Strategies for the Management of Aggressive Invasive Plant Species
Abstract
:1. Introduction
2. Current Methods to Control Invasive Plants, Their Viability, and Problems
3. Potential Applications of IAP Waste from Management Actions
4. Remarks on the Risks and Opportunities of Adopting the Use of Waste from IAPs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaertner, M.; Den Breeyen, A.; Hui, C.; Richardson, D.M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geogr. 2009, 33, 319–338. [Google Scholar] [CrossRef]
- Le Maître, D.C.; Gaertner, M.; Marchante, E.; Ens, E.-J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Simberloff, D. How common are invasion-induced ecosystem impacts? Biol. Invasions 2011, 13, 1255–1268. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.M.; Genovesi, P.; MacFadyen, S. Plant invasion science in protected areas: Progress and priorities. Biol. Invasions 2017, 19, 1353–1378. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Foxcroft, L.C.; Pyšek, P.; Wood, L.E.; Richardson, D.M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 2020, 243, 108424. [Google Scholar] [CrossRef]
- Mack, R.N.; Lonsdale, W.M. Humans as global plant dispersers: Getting more than we bargained for: Current introductions of species for aesthetic purposes present the largest single challenge for predicting which plant immigrants will become future pests. BioScience 2001, 51, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Brundu, G.; Richardson, D.M. Planted forests and invasive alien trees in Europe: A code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 2016, 30, 5–47. [Google Scholar] [CrossRef]
- Hulme, P.E.; Pyšek, P.; Jarošík, V.; Pergl, J.; Schaffner, U.; Vilà, M. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 2013, 28, 212–218. [Google Scholar] [CrossRef]
- Milanović, M.; Knapp, S.; Pyšek, P.; Kühn, I. Trait–environment relationships of plant species at different stages of the introduction process. NeoBiota 2020, 58, 55–74. [Google Scholar] [CrossRef]
- Dzikiti, S.; Ntshidi, Z.; Le Maitre, D.C.; Bugan, R.D.; Mazvimavi, D.; Schachtschneider, K.; Jovanovic, N.Z.; Pienaar, H.H. Assessing water use by Prosopis invasions and Vachellia karroo trees: Implications for groundwater recovery following alien plant removal in an arid catchment in South Africa. For. Ecol. Manag. 2017, 398, 153–163. [Google Scholar] [CrossRef]
- Mugnai, M.; Benesperi, R.; Viciani, D.; Ferretti, G.; Giunti, M.; Giannini, F.; Lazzaro, L. Impacts of the invasive alien Carpobrotus spp. on coastal habitats on a Mediterranean island (Giglio Island, Central Italy). Plants 2022, 11, 2802. [Google Scholar] [CrossRef] [PubMed]
- Radtke, A.; Ambraß, S.; Zerbe, S.; Tonon, G.; Fontana, V.; Ammer, C. Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For. Ecol. Manag. 2013, 291, 308–317. [Google Scholar] [CrossRef]
- Lorenzo, P.; González, L.; Ferrero, V. Effect of plant origin and phenological stage on the allelopathic activity of the invasive species Oxalis pes-caprae. Am. J. Bot. 2021, 108, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Volakakis, N.; Kabourakis, E.; Rempelos, L.; Kiritsakis, A.; Leifert, C. Effect of different cover crops, mass-trapping systems and environmental factors on invertebrate activity in table olive orchards—Results from field experiments in Crete, Greece. Agronomy 2022, 12, 2576. [Google Scholar] [CrossRef]
- Pintor-Ibarra, L.F.; Rivera-Prado, J.J.; Ngangyo-Heya, M.; Rutiaga-Quiñones, J.G. Evaluation of the chemical components of Eichhornia crassipes as an alternative raw material for pulp and paper. BioResources 2018, 13, 2800–2813. [Google Scholar] [CrossRef]
- Bakrim, W.B.; Ezzariai, A.; Karouach, F.; Sobeh, M.; Kibret, M.; Hafidi, M.; Kouisni, L.; Yasri, A. Eichhornia crassipes (Mart.) Solms: A comprehensive review of its chemical composition, traditional use, and value-added products. Front. Pharmacol. 2022, 13, 842511. [Google Scholar] [CrossRef]
- Lorenzo, P.; Pazos-Malvido, E.; Rubido-Bará, M.; Reigosa, M.J.; González, L. Invasion by the leguminous tree Acacia dealbata (Mimosaceae) reduces the native understorey plant species in different communities. Aust. J. Bot. 2012, 60, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Pereira, C.S.; Rodríguez-Echeverría, S. Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Biol. Biochem. 2013, 57, 156–163. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, S.; Afonso, C.; Correia, M.; Lorenzo, P.; Roiloa, S.R. The effect of soil legacy on competition and invasion by Acacia dealbata Link. Plant Ecol. 2013, 214, 1139–1146. [Google Scholar] [CrossRef]
- Lazzaro, L.; Giuliani, C.; Fabiani, A.; Agnelli, A.E.; Pastorelli, R.; Lagomarsino, A.; Benesperi, R.; Calamassi, R.; Foggi, B. Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Sci. Total Environ. 2014, 497, 491–498. [Google Scholar] [CrossRef]
- Keet, J.H.; Ellis, A.G.; Hui, C.; Nóvoa, A.; Le Roux, J.J. Impacts of invasive Australian acacias on soil bacterial community composition, microbial enzymatic activities, and nutrient availability in Fynbos Soils. Microb. Ecol. 2021, 82, 704–721. [Google Scholar] [CrossRef] [PubMed]
- Yapi, T.S.; O’Farrell, P.J.; Dziba, L.E.; Esler, K.J. Alien tree invasion into a South African montane grassland ecosystem: Impact of Acacia species on rangeland condition and livestock carrying capacity. Int. J. Biodiv. Sci. Ecosys. Serv. Manag. 2018, 14, 105–116. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Zengeya, T.A.; Richardson, D.M. A review of the impacts of biological invasions in South Africa. Biol. Invasions 2022, 24, 27–50. [Google Scholar] [CrossRef]
- Marchante, E.; Kjøller, A.; Struwe, S.; Freitas, H. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 2008, 40, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Raghurama, M.; Sankaran, M. Invasive nitrogen-fixing plants increase nitrogen availability and cycling rates in a montane tropical grassland. Plant Ecol. 2022, 223, 13–26. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Blignaut, J.N.; Clulow, A.; Dzikiti, S.; Everson, C.S.; Grgens, A.H.M.; Gush, M.B. Impacts of plant invasions on terrestrial water flows in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer: Cham, Germany, 2020; Volume 14, pp. 431–457. [Google Scholar]
- Fletcher, R.A.; Brooks, R.K.; Lakoba, V.T.; Sharma, G.; Heminger, A.R.; Dickinson, C.C.; Barney, J.N. Invasive plants negatively impact native, but not exotic, animals. Glob. Chang. Biol. 2019, 25, 3694–3705. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Cordero-Rivera, A.; González, L. Impacts of the invasive plant Carpobrotus edulis on herbivore communities on the Iberian Peninsula. Biol. Invasions 2021, 23, 1425–1441. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar]
- Fantle-Lepczyk, J.E.; Haubrock, P.J.; Kramer, A.M.; Cuthbert, R.N.; Turbelin, A.J.; Crystal-Ornelas, R.; Diagne, C.; Courchamp, F. Economic costs of biological invasions in the United States. Sci. Total Environ. 2022, 806, 151318. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Turbelin, A.J.; Cuthbert, R.N.; Nóvoa, A.; Taylor, N.G.; Angulo, E.; Ballesteros-Mejia, L.; Bodey, T.W.; Capinha, C.; Diagne, C.; et al. Economic costs of invasive alien species across Europe. NeoBiota 2021, 67, 153–190. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Diagne, C.; Hudgins, E.J.; Turbelin, A.; Ahmed, D.A.; Albert, C.; Bodey, T.W.; Briski, E.; Essl, F.; Haubrock, P.J.; et al. Biological invasion costs reveal insufficient proactive management worldwide. Sci. Total Environ. 2022, 819, 153404. [Google Scholar] [CrossRef] [PubMed]
- Moodley, D.; Angulo, E.; Cuthbert, R.N.; Leung, B.; Turbelin, A.J.; Novoa, A.; Kourantidou, M.; Heringer, G.; Haubrock, P.J.; Renault, D.; et al. Surprisingly high economic costs of biological invasions in protected areas. Biol. Invasions 2022, 24, 1995–2016. [Google Scholar] [CrossRef]
- Kourantidou, M.; Cuthbert, R.N.; Haubrock, P.J.; Novoa, A.; Taylor, N.G.; Leroy, B.; Capinha, C.; Renault, D.; Angulo, E.; Diagne, C.; et al. Economic costs of invasive alien species in the Mediterranean basin. NeoBiota 2021, 67, 427–458. [Google Scholar] [CrossRef]
- Novoa, A.; Dehnen-Schmutz, K.; Fried, J.; Vimercati, G. Does public awareness increase support for invasive species management? Promising evidence across taxa and landscape types. Biol. Invasions 2017, 19, 3691–3705. [Google Scholar] [CrossRef]
- Ricciardi, A.; Iacarella, J.C.; Aldridge, D.C.; Blackburn, T.M.; Carlton, J.T.; Catford, J.A.; Dick, J.T.A.; Hulme, P.; Jeschke, J.M.; Liebhold, A.M.; et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 2021, 29, 119–141. [Google Scholar] [CrossRef]
- Hussner, A.; Stiers, I.; Verhofstad, M.J.J.M.; Bakker, E.S.; Grutters, B.M.C.; Haury, J.; van Valkenburg, J.L.C.H.; Brundu, G.; Newman, J.; Clayton, J.S.; et al. Management and control methods of invasive alien freshwater aquatic plants: A review. Aquat. Bot. 2017, 136, 112–137. [Google Scholar] [CrossRef]
- Gala-Czekaj, D.; Synowiec, A.; Dąbkowska, T. Self-renewal of invasive goldenrods (Solidago spp.) as a result of different mechanical management of fallow. Agronomy 2021, 11, 1065. [Google Scholar] [CrossRef]
- Gaskin, J.F.; Espeland, E.; Johnson, C.D.; Larson, D.L.; Mangold, J.M.; McGee, R.A.; Milner, C.; Paudel, S.; Pearson, D.E.; Perkins, L.B.; et al. Managing invasive plants on Great Plains grasslands: A discussion of current challenges. Rang. Ecol. Manag. 2021, 78, 235–249. [Google Scholar] [CrossRef]
- Cohen, O.; Bar, P.; Gamliel, A.; Katan, J.; Kurzbaum, E.; Weber, G.; Schubert, I.; Riov, J. Rain-based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems–Acacia saligna as a model. Pest Manag. Sci. 2019, 75, 1933–1941. [Google Scholar] [CrossRef]
- Jones, P.; Tummers, J.; Galib, S.; Woodford, D.; Hume, J.; Silva, L.; Braga, R.; Garcia de Leaniz, C.; Vitule, J.; Herder, J.; et al. The use of barriers to limit the spread of aquatic invasive animal species: A global review. Front. Ecol. Evol. 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Lorenzo, P.; Rubido-Bará, M.; González, L. Effectiveness of management strategies in Acacia dealbata Link invasion, native vegetation and soil microbial community responses. For. Ecol. Manag. 2013, 304, 464–472. [Google Scholar] [CrossRef]
- Lazzaro, L.; Tondini, E.; Lombardi, L.; Giunti, M. The eradication of Carpobrotus spp. in the sand-dune ecosystem at Sterpaia (Italy, Tuscany): Indications from a successful experience. Biologia 2020, 75, 199–208. [Google Scholar] [CrossRef]
- Núñez-González, N.; Rodríguez, J.; González, L. Managing the invasive plant Carpobrotus edulis: Is mechanical control or specialized natural enemy more effective? J. Environ. Manag. 2021, 298, 113554. [Google Scholar] [CrossRef]
- Muvengwi, J.; Mbiba, M.; Jimu, L.; Mureva, A.; Dodzo, B. An assessment of the effectiveness of cut and ring barking as a method for control of invasive Acacia mearnsii in Nyanga National Park, Zimbabwe. For. Ecol. Manag. 2018, 427, 1–6. [Google Scholar] [CrossRef]
- Sher, A.A.; El Waer, H.; González, E.; Anderson, R.; Henry, A.L.; Biedron, R.; Yue, P. Native species recovery after reduction of an invasive tree by biological control with and without active removal. Ecol. Eng. 2018, 111, 167–175. [Google Scholar] [CrossRef]
- Verbrugge, L.N.H.; de Hoop, L.; Aukema, R.; Beringen, R.; Creemers, R.C.M.; van Duinen, G.A.; Hollander, H.; de Hullu, E.; Scherpenisse, M.; Spikmans, F.; et al. Lessons learned from rapid environmental risk assessments for prioritization of alien species using expert panels. J. Environ. Manag. 2019, 249, 109405. [Google Scholar] [CrossRef] [PubMed]
- Osunkoya, O.O.; Froese, J.G.; Nicol, S. Management feasibility of established invasive plant species in Queensland, Australia: A stakeholders’ perspective. J. Environ. Manag. 2019, 246, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Delbart, E.; Mahy, G.; Weickmans, B.; Henriet, F.; Crémer, S.; Pieret, N.; Vanderhoeven, S.; Monty, A. Can land managers control Japanese knotweed? Lessons from control tests in Belgium. Environ. Manag. 2012, 50, 1089–1097. [Google Scholar] [CrossRef]
- Frelich, M.; Bzdęga, K. Management of invasive plant species in the valley of the River Ślepiotka in Katowice–The example of the REURIS project. Environ. Socio-Econ. Stud. 2014, 2, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Froeschlin, N.; Privett, S.D.; Richardson, D.M.; Gaertner, M. Fynbos vegetation recovery twelve years after removal of invasive Eucalyptus trees. S. Afr. J. Bot. 2022, 147, 764–773. [Google Scholar] [CrossRef]
- Duarte, L.N.; Marchante, E.; Marchante, H. Managing an invasive tree in coastal dunes: The importance of follow-up treatments to improve the recovery of protected habitats. Front. Environ. Sci. 2023, 11, 1113876. [Google Scholar] [CrossRef]
- Dana, E.D.; García-de-Lomas, J.; Verloove, F.; Vilà, M. Common deficiencies of actions for managing invasive alien species: A decision-support checklist. NeoBiota 2019, 48, 97–112. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2020, 283, 124657. [Google Scholar] [CrossRef]
- Choudri, B.; Charabi, Y.; Ahmed, M. Pesticides and herbicides. Water Environ. Res. 2018, 90, 1663–1678. [Google Scholar] [CrossRef] [Green Version]
- Chauvel, B.; Fried, G.; Follak, S.; Chapman, D.; Kulakova, Y.; Le Bourgeois, T.; Marisavlievic, D.; Monty, A.; Rossi, J.-P.; Starfinger, U.; et al. Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Bot. Lett. 2021, 168, 167–190. [Google Scholar] [CrossRef]
- Brodeur, J. Host specificity in biological control: Insights from opportunistic pathogens. Evol. Appl. 2012, 5, 470–480. [Google Scholar] [CrossRef]
- Corbin, J.D.; Wolford, M.; Zimmerman, C.L.; Quirion, B. Assessing feasibility in invasive plant management: A retrospective analysis of garlic mustard (Alliaria petiolata) control. Restor. Ecol. 2017, 25, S170–S177. [Google Scholar] [CrossRef]
- Perry, G.L.; Moloney, K.A.; Etherington, T.R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 2017, 54, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Van Wilgen, B.W.; Wannenburgh, A. Co-facilitating invasive species control, water conservation and poverty relief: Achievements and challenges in South Africa’s Working for Water programme. Curr. Opin. Environ. Sustain. 2016, 19, 7–17. [Google Scholar] [CrossRef]
- Novoa, A.; Kaplan, H.; Kumschick, S.; Wilson, J.R.; Richardson, D.M. Soft touch or heavy hand? Legislative approaches for preventing invasions: Insights from cacti in South Africa. Invasive Plant Sci. Manag. 2015, 8, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Epanchin-Niell, R.; Thompson, A.L.; Treakle, T. Public contributions to early detection of new invasive pests. Conserv. Sci. Pract. 2021, 3, e422. [Google Scholar] [CrossRef]
- Price-Jones, V.; Brown, P.M.J.; Adriaens, T.; Tricarico, E.; Farrow, R.A.; Cardoso, A.C.; Gervasini, E.; Groom, Q.; Reyserhove, L.; Schade, S.; et al. Eyes on the aliens: Citizen science contributes to research, policy and management of biological invasions in Europe. NeoBiota 2022, 78, 1–24. [Google Scholar] [CrossRef]
- Encarnação, J.; Teodósio, M.A.; Morais, P. Citizen science and biological invasions: A review. Front. Environ. Sci. 2021, 8, 602980. [Google Scholar] [CrossRef]
- Anđelković, A.A.; Handley, L.L.; Marchante, E.; Adriaens, T.; Brown, P.M.J.; Tricarico, E.; Verbrugge, L.N.H. A review of volunteers’ motivations to monitor and control invasive alien species. NeoBiota 2022, 73, 153–175. [Google Scholar] [CrossRef]
- Jubase, N.; Shackleton, R.T.; Measey, J. Motivations and contributions of volunteer groups in the management of invasive alien plants in South Africa’s Western Cape province. Bothalia Afr. Biodivers. Conserv. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Ulm, F.; Estorninho, M.; de Jesus, J.G.; de Sousa Prado, M.G.; Cruz, C.; Máguas, C. From a lose–lose to a win–win situation: User-friendly biomass models for Acacia longifolia to aid research, management and valorisation. Plants 2022, 11, 2865. [Google Scholar] [CrossRef] [PubMed]
- Panetta, F.D.; O’Loughlin, L.S.; Gooden, B. Identifying thresholds and ceiling in plant community recovery for optimal management of widespread weeds. NeoBiota 2019, 42, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Brito, L.M.; Mourão, I.; Coutinho, J.; Smith, S.R. Co-composting of invasive Acacia longifolia with pine bark for horticultural use. Environ. Technol. 2015, 36, 1632–1642. [Google Scholar] [CrossRef]
- Brito, L.M.; Reis, M.; Mourão, I.; Coutinho, J. Use of acacia waste compost as an alternative component for horticultural substrates. Commun. Soil Sci. Plant Anal. 2015, 46, 1814–1826. [Google Scholar] [CrossRef]
- Mesa, F.; Torres, J.; Sierra, O.; Escobedo, F.J. Enhanced production of compost from Andean wetland biomass using a bioreactor and photovoltaic system. Biomass Bioenergy 2017, 106, 21–28. [Google Scholar] [CrossRef]
- Mulvaney, M.J.; Wood, C.W.; Balkcom, K.S.; Kemble, J.; Shannon, D.A. No-till with high biomass cover crops and invasive legume mulches increased total soil carbon after three years of collard production. Agroecol. Sustain. Food Syst. 2017, 41, 30–45. [Google Scholar] [CrossRef]
- Cvejić, R.; Klages, S.; Pintar, M.; Resman, L.; Slatnar, A.; Mihelič, R. Invasive plants in support of urban farming: Fermentation-based organic fertilizer from Japanese Knotweed. Agronomy 2021, 11, 1232. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Q.; Cheng, Y. Composted invasive plant Ageratina adenophora enhanced barley (Hordeum vulgare) growth and soil conditions. PLoS ONE 2022, 17, e0275302. [Google Scholar] [CrossRef]
- Vyankatrao, N.P. Conversion of Parthenium hystorophorus L. weed to compost and vermicompost. Biosci. Discov. 2017, 8, 619–627. [Google Scholar]
- Lorenzo, P.; Álvarez-Iglesias, L.; González, L.; Revilla, P. Assessment of Acacia dealbata as green manure and weed control for maize crop. Renew. Agric. Food Syst. 2022, 37, 322–336. [Google Scholar] [CrossRef]
- Alami, E.; Karimi, M.; Chalavi, V. Investigation of compost and vermicompost of water hyacinth as growing media for Lily (Longiflorum × Asiatic). Int. J. Hortic. Sci. Technol. 2021, 8, 271–280. [Google Scholar]
- Islam, M.N.; Rahman, F.; Papri, S.A.; Faruk, M.O.; Das, A.K.; Adhikary, N.; Debrot, A.O.; Ahsan, M.N. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. J. Environ. Manag. 2021, 294, 113036. [Google Scholar] [CrossRef]
- Gosal, M.; Rayer, D.; Gedoan, S. The effect of water hyacinth (Eichhornia crassipes) organic fertilizer on the vegetative growth of Manado strain yellow maize (Zea mays L.). World J. Adv. Res. Rev. 2022, 15, 450–454. [Google Scholar] [CrossRef]
- Ogutu, P.A. Vermicomposting water hyacinth: Turning Fisherman’s Nightmare into Farmer’s Fortune. Int. J. Res. Innov. Appl. Sci. 2019, IV, 12–14. [Google Scholar]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Patwa, D.; Muigai, H.H.; Ravi, K.; Sreedeep, S.; Kalita, P. A novel application of biochar produced from invasive weeds and industrial waste in thermal backfill for crude oil industries. Waste Biomass Valorization 2022, 13, 3025–3042. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Winton, R.S.; Calamita, E.; Niggemann, F.; Botter, M.; Wehrli, B.; Ghazoul, J. Living with floating vegetation invasions. Ambio 2021, 50, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Arutselvy, B.; Rajeswari, G.; Jacob, S. Sequential valorization strategies for dairy wastewater and water hyacinth to produce fuel and fertilizer. J. Food Process Eng. 2021, 44, e13585. [Google Scholar] [CrossRef]
- Harun, I.; Pushiri, H.; Amirul-Aiman, A.J.; Zulkeflee, Z. Invasive water hyacinth: Ecology, impacts and prospects for the rural economy. Plants 2021, 10, 1613. [Google Scholar] [CrossRef]
- Ilo, O.P.; Simatele, M.D.; Nkomo, S.P.L.; Mkhize, N.M.; Prabhu, N.G. The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review. Sustainability 2020, 12, 9222. [Google Scholar] [CrossRef]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef]
- López-Hortas, L.; Rodríguez-González, I.; Díaz-Reinoso, B.; Torres, M.D.; Moure, A.; Domínguez, H. Tools for a multiproduct biorefinery of Acacia dealbata biomass. Ind. Crops Prod. 2021, 169, 113655. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Puig, C.G.; Pedrol, N.; Freitas, H.; Rodríguez-Echeverría, S.; Lorenzo, P. Exploring the use of residues from the invasive Acacia sp. for weed control. Renew. Agric. Food Syst. 2020, 35, 26–37. [Google Scholar] [CrossRef]
- Brito, L.M.; Mourão, I.; Coutinho, J.; Smith, S. Composting for management and resource recovery of invasive Acacia species. Waste Manag. Res. 2013, 31, 1125–1132. [Google Scholar] [CrossRef]
- Adam, Y.; Sershen, R.S. Maize and pea germination and seedling growth responses to compost generated from biowaste of selected invasive alien plant species. Compost Sci. Util. 2016, 24, 30–41. [Google Scholar] [CrossRef]
- Chemetova, C.; Ribeiro, H.; Fabião, A.; Gominho, J. Towards sustainable valorisation of Acacia melanoxylon biomass: Characterization of mature and juvenile plant tissues. Environ. Res. 2020, 191, 110090. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.H.; Song, W.; Guo, J.Y. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems–a review. Crit. Rev. Biotechnol. 2017, 37, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Kumwimba, M.N.; Dzakpasu, M.; Li, X. Potential of invasive watermilfoil (Myriophyllum spp.) to remediate eutrophic waterbodies with organic and inorganic pollutants. J. Environ. Manag. 2020, 270, 110919. [Google Scholar] [CrossRef] [PubMed]
- Quintela-Sabarís, C.; Mendes, L.A.; Domínguez, J. Vermicomposting as a sustainable option for managing biomass of the invasive tree Acacia dealbata Link. Sustainability 2022, 14, 13828. [Google Scholar] [CrossRef]
- Balachandar, R.; Biruntha, M.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Govarthanan, M.; Kumar, P.; Karmegam, N. Earthworm intervened nutrient recovery and greener production of vermicompost from Ipomoea staphylina–An invasive weed with emerging environmental challenges. Chemosphere 2021, 263, 128080. [Google Scholar] [CrossRef]
- Abbas, A.M.; Novak, S.J.; Fictor, M.; Mostafa, Y.S.; Alamri, S.A.; Alrumman, S.A.; Taher, M.A.; Hashem, M.; Khalaphallah, R. Initial in vitro assessment of the antifungal activity of aqueous extracts from three invasive plant species. Agriculture 2022, 12, 1152. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Yuan, L.; Huang, J. Allelopathy of uncomposted and composted invasive aster (Ageratina adenophora) on ryegrass. J. Hazard. Mater. 2021, 402, 123727. [Google Scholar] [CrossRef]
- Liua, H.; Wangc, Y.; Zhaoa, Q. Converting invasive aster (Ageratina adenophora L.) into organic fertilizer source. ScienceAsia 2022, 48, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Chang, Q.; Wang, C.; Cao, J.; Zheng, W. Composting of aerial parts of crofton weed (Eupatorium adenophorum Spreng), the top invasive plant in southwest China. Compost Sci. Util. 2014, 22, 132–137. [Google Scholar] [CrossRef]
- Ulm, F.; Avelar, D.; Hobson, P.; Penha-Lopes, G.; Dias, T.; Máguas, C.; Cruz, C. Sustainable urban agriculture using compost and an open-pollinated maize variety. J. Clean. Prod. 2019, 212, 622–629. [Google Scholar] [CrossRef]
- Devi, C.; Khwairakpam, M. Management of invasive weed Parthenium hysterophorus through vermicomposting using a polyculture of Eisenia fetida and Eudrilus eugeniae. Environ. Sci. Pollut. Res. 2021, 28, 29710–29719. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Abbasi, T.; Abbasi, S.A. Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer. J. Environ. Manag. 2016, 180, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Nagy, D.U.; Canale, A.; Maggi, F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019, 92, 805–821. [Google Scholar] [CrossRef]
- Lorenzo, P.; Reboredo-Durán, J.; Múñoz, L.; González, L.; Freitas, H.; Rodríguez-Echeverría, S. Inconsistency in the detection of phytotoxic effects: A test with Acacia dealbata extracts using two different methods. Phytochem. Lett. 2016, 15, 190–198. [Google Scholar] [CrossRef]
- Lorenzo, P.; Souza-Alonso, P.; Guisande-Collazo, A.; Freitas, H. Influence of Acacia dealbata Link bark extracts on the growth of Allium cepa L. plants under high salinity conditions. J. Sci. Food Agric. 2019, 99, 4072–4081. [Google Scholar] [CrossRef]
- Lorenzo, P.; Reboredo-Durán, J.; Muñoz, L.; Freitas, H.; González, L. Herbicidal properties of the commercial formulation of methyl cinnamate, a natural compound in the invasive silver wattle (Acacia dealbata). Weed Sci. 2020, 68, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Quinty, V.; Colas, C.; Nasreddine, R.; Nehmé, R.; Piot, C.; Draye, M.; Destandau, E.; Da Silva, D.; Chatel, G. Screening and evaluation of dermo-cosmetic activities of the invasive plant species Polygonum cuspidatum. Plants 2022, 12, 83. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Moreira, P.; Resende, J.; Cruz, M.T.; Pereira, C.M.; Silva, A.M.; Santos, S.A.O.; Silvestre, A.J. Characterization and cytotoxicity assessment of the lipophilic fractions of different morphological parts of Acacia dealbata. Int. J. Mol. Sci. 2020, 21, 1814. [Google Scholar] [CrossRef] [Green Version]
- Míguez, C.; Cancela, Á.; Sánchez, Á.; Álvarez, X. Possibilities for exploitation of invasive species, Arundo donax L., as a source of phenol compounds. Waste Biomass Valor. 2022, 13, 4253–4265. [Google Scholar] [CrossRef]
- Okyere, S.K.; Wen, J.; Cui, Y.; Xie, L.; Gao, P.; Wang, J.; Wang, S.; Hu, Y. Toxic mechanisms and pharmacological properties of euptox A, a toxic monomer from A. adenophora. Fitoterapia 2021, 155, 105032. [Google Scholar] [CrossRef]
- Peter, A.; Žlabur, J.Š.; Šurić, J.; Voća, S.; Purgar, D.D.; Pezo, L.; Voća, N. Invasive plant species biomass—Evaluation of functional value. Molecules 2021, 26, 3814. [Google Scholar] [CrossRef] [PubMed]
- Correia, R.; Duarte, M.P.; Maurício, E.M.; Brinco, J.; Quintela, J.C.; da Silva, M.G.; Gonçalves, M. Chemical and functional characterization of extracts from leaves and twigs of Acacia dealbata. Processes 2022, 10, 2429. [Google Scholar] [CrossRef]
- Paula, V.; Pedro, S.I.; Campos, M.G.; Delgado, T.; Estevinho, L.M.; Anjos, O. Special bioactivities of phenolics from Acacia dealbata L. with potential for dementia, diabetes and antimicrobial Treatments. Appl. Sci. 2022, 12, 1022. [Google Scholar] [CrossRef]
- Kaur, A.; Batish, D.R.; Kaur, S.; Chauhan, B.S. An overview of the characteristics and potential of Calotropis procera from botanical, ecological, and economic perspectives. Front. Plant Sci. 2021, 12, 1188. [Google Scholar] [CrossRef]
- Casas, M.P.; López-Hortas, L.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Supercritical CO2 extracts from Acacia dealbata flowers. J. Supercrit. Fluids 2021, 173, 105223. [Google Scholar] [CrossRef]
- Ponticelli, M.; Lela, L.; Russo, D.; Faraone, I.; Sinisgalli, C.; Mustapha, M.B.; Esposito, G.; Jannet, H.B.; Costantino, V.; Milella, L. Dittrichia graveolens (L.) Greuter, a rapidly spreading invasive plant: Chemistry and bioactivity. Molecules 2022, 27, 895. [Google Scholar] [CrossRef]
- Arsene, M.M.J.; Viktorovna, P.I.; Mikhaïlovitch, M.K.; Davares, A.K.L.; Parfait, K.; Rehailia, M.; Nikolayevich, S.A.; Stefanovna, G.V.; Sarra, S.; Sulikoevich, K.Z.; et al. In vitro antimicrobial activity, antibioresistance reversal properties, and toxicity screen of ethanolic extracts of Heracleum mantegazzianum Sommier and Levier (giant hogweed), Centaurea jacea L. (brown knapweed), and Chenopodium album L. (Pigweed): Three invasive plants. Open Vet. J. 2022, 12, 584. [Google Scholar]
- Kim, G.J.; Park, S.; Kim, E.; Kwon, H.; Park, H.J.; Nam, J.W.; Roh, S.S.; Choi, H. Antioxidant, pancreatic lipase inhibitory, and tyrosinase inhibitory activities of extracts of the invasive plant Spartina anglica (Cord-Grass). Antioxidants 2021, 10, 242. [Google Scholar] [CrossRef]
- Yildiz, S.; Gurgen, A.; Can, Z.; Tabbouche, S.A.; Kilic, A.O. Some bioactive properties of Acacia dealbata extracts and their potential utilization in wood protection. Drewno 2018, 61, 81–97. [Google Scholar]
- Olayiwola, H.O.; Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. Investigating the suitability of fly ash/metakaolin-based geopolymers reinforced with South African alien invasive wood and sugarcane bagasse residues for use in outdoor conditions. Eur. J. Wood Wood Prod. 2021, 79, 611–627. [Google Scholar] [CrossRef]
- Rodrigues, V.H.; de Melo, M.M.; Portugal, I.; Silva, C.M. Extraction of added-value triterpenoids from Acacia dealbata leaves using supercritical fluid extraction. Processes 2021, 9, 1159. [Google Scholar] [CrossRef]
- Rodrigues, V.H.; de Melo, M.M.; Portugal, I.; Silva, C.M. Lupane-type triterpenoids from Acacia dealbata bark extracted by different methods. Ind. Crops Prod. 2021, 170, 113734. [Google Scholar] [CrossRef]
- Míguez, C.; Cancela, A.; Álvarez, X.; Sánchez, A. The reuse of bio-waste from the invasive species Tradescantia fluminensis as a source of phenolic compounds. J. Clean. Prod. 2022, 336, 130293. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef]
- Neiva, D.M.; Luís, A.; Gominho, J.; Domingues, F.; Duarte, A.P.; Pereira, H. Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci. Technol. 2020, 54, 559–585. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Geana, E.I.; Tutunaru, O.; Pircalabioru, G.G.; Zgura, I.; Chifiriuc, M.C. Valorization of Gleditsia triacanthos invasive plant cellulose microfibers and phenolic compounds for obtaining multi-functional wound dressings with antimicrobial and antioxidant properties. Int. J. Mol. Sci. 2020, 22, 33. [Google Scholar] [CrossRef]
- Yáñez, R.; Gómez, B.; Martínez, M.; Gullón, B.; Alonso, J.L. Valorization of an invasive woody species, Acacia dealbata, by means of Ionic liquid pretreatment and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 2014, 89, 1337–1343. [Google Scholar] [CrossRef]
- Iyer, A.; Bestwick, C.S.; Duncan, S.H.; Russell, W.R. Invasive plants are a valuable alternate protein source and can contribute to meeting climate change targets. Front. Sustain. Food Syst. 2021, 5, 575056. [Google Scholar] [CrossRef]
- Iyer, A.; Guerrier, L.; Leveque, S.; Bestwick, C.S.; Duncan, S.H.; Russell, W.R. High throughput method development and optimised production of leaf protein concentrates with potential to support the agri-industry. J. Food Meas. Characterizat. 2022, 16, 49–65. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Santhanam, R.; Hong, S.; Jhoo, J.W.; Kim, S. Suppressive effects of acetone extract from the stem bark of three Acacia species on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Asian Pac. J. Trop. Biomed. 2016, 6, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Espinosa, J.C.; Ramírez-Morales, M.A.; Carrera-Cerritos, R. Silver nanoparticles synthesized using Eichhornia crassipes extract from Yuriria lagoon, and the perspective for application as antimicrobial agent. Crystals 2022, 12, 814. [Google Scholar] [CrossRef]
- Jayaweera, M.W.; Dilhani, J.A.; Kularatne, R.K.; Wijeyekoon, S.L. Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations. J. Environ. Sci. Health Part A 2007, 42, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, K.; Appels, L.; Dewil, R.; Calmeyn, A.; Lemmens, P.; Muys, B.; Hermy, M. Biomass of invasive plant species as a potential feedstock for bioenergy production. Biofuels Bioprod. Biorefining 2015, 9, 273–282. [Google Scholar] [CrossRef]
- Ferreira, S.; Gil, N.; Queiroz, J.A.; Duarte, A.P.; Domingues, F.C. An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour. Technol. 2011, 102, 4766–4773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Weng, C.; Huang, H.; Achal, V.; Wang, D. Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Front. Microbiol. 2016, 6, 1411. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Castellucci, S.; Mennun, A. Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia 2018, 148, 431–438. [Google Scholar] [CrossRef]
- Alves, J.L.F.; da Silva, J.C.G.; da Silva Filho, V.F.; Alves, R.F.; de Araujo Galdino, W.V.; De Sena, R.F. Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 2019, 121, 28–40. [Google Scholar] [CrossRef]
- Nunes, L.J.; Raposo, M.A.; Meireles, C.I.; Pinto Gomes, C.J.; Ribeiro, N.M.A. Control of invasive forest species through the creation of a value chain: Acacia dealbata biomass recovery. Environments 2020, 7, 39. [Google Scholar] [CrossRef]
- Van Tran, G.; Unpaprom, Y.; Ramaraj, R. Methane productivity evaluation of an invasive wetland plant, common reed. Biomass Conver. Biorefinery 2020, 10, 689–695. [Google Scholar] [CrossRef]
- da Costa, R.M.; Bosch, M.; Simister, R.; Gomez, L.D.; Canhoto, J.M.; Batista de Carvalho, L.A. Valorisation potential of invasive Acacia dealbata, A. longifolia and A. melanoxylon from land clearings. Molecules 2022, 27, 7006. [Google Scholar] [CrossRef]
- Liao, R.; Gao, B.; Fang, J. Invasive plants as feedstock for biochar and bioenergy production. Bioresour. Technol. 2013, 140, 439–442. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Rubilar, R.A.; Maier, C.A.; Acuna, E.A.; Cook, R.L. Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations. Biomass Bioenergy 2017, 97, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Stafford, W.; Blignaut, J. Reducing landscape restoration costs: Feasibility of generating electricity from invasive alien plant biomass on the Agulhas Plain, South Africa. Ecosyst. Serv. 2017, 27, 224–231. [Google Scholar] [CrossRef]
- Ngorima, A.; Shackleton, C.M. Livelihood benefits and costs from an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. J. Environ. Manag. 2019, 229, 158–165. [Google Scholar] [CrossRef]
- Carson, B.D.; Lishawa, S.C.; Tuchman, N.C.; Monks, A.M.; Lawrence, B.A.; Albert, D.A. Harvesting invasive plants to reduce nutrient loads and produce bioenergy: An assessment of Great Lakes coastal wetlands. Ecosphere 2018, 9, e02320. [Google Scholar] [CrossRef]
- Awasthi, M.; Kaur, J.; Rana, S. Bioethanol production through water hyacinth, Eichhornia crassipes via optimization of the pretreatment conditions. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 42–46. [Google Scholar]
- Ruan, T.; Zeng, R.; Yin, X.Y.; Zhang, S.X.; Yang, Z.H. Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources 2016, 11, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Łapczyńska-Kordon, B.; Ślipek, Z.; Słomka-Polonis, K.; Styks, J.; Hebda, T.; Francik, S. Physicochemical properties of biochar produced from goldenrod plants. Materials 2022, 15, 2615. [Google Scholar] [CrossRef]
- Raj, F.R.M.S.; Boopathi, G.; Kalpana, D.; Jaya, N.V.; Pandurangan, A. Sustainable development through restoration of Prosopis juliflora species into activated carbon as electrode material for supercapacitors. Diam. Relat. Mater. 2022, 121, 108767. [Google Scholar] [CrossRef]
- Yang, L.; Deng, Y.; Shu, Z.; Chen, Q.; Yang, H.; Tan, X. Application of invasive plants as biochar precursors in the field of environment and energy storage. Front. Environ. Sci. 2022, 10, 902915. [Google Scholar] [CrossRef]
- Muñoz, C.; Mendonça, R.; Baeza, J.; Berlin, A.; Saddler, J.; Freer, J. Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2007, 82, 767–774. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Nguyen, T.T.H.; Nguyen, T.H.C.; Le, Q.V.; Vo, T.Y.B.; Tran, T.C.P.; La, D.D.; Kumar, G.; Nguyen, V.K.; Chang, S.W.; et al. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. Chemosphere 2021, 282, 131009. [Google Scholar] [CrossRef] [PubMed]
- Tham, H.T.; Udén, P. Effect of water hyacinth (Eichhornia crassipes) silage on intake and nutrient digestibility in cattle fed rice straw and cottonseed cake. Asian-Australas. J. Anim. Sci. 2013, 26, 646–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkut, A.Y.; Gunes, A.; Kop, A.; Cakar, H.; Akat, O.; Guney, M.A.; Ozkul, B.; Koru, E.; Suzer, C.; Cirik, S.; et al. Preliminary study for utilization of some invasive aquatic plants as raw material for aquaculture feeds. Fresenius Environ. Bull. 2016, 25, 4915–4920. [Google Scholar]
- Moselhy, M.A.; Borba, J.P.; Borba, A.E. Production of high-quality silage from invasive plants plus agro-industrial by-products with or without bacterial inoculation. Biocata. Agric. Biotechnol. 2022, 39, 102251. [Google Scholar] [CrossRef]
- Pratiwi, D.Y.; Andhikawati, A. Utilization of water hyacinth (Eichhornia crassipes) as fish feed ingredient. Asian J. Fish. Aquat. Res. 2021, 13, 35–42. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Jorge, N.; Fernandes, J.R.; Lucas, M.S.; Peres, J.A. Textile dye removal by Acacia dealbata link. pollen adsorption combined with UV-A/NTA/Fenton process. Top. Catal. 2022, 65, 1045–1061. [Google Scholar] [CrossRef]
- Carneiro, M.T.; Barros, A.Z.B.; Morais, A.I.S.; Carvalho Melo, A.L.F.; Bezerra, R.D.S.; Osajima, J.A.; Silva-Filho, E.C. Application of water hyacinth biomass (Eichhornia crassipes) as an adsorbent for methylene blue dye from aqueous medium: Kinetic and isothermal study. Polymers 2022, 14, 2732. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, H.; Pan, D.; Wu, Y.; Ji, R.; Li, W.; Jiang, X.; Han, J. One-pot pyrolysis of a typical invasive plant into nitrogen-doped biochars for efficient sorption of phthalate esters from aqueous solution. Chemosphere 2021, 280, 130712. [Google Scholar] [CrossRef]
- Almeida, R.; Cisneros, F.; Mendes, C.V.; Carvalho, M.G.V.; Rasteiro, M.G.; Gamelas, J.A. Valorisation of invasive plant species in the production of polyelectrolytes. Ind. Crops Prod. 2021, 167, 113476. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Agro-industrial wastewater treatment with Acacia dealbata coagulation/flocculation and photo-Fenton-based processes. Recycling 2022, 7, 54. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Y.; Tan, T.L.; Chen, Z. Exploring the phytoremediation potential of water hyacinth by FTIR Spectroscopy and ICP-OES for treatment of heavy metal contaminated water. Int. J. Phytoremediation 2020, 22, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, B.; Priya, K.S. Phytoremediation potential of water hyacinth in heavy metal removal in chromium and lead contaminated water. Int. J. Environ. Anal. Chem. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation 2017, 19, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Kavčič, U.; Karlovits, I. The influence of process parameters of screen-printed invasive plant paper electrodes on cyclic voltammetry. Nord. Pulp Paper Res. J. 2020, 35, 299–307. [Google Scholar] [CrossRef]
- Karlovits, I.; Lavrič, G.; Kavčič, U.; Zorić, V. Electrophotography toner adhesion on agro-industrial residue and invasive plant papers. J. Adhes. Sci. Technol. 2021, 35, 2636–2651. [Google Scholar] [CrossRef]
- Karlovits, I.; Kavčič, U. Flexo printability of agro and invasive papers. Cellulose 2022, 29, 4613–4627. [Google Scholar] [CrossRef]
- Starešinič, M.; Boh Podgornik, B.; Javoršek, D.; Leskovšek, M.; Možina, K. Fibers obtained from invasive alien plant species as a base material for paper production. Forests 2021, 12, 527. [Google Scholar] [CrossRef]
- Kapun, T.; Zule, J.; Fabjan, E.; Hočevar, B.; Grilc, M.; Likozar, B. Engineered invasive plant cellulose fibers as resources for papermaking. Eur. J. Wood Wood Prod. 2022, 80, 501–514. [Google Scholar] [CrossRef]
- Ranesi, A.; Faria, P.; Correia, R.; Freire, M.T.; Veiga, R.; Gonçalves, M. Gypsum mortars with Acacia dealbata biomass waste additions: Effect of different fractions and contents. Buildings 2022, 12, 339. [Google Scholar] [CrossRef]
- Ortega, Z.; Romero, F.; Paz, R.; Suárez, L.; Benítez, A.N.; Marrero, M.D. Valorization of invasive plants from Macaronesia as filler materials in the production of natural fiber composites by rotational molding. Polym. 2021, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Portela-Grandío, A.; Peleteiro, S.; Yáñez, R.; Romaní, A. Integral valorization of Acacia dealbata wood in organic medium catalyzed by an acidic ionic liquid. Bioresour. Technol. 2021, 342, 126013. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.S.J.; Venkatachalam, S. A neoteric approach for the complete valorization of Typha angustifolia leaf biomass: A drive towards environmental sustainability. J. Environ. Manag. 2022, 318, 115579. [Google Scholar] [CrossRef]
- Neiva, D.M.; Rencoret, J.; Marques, G.; Gutiérrez, A.; Gominho, J.; Pereira, H.; Del Río, J.C. Lignin from tree barks: Chemical structure and valorization. ChemSusChem 2020, 13, 4537–4547. [Google Scholar] [CrossRef]
- Lim, C.J.; Arumugam, M.; Lim, C.K.; Ee, G.C.L. Mercerizing extraction and physicochemical characterizations of lignocellulosic fiber from the leaf waste of Mikania micrantha Kunth ex HBK. J. Nat. Fibers 2018, 17, 726–737. [Google Scholar] [CrossRef]
- Čuk, N.; Šala, M.; Gorjanc, M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 2021, 28, 3215–3233. [Google Scholar] [CrossRef]
- Arana-Cuenca, A.; Tovar-Jiménez, X.; Favela-Torres, E.; Perraud-Gaime, I.; González-Becerra, A.E.; Martínez, A.; Moss-Acosta, C.L.; Mercado-Flores, Y.; Téllez-Jurado, A. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech 2019, 9, 21. [Google Scholar] [CrossRef]
- Linhares, T.; de Amorim, M.T.P. LCA of textile dyeing with Acacia dealbata tree bark: A case study research. Procedia Eng. 2017, 200, 365–369. [Google Scholar] [CrossRef]
- Lock Toy Ki, Y.; Garcia, A.; Pelissier, F.; Olszewski, T.K.; Babst-Kostecka, A.; Legrand, Y.M.; Grison, C. Mechanochemistry and eco-bases for sustainable Michael addition reactions. Molecules 2022, 27, 3306. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Vimercati, G.; Probert, A.F.; Bacher, S.; Kull, C.A.; Novoa, A. Consensus and controversy in the discipline of invasion science. Conserv. Biol. 2022, 36, e13931. [Google Scholar] [CrossRef]
- Dehnen-Schmutz, K.; Novoa, A. Advances in the management of invasive plants. In Global Plant Invasions; Clements, D.R., Upadhyaya, M.K., Joshi, S., Shrestha, A., Eds.; Springer: Cham, Germany, 2022; pp. 317–330. [Google Scholar]
- Suárez, L.; Díaz, T.E.; Benavente-Ferraces, I.; Plaza, C.; Almeida, M.; Centeno, T.A. Hydrothermal treatment as a complementary tool to control the invasive Pampas grass (Cortaderia selloana). Sci. Total Environ. 2022, 807, 150796. [Google Scholar] [CrossRef] [PubMed]
- Correia, R.; Quintela, J.C.; Duarte, M.P.; Gonçalves, M. Insights for the valorization of biomass from Portuguese invasive acacia spp. in a biorefinery perspective. Forests 2020, 11, 1342. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Rodrigues, A.M.; Loureiro, L.M.E.F.; Sá, L.C.R.; Matias, J.C.O. Energy recovery from invasive species: Creation of value chains to promote control and eradication. Recycling 2021, 6, 21. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U.; Možina, K. Invasive alien plant species for use in paper and packaging materials. Fibers 2022, 10, 94. [Google Scholar] [CrossRef]
- Mudavanhu, S.; Blignaut, J.; Nkambule, N.; Morokong, T.; Vundla, T. A cost-benefit analysis of using Rooikrans as biomass feedstock for electricity generation: A case study of the De Hoop nature reserve, South Africa. S. Afr. J. Econ. Manag. Sci. 2016, 19, 788–813. [Google Scholar] [CrossRef] [Green Version]
- Melane, M.; Ham, C.; Meincken, M. Characteristics of selected non-woody invasive alien plants in South Africa and an evaluation of their potential for electricity generation. J. Energy S. Afr. 2017, 28, 92–98. [Google Scholar] [CrossRef]
- Valen, M.A. Economic opportunities for biomass harvest of invasive giant reed (Arundo donax L.) in Southern California as feedstock for the pulp and paper industry. Master’s Thesis, Harvard Extension School, Cambridge, MA, USA, 2017. [Google Scholar]
Potential Use | Invasive Plant Species | Reference |
---|---|---|
Agriculture-related uses (fertilizers, compost, vermicompost, bioherbicides, etc.) | Acacia dealbata Link, Acacia longifolia (Andr.) Willd., Acacia melanoxylon R.Br., Acacia podalyriifolia A.Cunn. ex G.Don, Acacia spp., Ailanthus altissima (Mill.) Swingle, Ageratina adenophora (=Eupatorium adenophorum) (Spreng.) R.M.King and H.Rob., Albizia julibrissin Durazz., Azolla filiculoides Lam., Eichhornia crassipes (Mart.) Solms, Fallopia japonica (=Reynoutria japonica) (Houtt.) Ronse Decr., Hedychium gardnerianum Sheppard ex Ker Gawl., Ipomoea staphylina Roem. and Schult., Lespedeza cuneata (Dum.Cours.) G.Don, Litsea glutinosa (Lour.) C.B.Rob., Myriophyllum spp., Parthenium hysterophorus L., Prosopis juliflora (Sw.) DC., Tithonia diversifolia (Hemsl.) A.Gray, Typha latifolia L. | [69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107] |
Bioactivity (pharmaceutical, nutraceutical, cosmetic, etc.) | A. dealbata, A. melanoxylon, A. adenophora (=E. adenophorum), A. altissima, Amaranthus retroflexus L., Calotropis procera (Aiton) A.W. Aiton, Disphania ambrosioides (L.) Mosyakin and Clemonts, Dittrichia graveolens (L.) Greuter, E. crassipes, Erigeron annuus (L.) Pers., F. japonica (=R. japonica), Gleditsia triacanthos L., Heracleum mantegazzianum Sommier and Levier, Polygonum cuspidatum Siebold. and Zucc., Solidago canadensis L., Solidago gigantea Aiton, Spartina anglica C.E.Hubb., Tradescantia fluminensis Vell., Ulex europaeus L. | [16,81,87,88,92,104,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132] |
Bioenergy (bioethanol, biogas, wood fuel, etc.) | A. dealbata, A. adenophora (=E. adenophorum), A. altissima, C. procera, Dioscorea bulbifera L., E. crassipes, Eucalyptus globulus Labill, F. japonica (=R. japonica), H. mantegazzianum, Impatiens glandulifera Royle, Limnocharis flava (L.) Buchenau, Phragmites australis (Cav.) Trin. Ex Steud., Phalaris arundinacea L., Schinus terebinthifolius Raddi, S. gigantea, Spartina alterniflora Loisel., Typha spp. | [81,83,84,85,86,87,88,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148] |
Biochar (activated carbon and biochar precursors) | A. dealbata, Acacia auriculiformis A.Cunn. ex Benth., A. adenophora (=E. adenophorum), A. altissima, Alternanthera philoxeroides (Mart.) Griseb., D. bulbifera, E. crassipes, Leucaena leucocephala (Lam.) de Wit, Mimosa pigra L., P. juliflora, S. terebinthifolius, S. canadensis, S. gigantea, S. alterniflora | [81,87,88,142,149,150,151,152,153] |
Feed (animal or fish) | A. altissima, C. procera, Cyperus spp., E. crassipes, H. gardnerianum, Hottonia spp., Lemna minor (L). Griff, Leucaena spp., Myriophyllum spp., Nasturtium spp., Pistia stratiotes L., Pittosporum undulatum Vent., P. juliflora, S. alterniflora, Typha spp. | [81,85,86,87,94,154,155,156,157] |
Environmental remediation (wastewater treatment, etc.) | A. dealbata, A. altissima, C. procera, E. crassipes, Myriophyllum spp., P. arundinacea, Phragmites australis (Cav.) Trin. ex Steud., Pistia stratiotes L., Typha spp. | [83,85,86,93,94,115,146,158,159,160,161,162,163,164,165] |
Paper-related uses (handmade, etc.) | A. altissima, E. crassipes, Fallopia x bohemica (J.Chrtek and A.Chrtková) J.P. Bailey, F. japonica (=R. japonica), Fallopia sachalinensis (C.F. Schmidt) Ronse Decr., S. canadensis, S. gigantea, Robinia pseudoacacia L., Rudbeckia laciniata L. | [15,78,87,166,167,168,169,170] |
Raw materials to produce different products (biorefineries, nanoparticles, resins, crafts, building materials, eco-bases, textile dyeing, etc.) | A. dealbata, A. longifolia, Arundo donax L., C. procera, E. crassipes, F. japonica (=R. japonica), Mikania micrantha Kunth ex H.B.K., Pennisetum setaceum (Forssk.) Chiov., Ricinus communis L., Typha angustifolia L. | [85,86,88,115,121,132,145,171,172,173,174,175,176,177,178,179,180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo, P.; Morais, M.C. Strategies for the Management of Aggressive Invasive Plant Species. Plants 2023, 12, 2482. https://doi.org/10.3390/plants12132482
Lorenzo P, Morais MC. Strategies for the Management of Aggressive Invasive Plant Species. Plants. 2023; 12(13):2482. https://doi.org/10.3390/plants12132482
Chicago/Turabian StyleLorenzo, Paula, and Maria Cristina Morais. 2023. "Strategies for the Management of Aggressive Invasive Plant Species" Plants 12, no. 13: 2482. https://doi.org/10.3390/plants12132482
APA StyleLorenzo, P., & Morais, M. C. (2023). Strategies for the Management of Aggressive Invasive Plant Species. Plants, 12(13), 2482. https://doi.org/10.3390/plants12132482