58 C2 − 5.81 D2 |
Run | Code Level | Response Variable | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | R1 | R2 | R3 | R4 | |||||
Act. | Pred. | Act. | Pred. | Act. | Pred. | Act. | Pred. | |||||
1 | 0 | −1 | 0 | −1 | 86.37 | 86.30 | 55.38 | 55.58 | 70.46 | 70.46 | 76.46 | 76.44 |
2 | 0 | +1 | −1 | 0 | 78.17 | 78.16 | 72.44 | 72.14 | 90.98 | 90.88 | 65.00 | 65.00 |
3 | +1 | 0 | 0 | −1 | 89.77 | 89.71 | 59.23 | 59.43 | 75.76 | 76.12 | 80.92 | 80.92 |
4 | +1 | 0 | +1 | 0 | 92.31 | 92.00 | 70.24 | 72.48 | 110.48 | 110.52 | 79.88 | 80.28 |
5 | +1 | 0 | −1 | 0 | 79.46 | 79.40 | 59.43 | 59.43 | 90.98 | 91.08 | 76.24 | 75.11 |
6 | 0 | +1 | 0 | +1 | 87.86 | 86.06 | 79.00 | 77.66 | 81.99 | 80.28 | 69.05 | 69.25 |
7 | +1 | −1 | 0 | 0 | 89.30 | 89.88 | 57.27 | 57.27 | 105.18 | 105.22 | 90.42 | 91.22 |
8 | +1 | +1 | 0 | 0 | 85.47 | 87.27 | 72.14 | 72.18 | 91.82 | 90.82 | 74.62 | 75.12 |
9 | −1 | 0 | −1 | 0 | 78.51 | 78.51 | 72.84 | 70.24 | 100.98 | 100.98 | 78.57 | 78.57 |
10 | 0 | 0 | 0 | 0 | 88.63 | 88.60 | 59.87 | 58.89 | 84.72 | 82.42 | 68.65 | 68.71 |
11 | 0 | 0 | −1 | +1 | 77.66 | 77.36 | 72.24 | 70.64 | 90.42 | 90.42 | 56.54 | 55.89 |
12 | −1 | 0 | 0 | −1 | 88.51 | 88.71 | 58.08 | 58.08 | 76.02 | 75.86 | 65.28 | 65.08 |
13 | 0 | 0 | 0 | 0 | 86.06 | 85.06 | 68.55 | 68.35 | 100.90 | 102.00 | 69.46 | 69.44 |
14 | −1 | +1 | 0 | 0 | 88.16 | 89.16 | 75.65 | 75.95 | 80.42 | 80.73 | 73.02 | 73.02 |
15 | 0 | 0 | 0 | 0 | 82.60 | 82.67 | 58.71 | 57.81 | 80.23 | 80.26 | 79.95 | 80.15 |
16 | 0 | −1 | −1 | 0 | 78.46 | 79.04 | 52.93 | 53.33 | 100.42 | 100.42 | 86.01 | 85.89 |
17 | +1 | 0 | 0 | +1 | 82.60 | 82.66 | 66.19 | 64.89 | 80.90 | 83.10 | 81.75 | 81.55 |
18 | 0 | 0 | −1 | −1 | 72.71 | 72.57 | 58.88 | 57.81 | 73.06 | 70.88 | 78.57 | 79.55 |
19 | 0 | 0 | +1 | +1 | 94.20 | 92.87 | 63.86 | 63.76 | 90.42 | 90.22 | 64.29 | 62.20 |
20 | 0 | +1 | +1 | 0 | 91.40 | 91.40 | 70.24 | 75.41 | 100.34 | 100.34 | 63.10 | 63.10 |
21 | −1 | 0 | +1 | 0 | 94.20 | 94.24 | 57.89 | 57.81 | 82.26 | 80.54 | 56.35 | 56.35 |
22 | 0 | +1 | 0 | −1 | 87.61 | 87.61 | 76.35 | 75.65 | 71.10 | 70.90 | 61.11 | 60.71 |
23 | 0 | −1 | +1 | 0 | 92.90 | 91.63 | 56.46 | 56.68 | 95.68 | 95.58 | 65.08 | 65.18 |
24 | 0 | 0 | +1 | −1 | 91.01 | 90.07 | 61.77 | 59.97 | 70.06 | 71.38 | 42.86 | 43.16 |
25 | −1 | −1 | 0 | 0 | 81.88 | 79.80 | 51.26 | 51.86 | 90.24 | 90.22 | 64.25 | 64.29 |
26 | 0 | −1 | 0 | +1 | 87.45 | 88.21 | 55.89 | 56.39 | 80.54 | 80.54 | 63.66 | 64.10 |
27 | −1 | 0 | 0 | +1 | 81.37 | 81.33 | 57.37 | 57.27 | 85.34 | 85.34 | 62.16 | 62.14 |
Source | R1 | R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Squares | F-Value | p-Value | Sum of Squares | df | Mean Squares | F-Value | p-Value | |
Model | 739.17 | 14 | 52.80 | 5.69 | 0.0023 | 1472.54 | 14 | 105.18 | 6.69 | 0.0011 |
A | 3.29 | 1 | 3.29 | 0.3544 | 0.5627 | 10.85 | 1 | 10.85 | 0.6902 | 0.4223 |
B | 0.4447 | 1 | 0.4447 | 0.0479 | 0.8304 | 1133.55 | 1 | 1133.55 | 72.11 | <0.0001 |
C | 690.84 | 1 | 690.84 | 74.49 | <0.0001 | 5.74 | 1 | 5.74 | 0.3652 | 0.5569 |
D | 1.95 | 1 | 1.95 | 0.2105 | 0.6546 | 51.50 | 1 | 51.50 | 3.28 | 0.0954 |
AB | 25.55 | 1 | 25.55 | 2.76 | 0.1228 | 22.66 | 1 | 22.66 | 1.44 | 0.2531 |
AC | 2.02 | 1 | 2.02 | 0.2174 | 0.6494 | 165.89 | 1 | 165.89 | 10.55 | 0.0070 |
AD | 0.0002 | 1 | 0.0002 | 0.0000 | 0.9962 | 14.71 | 1 | 14.71 | 0.9356 | 0.3525 |
BC | 0.3660 | 1 | 0.3660 | 0.0395 | 0.8459 | 8.21 | 1 | 8.21 | 0.5222 | 0.4838 |
BD | 0.1722 | 1 | 0.1722 | 0.0186 | 0.8939 | 1.14 | 1 | 1.14 | 0.0728 | 0.7918 |
CD | 0.7744 | 1 | 0.7744 | 0.0835 | 0.7775 | 31.75 | 1 | 31.75 | 2.02 | 0.1807 |
A2 | 0.6105 | 1 | 0.6105 | 0.0658 | 0.8019 | 0.7138 | 1 | 0.7138 | 0.0454 | 0.8348 |
B2 | 3.20 | 1 | 3.20 | 0.3450 | 0.5678 | 17.50 | 1 | 17.50 | 1.11 | 0.3121 |
C2 | 5.13 | 1 | 5.13 | 0.5528 | 0.4715 | 6.31 | 1 | 6.31 | 0.4016 | 0.5382 |
D2 | 0.2446 | 1 | 0.2446 | 0.0264 | 0.8737 | 1.16 | 1 | 1.16 | 0.0735 | 0.7909 |
Residual | 111.29 | 12 | 9.27 | 188.63 | 12 | 15.72 | ||||
Lack of Fit | 92.98 | 10 | 9.30 | 1.02 | 0.5930 | 130.80 | 10 | 13.08 | 0.4523 | 0.8397 |
Pure Error | 18.31 | 2 | 9.16 | 57.84 | 2 | 28.92 | ||||
Cor total | 850.46 | 26 | 1661.17 | 26 | ||||||
R2 | 0.9691 | 0.9864 | ||||||||
Adj. R2 | 0.9165 | 0.9540 | ||||||||
Pred. R2 | 0.8218 | 0.8681 | ||||||||
Adequate precision | 7.4695 | 8.9156 |
Source | R3 | R4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Squares | F-Value | p-Value | Sum of Squares | df | Mean Squares | F-Value | p-Value | |
Model | 2720.14 | 14 | 194.30 | 4.24 | 0.0083 | 2664.05 | 14 | 190.29 | 11.81 | <0.0001 |
A | 132.40 | 1 | 132.40 | 2.89 | 0.1511 | 590.80 | 1 | 590.80 | 36.67 | <0.0001 |
B | 55.77 | 1 | 55.77 | 1.22 | 0.2918 | 133.20 | 1 | 133.20 | 8.27 | 0.0140 |
C | 0.4800 | 1 | 0.4800 | 0.0105 | 0.9202 | 401.02 | 1 | 401.02 | 24.89 | 0.0003 |
D | 445.91 | 1 | 445.91 | 9.72 | 0.0089 | 5.01 | 1 | 5.01 | 0.3106 | 0.5875 |
AB | 3.13 | 1 | 3.13 | 0.0683 | 0.7983 | 150.92 | 1 | 150.92 | 9.37 | 0.0099 |
AC | 365.19 | 1 | 365.19 | 7.96 | 0.0154 | 167.18 | 1 | 167.18 | 10.38 | 0.0073 |
AD | 4.37 | 1 | 4.37 | 0.0952 | 0.7629 | 3.90 | 1 | 3.90 | 0.2421 | 0.6316 |
BC | 49.70 | 1 | 49.70 | 1.08 | 0.3184 | 90.54 | 1 | 90.54 | 5.62 | 0.0354 |
BD | 0.1640 | 1 | 0.1640 | 0.0036 | 0.9533 | 107.54 | 1 | 107.54 | 6.67 | 0.0239 |
CD | 2.25 | 1 | 2.25 | 0.0491 | 0.8284 | 472.19 | 1 | 472.19 | 29.31 | 0.0002 |
A2 | 35.47 | 1 | 35.47 | 0.7732 | 0.3965 | 98.14 | 1 | 98.14 | 6.09 | 0.0296 |
B2 | 7.39 | 1 | 7.39 | 0.1612 | 0.6951 | 0.5793 | 1 | 0.5793 | 0.0360 | 0.8528 |
C2 | 178.87 | 1 | 178.87 | 3.90 | 0.0718 | 111.96 | 1 | 111.96 | 6.95 | 0.0217 |
D2 | 895.80 | 1 | 895.80 | 19.53 | 0.0008 | 180.14 | 1 | 180.14 | 11.18 | 0.0058 |
Residual | 550.42 | 12 | 45.87 | 193.35 | 12 | 16.11 | ||||
Lack of Fit | 314.02 | 10 | 31.40 | 0.2657 | 0.9396 | 113.89 | 10 | 11.39 | 0.2866 | 0.9291 |
Pure Error | 236.40 | 2 | 118.20 | 79.46 | 2 | 39.73 | ||||
Cor total | 3270.56 | 26 | 2857.40 | 26 | ||||||
R2 | 0.9317 | 0.9323 | ||||||||
Adj. R2 | 0.9054 | 0.9134 | ||||||||
Pred. R2 | 0.7843 | 0.7079 | ||||||||
Adequate precision | 8.3776 | 15.8775 |
Set | A | B | C | D | R1 | R2 | R3 | R4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Act. Value | Pred. Value | RSE (%) | Act. Value | Pred. Value | RSE (%) | Act. Value | Pred. Value | RSE (%) | Act. Value | Pred. Value | RSE (%) | |||||
1 | 50:50 | 300:10 | 35 | 45 | 88.36 | 89.74 | 1.54 | 59.70 | 58.43 | 2.17 | 98.54 | 98.74 | 0.20 | 93.84 | 93.80 | 0.04 |
2 | 5:95 | 300:10 | 25 | 35 | 78.15 | 80.76 | 3.23 | 53.88 | 53.97 | 0.17 | 81.82 | 83.53 | 2.05 | 80.25 | 78.50 | 2.23 |
3 | 25:75 | 300:10 | 10 | 45 | 80.24 | 79.48 | 0.96 | 56.74 | 55.82 | 1.65 | 103.01 | 101.07 | 1.92 | 80.73 | 82.31 | 1.92 |
Parameter No. | Responses | Actual Values (SD) | Predicted Value (SD) | RSE% |
---|---|---|---|---|
1 | R1 | 87.99 (0.16) | 88.10 (0.11) | 0.13 |
2 | R2 | 56.63 (0.43) | 56.61 (0.44) | 0.04 |
3 | R3 | 97.26 (0.33) | 97.16 (0.30) | 0.10 |
4 | R4 | 93.32 (0.06) | 93.38 (0.04) | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setyani, W.; Murwanti, R.; Sulaiman, T.N.S.; Hertiani, T. Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro. Plants 2023, 12, 2455. https://doi.org/10.3390/plants12132455
Setyani W, Murwanti R, Sulaiman TNS, Hertiani T. Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro. Plants. 2023; 12(13):2455. https://doi.org/10.3390/plants12132455
Chicago/Turabian StyleSetyani, Wahyuning, Retno Murwanti, Teuku Nanda Saifullah Sulaiman, and Triana Hertiani. 2023. "Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro" Plants 12, no. 13: 2455. https://doi.org/10.3390/plants12132455
APA StyleSetyani, W., Murwanti, R., Sulaiman, T. N. S., & Hertiani, T. (2023). Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro. Plants, 12(13), 2455. https://doi.org/10.3390/plants12132455