Soybean Plants Exposed to Low Concentrations of Potassium Iodide Have Better Tolerance to Water Deficit through the Antioxidant Enzymatic System and Photosynthesis Modulation
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. Leaf Gas Exchange
2.3. Oxidative Damage
2.4. Antioxidant Enzymatic Activity
2.5. Proline
2.6. Multivariate Analysis
3. Discussion
4. Materials and Methods
4.1. Cultivation System, Experimental Design, and Treatments
4.2. Biomass and WDTI
4.3. Leaf Gas Exchange
4.4. H2O2 and MDA Content
4.5. Antioxidant Enzymatic Activity
4.6. Proline
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngumbi, E.; Kloepper, J. Bacterial-Mediated Drought Tolerance: Current and Future Prospects. Appl. Soil Ecol. 2016, 105, 109–125. [Google Scholar] [CrossRef]
- Kour, D.; Yadav, A.N. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr. Microbiol. 2022, 79, 248. [Google Scholar] [CrossRef]
- Barnawal, D.; Singh, R.; Singh, R.P. Chapter Six—Role of Plant Growth Promoting Rhizobacteria in Drought Tolerance: Regulating Growth Hormones and Osmolytes. In PGPR Amelioration in Sustainable Agriculture; Singh, A.K., Kumar, A., Singh, P.K., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 107–128. ISBN 978-0-12-815879-1. [Google Scholar]
- Abdelaal, K.A.A.; Rashed, S.H.; Hossain, A.; Sabagh, A.E. Yield and Quality of Two Sugar Beet (Beta Vulgaris L. ssp. Vulgaris Var. Altissima Döll) Cultivars Are Influenced by Foliar Application of Salicylic Acid, Irrigation Timing, and Planting Density. Acta Agric. Slov. 2020, 115, 273–282. [Google Scholar] [CrossRef]
- Canakci-Gulengul, S.; Yildiz, T.; Yilmaz, O.; Ozsahin, A. Effect of Cadmium on Some Biochemical Mechanism in the Saccharomyces Cerevisiae. Fresenius Environ. Bull. 2017, 26, 7334–7341. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.J.; Ort, D.R. Impacts of Chilling Temperatures on Photosynthesis in Warm-Climate Plants. Trends Plant Sci. 2001, 6, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wang, M.; Zhang, S.; Ai, X. Changes in SBPase Activity Influence Photosynthetic Capacity, Growth, and Tolerance to Chilling Stress in Transgenic Tomato Plants. Sci. Rep. 2016, 6, 32741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, F.; Wang, M.; Zhang, S. Overexpression of a Calvin Cycle Enzyme SBPase Improves Tolerance to Chilling-Induced Oxidative Stress in Tomato Plants. Sci. Hortic. 2017, 214, 27–33. [Google Scholar] [CrossRef]
- Freitas, M. A Cultura Da Soja No Brasil: O Crescimento Da Produção Brasileira e o Surgimento de Uma Nova Fronteira Agrícola. Enciclopédia Biosf. 2011, 7, 1–12. [Google Scholar]
- CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos, Brasília, DF, v. 10, safra 2022/23, n. 8 Oitavo Levantamento. 2023. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 1 May 2023).
- Neumaier, N.; Farias, J.R.B.; Nepomuceno, A.L.; Mertz-Henning, L.M.; Foloni, J.S.S.; Moraes, L.A.C.; Goncalves, S.L. Ecofisiologia Da Soja; Embrapa: Londrinam, PR, Brazil, 2020. [Google Scholar]
- Da Silva Cavalcante, W.S.; Da Silva, N.F.; Teixeira, M.B.; Cabral Filho, F.R.; Nascimento, P.E.R.; Corrêa, F.R. Eficiência Dos Bioestimulantes No Manejo Do Déficit Hídrico Na Cultura Da Soja. Irriga 2020, 25, 754–763. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I. The Role of Beneficial Elements in Triggering Adaptive Responses to Environmental Stressors and Improving Plant Performance. In Biotic and Abiotic Stress Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2018; pp. 137–172. [Google Scholar]
- Nascimento, V.L.; Souza, B.C.; Lopes, G.; Guilherme, L.R. On the Role of Iodine in Plants: A Commentary on Benefits of This Element. Front. Plant Sci. 2022, 13, 836835. [Google Scholar] [CrossRef]
- Val-Torregrosa, B.; Bundó, M.; San Segundo, B. Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice. Agriculture 2021, 11, 747. [Google Scholar] [CrossRef]
- Blasco, B.; Ríos, J.J.; Leyva, R.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Ruiz, J.M.; Romero, L. Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants? Biol. Trace Elem. Res. 2011, 142, 831–842. [Google Scholar] [CrossRef]
- Ravello, R.A.V.; de Oliveira, C.; Lessa, J.; Boas, L.V.V.; de Castro, E.M.; Guilherme, L.R.G.; Lopes, G.; Ravello, R.A.V.; de Oliveira, C.; Lessa, J.; et al. Selenium Application Influenced Selenium Biofortification and Physiological Traits in Water-Deficit Common Bean Plants. Crop. Pasture Sci. 2021, 73, 44–55. [Google Scholar] [CrossRef]
- Iwaniuk, P.; Borusiewicz, A.; Lozowicka, B. Fluazinam and Its Mixtures Induce Diversified Changes of Crucial Biochemical and Antioxidant Profile in Leafy Vegetable. Sci. Hortic. 2022, 298, 110988. [Google Scholar] [CrossRef]
- Gupta, N.; Bajpai, M.S.; Majumdar, R.S.; Mishra, P.K. Response of Iodine on Antioxidant Levels of Glycine Max L. Grown under Cd2+ Stress. Adv. Biol. Res. 2015, 9, 40–48. [Google Scholar] [CrossRef]
- Kiferle, C.; Gonzali, S.; Beltrami, S.; Martinelli, M.; Hora, K.; Holwerda, H.T.; Perata, P. Improvement in Fruit Yield and Tolerance to Salinity of Tomato Plants Fertigated with Micronutrient Amounts of Iodine. Sci. Rep. 2022, 12, 14655. [Google Scholar] [CrossRef]
- Pérez-Salas, S.; Medrano-Macías, J. Use of Iodine as a Tolerance Inducer in Tomato Seedlings Under Salinity Stress Uso Del Yodo Como Inductor a La Tolerancia En Plántulas de Tomate Bajo Condiciones de Estrés Por Salinidad. Rev. Científica Univ. Autónoma Coahuila 2021, 13, 14–22. [Google Scholar]
- Altaf, M.A.; Shahid, R.; Ren, M.-X.; Naz, S.; Altaf, M.M.; Khan, L.U.; Tiwari, R.K.; Lal, M.K.; Shahid, M.A.; Kumar, R. Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System. Antioxidants 2022, 11, 309. [Google Scholar] [CrossRef]
- Imran, M.; Latif Khan, A.; Shahzad, R.; Aaqil Khan, M.; Bilal, S.; Khan, A.; Kang, S.-M.; Lee, I.-J. Exogenous Melatonin Induces Drought Stress Tolerance by Promoting Plant Growth and Antioxidant Defence System of Soybean Plants. AoB Plants 2021, 13, plab026. [Google Scholar] [CrossRef] [PubMed]
- Kiferle, C.; Martinelli, M.; Salzano, A.M.; Gonzali, S.; Beltrami, S.; Salvadori, P.A.; Hora, K.; Holwerda, H.T.; Scaloni, A.; Perata, P. Evidences for a Nutritional Role of Iodine in Plants. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Macías, J.; López Caltzontzit, M.G.; Rivas Martínez, E.N.; Narváez Ortiz, W.A.; Benavides Mendoza, A.; Martínez Lagunes, P. Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy 2021, 11, 602. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Amruthesh, K.N.; Murali, M.; Poczai, P.; Gafur, A.; et al. Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Dobra, J.; Motyka, V.; Dobrev, P.; Malbeck, J.; Prasil, I.T.; Haisel, D.; Gaudinova, A.; Havlova, M.; Gubis, J.; Vankova, R. Comparison of Hormonal Responses to Heat, Drought and Combined Stress in Tobacco Plants with Elevated Proline Content. J. Plant Physiol. 2010, 167, 1360–1370. [Google Scholar] [CrossRef]
- Medrano-Macías, J.; Leija-Martínez, P.; González-Morales, S.; Juárez-Maldonado, A.; Benavides-Mendoza, A. Use of Iodine to Biofortify and Promote Growth and Stress Tolerance in Crops. Front. Plant Sci. 2016, 7, 1146. [Google Scholar] [CrossRef] [Green Version]
- Jafarian, S.; Sodaiezadeh, H.; Arani, A.; Hakimzadeh, M.a.; Sohrabizadeh, Z. The Effect of Iodine On Increasing Drought Tolerance Of (Carthamus Tinctorius L.) In Seed Germination and Early Growth Stage. J. Environ. Sci. Stud. 2020, 5, 2387–2393. [Google Scholar]
- Fuentes, J.E.G.; Castellanos, B.F.H.; Martínez, E.N.R.; Ortiz, W.A.N.; Mendoza, A.B.; Macías, J.M. Outcomes of Foliar Iodine Application on Growth, Minerals and Antioxidants in Tomato Plants under Salt Stress. Folia Hortic. 2022, 34, 27–37. [Google Scholar] [CrossRef]
- Cao, L.; Jin, X.J.; Zhang, Y.X. Melatonin Confers Drought Stress Tolerance in Soybean (Glycine Max L.) by Modulating Photosynthesis, Osmolytes, and Reactive Oxygen Metabolism. Photosynthetica 2019, 57, 812–819. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, X.; Liu, S.; Sun, F.; Zhang, C.; Xi, Y. Beneficial Effects of Melatonin in Overcoming Drought Stress in Wheat Seedlings. Plant Physiol. Biochem. 2017, 118, 138–149. [Google Scholar] [CrossRef]
- Blasco, B.; Leyva, R.; Romero, L.; Ruiz, J.M. Iodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. J. Agric. Food Chem. 2013, 61, 2591–2596. [Google Scholar] [CrossRef] [PubMed]
- Küpper, F.C.; Carpenter, L.J.; Leblanc, C.; Toyama, C.; Uchida, Y.; Maskrey, B.H.; Robinson, J.; Verhaeghe, E.F.; Malin, G.; Luther, G.W., III; et al. In Vivo Speciation Studies and Antioxidant Properties of Bromine in Laminaria Digitata Reinforce the Significance of Iodine Accumulation for Kelps. J. Exp. Bot. 2013, 64, 2653–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incrocci, L.; Carmassi, G.; Maggini, R.; Poli, C.; Saidov, D.; Tamburini, C.; Kiferle, C.; Perata, P.; Pardossi, A. Iodine Accumulation and Tolerance in Sweet Basil (Ocimum Basilicum L.) With Green or Purple Leaves Grown in Floating System Technique. Front. Plant Sci. 2019, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Kiferle, C.; Ascrizzi, R.; Martinelli, M.; Gonzali, S.; Mariotti, L.; Pistelli, L.; Flamini, G.; Perata, P. Effect of Iodine Treatments on Ocimum Basilicum L.: Biofortification, Phenolics Production and Essential Oil Composition. PLoS ONE 2019, 14, e0226559. [Google Scholar] [CrossRef]
- Halka, M.; Smoleń, S.; Ledwożyw-Smoleń, I. Antioxidant Potential and Iodine Accumulation in Tomato (Solanum Lycopersicum L.) Seedlings as the Effect of the Application of Three Different Iodobenzoates. Folia Hortic. 2020, 32, 203–219. [Google Scholar] [CrossRef]
- Rezaizad, M.; Hashemi-Moghaddam, H.; Abbaspour, H.; Gerami, M.; Mueller, A. Photocatalytic Effect of TiO2 Nanoparticles on Morphological and Photochemical Properties of Stevia Plant (Stevia Rebaudiana Bertoni). Sugar Tech 2019, 21, 1024–1030. [Google Scholar] [CrossRef]
- Sahu, P.; Krishnappa, J.; Tilgam, J.; Gupta, A.; Nagaraju, Y.; Kumar, A.; Baba, S.; Singh, H.; Minkina, T.; Rajput, V.; et al. ROS Generated from Biotic Stress: Effects on Plants and Alleviation by Endophytic Microbes. Front. Plant Sci. 2022, 13, 1042936. [Google Scholar] [CrossRef]
- Takahashi, Y.; Satoh, K. Identification of the Photochemically Iodinated Amino-Acid Residue on Dl-Protein in the Photosystem II Core Complex by Peptide Mapping Analysis. Biochim. Biophys. Acta (BBA) Bioenerg. 1989, 973, 138–146. [Google Scholar] [CrossRef]
- Vranová, E.; Inzé, D.; Van Breusegem, F. Signal Transduction during Oxidative Stress. J. Exp. Bot. 2002, 53, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Res. Int. 2019, 2019, e9732325. [Google Scholar] [CrossRef]
- Liu, J.; Macarisin, D.; Wisniewski, M.; Sui, Y.; Droby, S.; Norelli, J.; Hershkovitz, V. Production of Hydrogen Peroxide and Expression of ROS-Generating Genes in Peach Flower Petals in Response to Host and Non-Host Fungal Pathogens. Plant Pathol. 2013, 62, 820–828. [Google Scholar] [CrossRef]
- Liao, W.; Xiao, H.; Zhang, M. Role and Relationship of Nitric Oxide and Hydrogen Peroxide in Adventitious Root Development of Marigold. Acta Physiol. Plant 2009, 31, 1279–1289. [Google Scholar] [CrossRef]
- Ma, F.; Wang, L.; Li, J.; Samma, M.K.; Xie, Y.; Wang, R.; Wang, J.; Zhang, J.; Shen, W. Interaction between HY1 and H2O2 in Auxin-Induced Lateral Root Formation in Arabidopsis. Plant Mol. Biol. 2014, 85, 49–61. [Google Scholar] [CrossRef]
- Hernández-Barrera, A.; Velarde-Buendía, A.; Zepeda, I.; Sanchez, F.; Quinto, C.; Sánchez-Lopez, R.; Cheung, A.Y.; Wu, H.-M.; Cardenas, L. Hyper, a Hydrogen Peroxide Sensor, Indicates the Sensitivity of the Arabidopsis Root Elongation Zone to Aluminum Treatment. Sensors 2015, 15, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.-M.; Cai, H.-L.; Lei, X.; Zhou, X.; Yue, M.; He, J.-M. Heterotrimeric G Protein Mediates Ethylene-Induced Stomatal Closure via Hydrogen Peroxide Synthesis in Arabidopsis. Plant J. 2015, 82, 138–150. [Google Scholar] [CrossRef]
- Polle, A. Dissecting the Superoxide Dismutase-Ascorbate-Glutathione-Pathway in Chloroplasts by Metabolic Modeling. Computer Simulations as a Step towards Flux Analysis. Plant Physiol. 2001, 126, 445–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, H.; Wang, M.; Zou, Z.; Zhou, P.; Wang, X.; Jin, J. A Review of Iodine in Plants with Biofortification: Uptake, Accumulation, Transportation, Function, and Toxicity. Sci. Total Environ. 2023, 878, 163203. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Wachi, T.; Yoshihira, K.; Nakagawa, T.; Ishikawa, A.; Takagi, D.; Tezuka, A.; Yoshida, H.; Yoshida, S.; Sekimoto, H. Rice (Oryza Sativa L.) Roots Have Iodate Reduction Activity in Response to Iodine. Front. Plant Sci. 2013, 4, 227. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhou, H.; Qian, K.; Xie, X.; Xue, X.; Yang, Y.; Wang, Y. Fluoride and Iodine Enrichment in Groundwater of North China Plain: Evidences from Speciation Analysis and Geochemical Modeling. Sci. Total Environ. 2017, 598, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 13143–13151. [Google Scholar]
- Fernandez George, C.J. Effective Selection Criteria for Assessing Stress Tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Taiwan, China, 13–18 August 1992; Kuo, C.G., Ed.; Asian vegetable research and Development Center: Shanhua, Tainan, Taiwan, 1992; pp. 257–270. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Evaluation of Drought Indices to Identify Tolerant Genotypes in Common Bean Bush (Phaseolus Vulgaris L.). J. Integr. Agric. 2020, 19, 99–107. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation. In Methods in Enzymology; Fleischer, S., Packer, L., Eds.; Biomembranes—Part C: Biological Oxidations; Academic Press: Cambridge, MA, USA, 1978; Volume 52, pp. 302–310. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell. Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assay of Catalases and Peroxidases: In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1955; Volume 2, pp. 764–775. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank Transformations as a Bridge between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Holbert, H. Nonparametric Two-Way ANOVA. 2022. Available online: https://www.cfholbert.com/blog/nonparametric_two_way_anova/ (accessed on 6 May 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassambara, A. _Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.1. 2022. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 7 May 2023).
TREATMENTS | A (μmol CO2 m−2 s−1) | E (mmol H2O m−2 s−1) |
---|---|---|
CONTROL | 18.23 | 5.58 |
WATER DEFICIT + 0 μM KI | −1.26 | 0.32 |
WATER DEFICIT + 10 μM KI | −0.58 | 0.41 |
WATER DEFICIT + 20 μM KI | −0.28 | 0.35 |
WATER DEFICIT + 40 μM KI | −0.26 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, J.d.S.; Andrade, O.V.S.; Santos, L.C.d.; Morais, E.G.d.; Martins, G.S.; Mutz, Y.S.; Nascimento, V.L.; Marchiori, P.E.R.; Lopes, G.; Guilherme, L.R.G. Soybean Plants Exposed to Low Concentrations of Potassium Iodide Have Better Tolerance to Water Deficit through the Antioxidant Enzymatic System and Photosynthesis Modulation. Plants 2023, 12, 2555. https://doi.org/10.3390/plants12132555
Lima JdS, Andrade OVS, Santos LCd, Morais EGd, Martins GS, Mutz YS, Nascimento VL, Marchiori PER, Lopes G, Guilherme LRG. Soybean Plants Exposed to Low Concentrations of Potassium Iodide Have Better Tolerance to Water Deficit through the Antioxidant Enzymatic System and Photosynthesis Modulation. Plants. 2023; 12(13):2555. https://doi.org/10.3390/plants12132555
Chicago/Turabian StyleLima, Jucelino de Sousa, Otávio Vitor Souza Andrade, Leônidas Canuto dos Santos, Everton Geraldo de Morais, Gabryel Silva Martins, Yhan S. Mutz, Vitor L. Nascimento, Paulo Eduardo Ribeiro Marchiori, Guilherme Lopes, and Luiz Roberto Guimarães Guilherme. 2023. "Soybean Plants Exposed to Low Concentrations of Potassium Iodide Have Better Tolerance to Water Deficit through the Antioxidant Enzymatic System and Photosynthesis Modulation" Plants 12, no. 13: 2555. https://doi.org/10.3390/plants12132555