Phenolics and Sesquiterpene Lactones Profile of Red and Green Lettuce: Combined Effect of Cultivar, Microbiological Fertiliser, and Season
Abstract
:1. Introduction
2. Results
2.1. Phenolic Acids
2.2. Flavonoids
2.3. Sesquiterpene Lactones (STL)
2.4. Sensory Analysis
2.5. Correlations
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Microbiological Fertilisers
4.3. Experimental Design and Climate Data
4.4. Sample Preparation for Chemical Analysis
4.4.1. Total Phenolic Content (TPC) Determination
4.4.2. Detection of Individual Phenolic Compounds
4.4.3. Sesquiterpene Lactone (STL) Analysis
4.4.4. Sensory Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Todorović, V.; Rožić, A.; Marković, S.; Đurovka, M.; Vasić, M. Influence of temperature on yield and earliness of lettuce grown in the winter period. Agro-Knowl. J. 2012, 13, 475–481. [Google Scholar]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 419–441. [Google Scholar]
- Adesso, S.; Pepe, G.; Sommella, E.; Manfra, M.; Scopa, A.; Sofo, A.; Tenore, G.C.; Russo, M.; Di Gaudio, F.; Autore, G.; et al. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods. J. Sci. Food. Agric. 2016, 96, 4194–4206. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food. Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Becker, C.; Kläring, H.-P.; Kroh, L.W.; Krumbein, A. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. Plant Physiol. Biochem. 2013, 72, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Klaering, H.-P.; Schreiner, M.; Kroh, L.W.; Krumbein, A. Unlike Quercetin Glycosides, Cyanidin Glycoside in Red Leaf Lettuce Responds More Sensitively to Increasing Low Radiation Intensity before than after Head Formation Has Started. J. Agric. Food Chem. 2014, 62, 6911–6917. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, C.; He, X.; Sheng, Y.; Ma, T.; Sun, Z.; Liu, X.; Liu, C.; Fan, S.; Xu, W.; et al. Purple lettuce (Lactuca sativa L.) attenuates metabolic disorders in diet induced obesity. J. Funct. Food. 2018, 45, 462–470. [Google Scholar] [CrossRef]
- Shulha, O.; Zidorn, C. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: An update (2008–2017). Phytochemistry 2019, 163, 149–177. [Google Scholar] [CrossRef]
- Wesołowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol. 2006, 107, 254–258. [Google Scholar] [CrossRef]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moujir, L.; Callies, O.; Sousa, P.M.C.; Sharopov, F.; Seca, A.M.L. Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Appl. Sci. 2020, 10, 3001. [Google Scholar] [CrossRef]
- Price, K.R.; Dupont, M.S.; Shepherd, R.; Chan, H.W.S.; Fenwick, G.R. Relationship between the chemical and sensory properties of exotic salad crops—Coloured lettuce (Lactuca sativa) and chicory (Cichorium intybus). J. Sci. Food. Agric. 1990, 53, 185–192. [Google Scholar] [CrossRef]
- Van Beek, T.A.; Maas, P.; King, B.M.; Leclercq, E.; Voragen, A.G.J.; De Groot, A. Bitter sesquiterpene lactones from chicory roots. J. Agric. Food Chem. 1990, 38, 1035–1038. [Google Scholar] [CrossRef]
- Seo, M.W.; Yang, D.S.; Kays, S.J.; Lee, G.P.; Park, K.W. Sesquiterpene Lactones and Bitterness in Korean Leaf Lettuce Cultivars. HortScience 2009, 44, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Hance, P.; Martin, Y.; Vasseur, J.; Hilbert, J.-L.; Trotin, F. Quantification of chicory root bitterness by an ELISA for 11β,13-dihydrolactucin. Food Chem. 2007, 105, 742–748. [Google Scholar] [CrossRef]
- Tamaki, H.; Robinson, R.W.; Anderson, J.L.; Stoewsand, G.S. Sesquiterpene Lactones in Virus-Resistant Lettuce. J. Agric. Food Chem. 1995, 43, 6–8. [Google Scholar] [CrossRef]
- Sung, J.-S.; Hur, O.-S.; Ryu, K.-Y.; Baek, H.-J.; Choi, S.; Kim, S.-G.; Luitel, B.; Ko, H.-C.; Gwak, J.-G.; Rhee, J.-H. Variation in Phenotypic Characteristics and Contents of Sesquiterpene Lactones in Lettuce (Lactuca sativa L.) Germplasm. Korean J. Plant Resour. 2016, 29, 679–689. [Google Scholar] [CrossRef]
- Mello, J.C.; Dietrich, R.; Meinert, E.M.; Teixeira, E.; Amante, E.R. Efeito do cultivo orgânico e convencional sobre a vida-de-prateleira de alface americana (Lactuca sativa L.) minimamente processada. Food Sci. Technol. 2003, 23, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Menezes, E.M.S.; Fernandes, É.C.; Sabaa-Srur, A.U.O. Folhas de alface lisa (Lactuca sativa) minimamente processadas armazenadas em atmosfera modificada: Análises físicas, químicas e físico-químicas. Food Sci. Technol. 2005, 25, 60–62. [Google Scholar] [CrossRef] [Green Version]
- Di Monaco, R.; Miele, N.A.; Cabisidan, E.K.; Cavella, S. Strategies to reduce sugars in food. Curr. Opin. Food Sci. 2018, 19, 92–97. [Google Scholar] [CrossRef]
- Joshi, H.; Bishnoi, S.; Choudhary, P.; Mundra, S. Role of Effective Microorganisms (EM) in Sustainable Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 172–181. [Google Scholar] [CrossRef]
- Szczech, M.; Szafirowska, A.; Kowalczyk, W.; Szwejda-Grzybowska, J.; Włodarek, A.; Maciorowski, R. The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production. J. Hort. Res. 2016, 24, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci. Technol. 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Barickman, T.C.; Sublett, W.L.; Miles, C.; Crow, D.; Scheenstra, E. Lettuce Biomass Accumulation and Phytonutrient Concentrations Are Influenced by Genotype, N Application Rate and Location. Horticulturae 2018, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Stojanović, M.; Maksimović, V.; Mutavdžić, D.; Petrović, I.; Jovanović, Z.; Savić, S.; Maksimović, J.D. Determination of antioxidative and enzymatic activity in green and red lettuce cultivars affected by microbiological fertilisers and seasons. Emir. J. Food Agric. 2021, 33, 101–112. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food. Agric. 2009, 89, 1682–1689. [Google Scholar]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 2009, 47, 578–583. [Google Scholar] [CrossRef]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
- Dudaš, S.; Šola, I.; Sladonja, B.; Erhatić, R.; Ban, D.; Poljuha, D. The effect of biostimulant and fertilizer on “low input” lettuce production. Acta Bot. Croat. 2016, 75, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Kopta, T.; Pavlíková, M.; Sȩkara, A.; Pokluda, R.; Maršálek, B. Effect of Bacterial-algal Biostimulant on the Yield and Internal Quality of Lettuce (Lactuca sativa L.) Produced for Spring and Summer Crop. Not. Bot. Horti. Agrobo. 2018, 46, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, M.; Petrović, I.; Žuža, M.; Jovanović, Z.; Moravčević, Đ.; Cvijanović, G.; Savić, S. The productivity and quality of Lactuca sativa as influenced by microbiological fertilisers and seasonal conditions. Zemdirbyste 2020, 107, 345–352. [Google Scholar] [CrossRef]
- Peters, A.M.; Haagsma, N.; van Amerongen, A. A pilot study on the effects of cultivation conditions of chicory (Cichorium intybus L.) roots on the levels of sesquiterpene lactones in chicons. Z. Lebensm. Unters. Forsch. A 1997, 205, 143–147. [Google Scholar] [CrossRef]
- Lafarga, T.; Villaró, S.; Rivera, A.; Bobo, G.; Aguiló-Aguayo, I. Bioaccessibility of polyphenols and antioxidant capacity of fresh or minimally processed modern or traditional lettuce (Lactuca sativa L.) varieties. J. Food Sci. Technol. 2020, 57, 754–763. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C.; et al. The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef]
- Sytar, O.; Zivcak, M.; Bruckova, K.; Brestic, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Gan, Y.Z.; Azrina, A. Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. Int. Food Res. J. 2016, 23, 2357–2362. [Google Scholar]
- Assefa, A.D.; Choi, S.; Lee, J.-E.; Sung, J.-S.; Hur, O.-S.; Ro, N.-Y.; Lee, H.-S.; Jang, S.-W.; Rhee, J.-H. Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages. BMC Chem. 2019, 13, 56. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Kyriacou, M.; Vitaglione, P.; Giordano, M.; Pannico, A.; Colantuono, A.; De Pascale, S. Genotypic variation in nutritional and antioxidant profile among iceberg lettuce cultivars. Acta Sci. Pol. Hortorum Cultus 2017, 16, 37–45. [Google Scholar] [CrossRef]
- Vidal, V.; Laurent, S.; Charles, F.; Sallanon, H. Fine monitoring of major phenolic compounds in lettuce and escarole leaves during storage. J. Food Biochem. 2019, 43, e12726. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food. Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Assefa, A.D.; Hur, O.-S.; Hahn, B.-S.; Kim, B.; Ro, N.-Y.; Rhee, J.-H. Nutritional Metabolites of Red Pigmented Lettuce (Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods 2021, 10, 2504. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Gratacós-Cubarsí, M.; Sárraga, C.; García-Regueiro, J.-A.; Castellari, M. Analysis of Eleven Phenolic Compounds Including Novel p-Coumaroyl Derivatives in Lettuce (Lactuca sativa L.) by Ultra-high-performance Liquid Chromatography with Photodiode Array and Mass Spectrometry Detection. Phytochem. Anal. 2011, 22, 555–563. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Carillo, P.; Colla, G.; Graziani, G.; Di Mola, I.; Mori, M.; Kyriacou, M.C.; Rouphael, Y.; Soteriou, G.A.; et al. Plant-Derived Biostimulants Differentially Modulate Primary and Secondary Metabolites and Improve the Yield Potential of Red and Green Lettuce Cultivars. Agronomy 2022, 12, 1361. [Google Scholar] [CrossRef]
- Romani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem. 2002, 79, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil, M.I.; Castañer, M.; Tomás-Barberán, F.A. Phenolic Metabolites in Red Pigmented Lettuce (Lactuca sativa). Changes with Minimal Processing and Cold Storage. J. Agric. Food Chem. 1997, 45, 4249–4254. [Google Scholar] [CrossRef]
- Becker, C.; Urlić, B.; Jukić Špika, M.; Kläring, H.-P.; Krumbein, A.; Baldermann, S.; Goreta Ban, S.; Perica, S.; Schwarz, D. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls. PLoS ONE 2015, 10, e0142867. [Google Scholar] [CrossRef]
- Materska, M.; Olszówka, K.; Chilczuk, B.; Stochmal, A.; Pecio, Ł.; Pacholczyk-Sienicka, B.; Piacente, S.; Pizza, C.; Masullo, M. Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. Eur. Food Res. Technol. 2019, 245, 733–744. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.-K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef]
- Park, C.M.; Jin, K.-S.; Lee, Y.-W.; Song, Y.S. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 2011, 660, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Świeca, M. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.). J. Sci. Food. Agric. 2016, 96, 2565–2572. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce. J. Agric. Food Chem. 2011, 59, 5504–5515. [Google Scholar] [CrossRef]
- Geneva, M.P.; Stancheva, I.V.; Boychinova, M.M.; Mincheva, N.H.; Yonova, P.A. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J. Sci. Food. Agric. 2010, 90, 696–702. [Google Scholar] [CrossRef]
- Bojilov, D.; Dagnon, S.; Kostadinov, K.; Filipov, S. Polyphenol composition of lettuce cultivars affected by mineral and bio-organic fertilisation. Czech J. Food Sci. 2020, 38, 359–366. [Google Scholar] [CrossRef]
- Ayuso-Calles, M.; García-Estévez, I.; Jiménez-Gómez, A.; Flores-Félix, J.D.; Escribano-Bailón, M.T.; Rivas, R. Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce (Lactuca sativa L.) under Saline Stress Conditions. Foods 2020, 9, 1166. [Google Scholar] [CrossRef]
- Marin, A.; Ferreres, F.; Barberá, G.G.; Gil, M.I. Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season. J. Agric. Food Chem. 2015, 63, 1673–1681. [Google Scholar] [CrossRef]
- Zhao, X.; Carey, E.E.; Young, J.E.; Wang, W.; Iwamoto, T. Influences of Organic Fertilization, High Tunnel Environment, and Postharvest Storage on Phenolic Compounds in Lettuce. HortScience 2007, 42, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Boo, H.-O.; Heo, B.-G.; Gorinstein, S.; Chon, S.-U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011, 181, 479–484. [Google Scholar] [CrossRef]
- Sublett, W.; Barickman, T.C.; Sams, C. The Effect of Environment and Nutrients on Hydroponic Lettuce Yield, Quality, and Phytonutrients. Horticulturae 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Oh, I.-N.; Kim, J.; Jung, D.; Cuong, N.P.; Kim, Y.; Lee, J.; Kwon, O.; Park, S.U.; Lim, Y.; et al. Phenolic compound profiles and their seasonal variations in new red-phenotype head-forming Chinese cabbages. LWT 2018, 90, 433–439. [Google Scholar] [CrossRef]
- Galieni, A.; Di Mattia, C.; De Gregorio, M.; Speca, S.; Mastrocola, D.; Pisante, M.; Stagnari, F. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hortic. 2015, 187, 93–101. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Antioxidant phytochemicals in lettuce grown in high tunnels and open field. Hortic. Environ. Biotechnol. 2011, 52, 133–139. [Google Scholar] [CrossRef]
- Graziani, G.; Ferracane, R.; Sambo, P.; Santagata, S.; Nicoletto, C.; Fogliano, V. Profiling chicory sesquiterpene lactones by high resolution mass spectrometry. Food Res. Int. 2015, 67, 193–198. [Google Scholar] [CrossRef]
- Beharav, A.; Ben-David, R.; Malarz, J.; Stojakowska, A.; Michalska, K.; Doležalová, I.; Lebeda, A.; Kisiel, W. Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochem. Syst. Ecol. 2010, 38, 602–611. [Google Scholar] [CrossRef]
- Bunning, M.; Kendall, P.; Stone, M.; Stonaker, F.; Stushnoff, C. Effects of Seasonal Variation on Sensory Properties and Total Phenolic Content of 5 Lettuce Cultivars. J. Food Sci. 2010, 75, S156–S161. [Google Scholar] [CrossRef]
- Sessa, R.A.; Bennett, M.H.; Lewis, M.J.; Mansfield, J.W.; Beale, M.H. Metabolite Profiling of Sesquiterpene Lactones from Lactuca Species. J. Biol. Chem. 2000, 275, 26877–26884. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Ferioli, F.; Manco, M.A. The impact of sesquiterpene lactones and phenolics on sensory attributes: An investigation of a curly endive and escarole germplasm collection. Food Chem. 2016, 199, 238–245. [Google Scholar] [CrossRef]
- Drewnowski, A.; Gomez-Carneros, C. Bitter Taste, Phytonutrients, and the Consumer: A Review. Am. J. Clin. Nutr. 2001, 72, 1424–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloess, A.N.; Schönbächler, B.; Klopprogge, B.; DAmbrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, F.; Hance, P.; Gioia, B.; Biela, A.; Roussel, P.; Hilbert, J.-L.; Willand, N. A Three-Step Process to Isolate Large Quantities of Bioactive Sesquiterpene Lactones from Cichorium intybus L. Roots and Semisynthesis of Chicory STLs Standards. Pharmaceuticals 2023, 16, 771. [Google Scholar] [CrossRef]
- Willeman, H.; Hance, P.; Fertin, A.; Voedts, N.; Duhal, N.; Goossens, J.-F.; Hilbert, J.-L. A Method for the Simultaneous Determination of Chlorogenic Acid and Sesquiterpene Lactone Content in Industrial Chicory Root Foodstuffs. Sci. World J. 2014, 2014, 583180. [Google Scholar] [CrossRef] [Green Version]
- Dragišić Maksimović, J.; Živanović, B. Quantification of the Antioxidant Activity in Salt-Stressed Tissues. Methods Mol. Biol. 2012, 913, 237–250. [Google Scholar]
- ISO 8586:2012; General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Ponce, A.; Roura, S.I.; Moreira, M.d.R. Essential Oils as Biopreservatives: Different Methods for the Technological Application in Lettuce Leaves. J. Food Sci. 2011, 76, M34–M40. [Google Scholar] [CrossRef] [PubMed]
Main Factors | 3-CQA | 5-CQA | CTA | CMA | 2,3-DCTA | TPC |
---|---|---|---|---|---|---|
Cultivar | ||||||
Kiribati | 1.87 ± 0.11 a | 0.03 ± 0 a | 4.36 ± 0.32 b | 0.10 ± 0.01 a | 5.70 ± 0.56 a | 155.55 ± 15.24 a |
Murai | 3.29 ± 0.26 bc | 1.51 ± 0.09 cd | 3.34 ± 0.20 a | 0.40 ± 0.04 c | 17.10 ± 1.65 c | 224.86 ± 16.43 b |
Aquino | 1.84 ± 0.09 a | 1.20 ± 0.19 bc | 4.06 ± 0.27 b | 0.07 ± 0.004 a | 6.07 ± 0.44 a | 155.79 ± 9.40 a |
Gaugin | 3.84 ± 0.36 c | 2.89 ± 0.31 e | 3.58 ± 0.34 a | 0.73 ± 0.06 d | 24.89 ± 2.52 d | 325.18 ± 30.64 c |
Aleppo | 2.93 ± 0.29 b | 1.01 ± 0.26 b | 4.35 ± 0.37 b | 0.24 ± 0.01 b | 10.45 ± 0.81 b | 173.65 ± 20.24 a |
Carmesi | 5.11 ± 0.53 d | 1.69 ± 0.21 d | 3.35 ± 0.23 a | 0.33 ± 0.02 c | 23.49 ± 2.66 d | 331.24 ± 25.66 c |
Fertiliser | ||||||
Control | 2.81 ± 0.16 a | 1.33 ± 0.16 | 3.76 ± 0.26 | 0.24 ± 0.01 a | 14.55 ± 1.77 | 222.00 ± 18.50 ab |
EM Aktiv | 3.73 ± 0.38 b | 1.30 ± 0.22 | 3.95 ± 0.25 | 0.31 ± 0.03 b | 14.79 ± 1.00 | 216.94 ± 14.02 a |
Vital Tricho | 3.18 ± 0.24 a | 1.53 ± 0.22 | 3.88 ± 0.35 | 0.42 ± 0.03 c | 14.63 ± 1.49 | 233.00 ± 19.12 ab |
EM Aktiv + Vital Tricho | 2.87 ± 0.31 a | 1.39 ± 0.11 | 3.77 ± 0.29 | 0.27 ± 0.03 ab | 14.49 ± 1.50 | 238.90 ± 26.77 b |
Growing season | ||||||
Autumn | 2.19 ± 0.17 a | 0.77 ± 0.17 a | 3.76 ± 0.33 b | 0.59 ± 0.05 c | 9.49 ± 0.86 a | 283.49 ± 28.33 c |
Winter | 2.39 ± 0.18 a | 1.60 ± 0.17 b | 4.67 ± 0.38 c | 0.31 ± 0.03 b | 26.13 ± 2.94 b | 229.25 ± 15.20 b |
Spring | 4.87 ± 0.47 b | 1.80 ± 0.20 c | 3.09 ± 0.15 a | 0.03 ± 0 a | 8.24 ± 0.53 a | 170.39 ± 15.27 a |
Significance | ||||||
Cultivar (C) | *** | *** | *** | *** | *** | *** |
Fertiliser (F) | *** | ns | ns | *** | ns | ** |
Growing season (GS) | *** | *** | *** | *** | *** | *** |
Interaction factors | ||||||
C × F | *** | ns | * | *** | *** | *** |
C × GS | *** | *** | *** | *** | *** | *** |
F × GS | *** | ** | * | *** | *** | *** |
C × F × GS | *** | *** | *** | *** | *** | *** |
Main Factors | Q-3MG-7G | Q-3G | Q-3Gc | Q-3MG | L-7G |
---|---|---|---|---|---|
Cultivar | |||||
Kiribati | 0.28 ± 0.04 a | 0.76 ± 0.05 b | 0.80 ± 0.09 a | 0.69 ± 0.03 a | 0.66 ± 0.01 a |
Murai | 0.55 ± 0.07 b | 0.82 ± 0.06 b | 0.86 ± 0.14 a | 2.42 ± 0.15 b | 4.20 ± 0.26 c |
Aquino | 0.30 ± 0.06 a | 0.60 ± 0.02 a | 0.80 ± 0.03 a | 0.77 ± 0.02 a | 0.63 ± 0.02 a |
Gaugin | 0.67 ± 0.04 c | 1.05 ± 0.09 c | 1.35 ± 0.26 bc | 2.94 ± 0.26 b | 6.96 ± 0.67 e |
Aleppo | 0.53 ± 0.05 b | 1.00 ± 0.06 c | 1.04 ± 0.11 ab | 1.04 ± 0.08 a | 1.92 ± 0.16 b |
Carmesi | 0.85 ± 0.06 d | 1.68 ± 0.13 d | 1.66 ± 0.25 c | 6.37 ± 0.77 c | 5.88 ± 0.59 d |
Fertiliser | |||||
Control | 0.57 ± 0.06 | 1.06 ± 0.08 b | 1.25 ± 0.20 b | 2.60 ± 0.26 b | 3.47 ± 0.35 |
EM Aktiv | 0.55 ± 0.08 | 1.01 ± 0.06 b | 1.12 ± 0.17 ab | 2.56 ± 0.25 b | 3.24 ± 0.23 |
Vital Tricho | 0.51 ± 0.03 | 1.02 ± 0.08 b | 1.05 ± 0.11 ab | 2.32 ± 0.19 ab | 3.45 ± 0.27 |
EM Aktiv + Vital Tricho | 0.50 ± 0.05 | 0.83 ± 0.05 a | 0.93 ± 0.11 a | 2.02 ± 0.18 a | 3.35 ± 0.34 |
Growing season | |||||
Autumn | 0.79 ± 0.05 b | 1.13 ± 0.09 b | 1.16 ± 0.13 b | 1.53 ± 0.14 b | 1.71 ± 0.15 a |
Winter | 0.77 ± 0.08 b | 1.47 ± 0.10 c | 1.61 ± 0.22 c | 4.72 ± 0.46 c | 6.22 ± 0.60 c |
Spring | 0.03 ± 0.03 a | 0.35 ± 0.01 a | 0.48 ± 0.09 a | 0.86 ± 0.06 a | 2.20 ± 0.13 b |
Significance | |||||
Cultivar (C) | *** | *** | *** | *** | *** |
Fertiliser (F) | ns | *** | ** | ** | ns |
Growing season (GS) | *** | *** | *** | *** | *** |
Interaction factors | |||||
C × F | ns | *** | ns | *** | *** |
C × GS | *** | *** | *** | *** | *** |
F × GS | ns | *** | ns | *** | *** |
C × F × GS | * | *** | *** | *** | *** |
Main Factors | Lactucopicrin | Dihydrolactucopicrin | Total Sesquiterpene Lactones | Sensory Attribute–Overall Taste |
---|---|---|---|---|
Cultivar | ||||
Kiribati | 0.15 ± 0.01 bc | 0.003 ± 0 a | 0.18 ± 0.01 b | 2.93 ± 0.25 |
Murai | 0.11 ± 0.01 a | 0.006 ± 0.002 ab | 0.12 ± 0.01 a | 2.83 ± 0.23 |
Aquino | 0.10 ± 0.01 a | 0.014 ± 0.003 c | 0.12 ± 0.02 a | 3.08 ± 0.30 |
Gaugin | 0.12 ± 0.02 ab | 0.006 ± 0 ab | 0.12 ± 0.02 a | 2.87 ± 0.25 |
Aleppo | 0.19 ± 0.03 c | 0.005 ± 0.001 ab | 0.21 ± 0.04 b | 2.85 ± 0.21 |
Carmesi | 0.37 ± 0.03 d | 0.007 ± 0.001 b | 0.39 ± 0.04 c | 2.90 ± 0.21 |
Fertiliser | ||||
Control | 0.15 ± 0.02 a | 0.003 ± 0 a | 0.15 ± 0.02 a | 2.87 ± 0.22 |
EM Aktiv | 0.17 ± 0.01 a | 0.008 ± 0.001 b | 0.18 ± 0.02 a | 2.85 ± 0.25 |
Vital Tricho | 0.17 ± 0.01 a | 0.009 ± 0.002 b | 0.18 ± 0.02 a | 3.03 ± 0.25 |
EM Aktiv + Vital Tricho | 0.21 ± 0.03 b | 0.007 ± 0.002 b | 0.25 ± 0.04 b | 2.89 ± 0.25 |
Growing season | ||||
Autumn | 0.24 ± 0.03 c | 0.007 ± 0.002 b | 0.26 ± 0.03 c | 2.67 ± 0.24 a |
Winter | 0.12 ± 0.01 a | 0.003 ± 0.001 a | 0.13 ± 0.01 a | 3.11 ± 0.22 b |
Spring | 0.16 ± 0.02 b | 0.011 ± 0.002 c | 0.18 ± 0.02 b | 2.94 ± 0.26 b |
Significance | ||||
Cultivar (C) | *** | *** | *** | ns |
Fertiliser (F) | *** | *** | *** | ns |
Growing season (GS) | *** | *** | *** | *** |
Interaction factors | ||||
C × F | *** | *** | *** | *** |
C × GS | *** | *** | *** | *** |
F × GS | *** | *** | *** | ns |
C × F × GS | *** | *** | *** | * |
TPC | DHLp | Lp | STL | Q-3G | Q-3MG | L-7G | 3-CQA | CTA | CMA | 2,3-DCTA | Q-3MG-7G | Q-3Gc | 5-CQA | OT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC | 1 | ||||||||||||||
DHLp | −0.08 | 1 | |||||||||||||
Lp | 0.27 * | 0.26 ** | 1 | ||||||||||||
STL | 0.24 ** | 0.22 ** | 0.96 ** | 1 | |||||||||||
Q-3G | 0.51 ** | −0.32 ** | 0.12 | 0.07 | 1 | ||||||||||
Q-3MG | 0.57 ** | −0.22 ** | 0.08 | 0.05 | 0.85 ** | 1 | |||||||||
L-7G | 0.54 ** | −0.24 ** | −0.007 | −0.04 | 0.66 ** | 0.82 ** | 1 | ||||||||
3-CQA | 0.04 | 0.22 ** | 0.19 ** | 0.17 * | −0.26 ** | −0.07 | 0.007 | 1 | |||||||
CTA | 0.09 | −0.22 ** | −0.15 ** | −0.16 * | 0.53 ** | 0.40 ** | 0.29 ** | −0.30 ** | 1 | ||||||
CMA | 0.60 ** | −0.05 | 0.05 | −0.02 | 0.41 ** | 0.33 ** | 0.25 ** | −0.05 | 0.23 ** | 1 | |||||
2,3-DCTA | 0.55 ** | −0.24 ** | −0.01 | −0.03 | 0.72 ** | 0.86 ** | 0.97 ** | −0.06 | 0.41 ** | 0.29 ** | 1 | ||||
Q-3MG-7G | 0.59 ** | −0.34 ** | 0.17 * | 0.13 | 0.79 ** | 0.68 ** | 0.61 ** | −0.27 ** | 0.42 ** | 0.44 ** | 0.67 ** | 1 | |||
Q-3Gc | 0.49 ** | −0.28 ** | 0.10 | 0.05 | 0.85 ** | 0.78 ** | 0.66 ** | −0.21 ** | 0.51 ** | 0.34 ** | 0.71 ** | 0.73 ** | 1 | ||
5-CQA | 0.32 ** | 0.04 | −0.06 | −0.09 | 0.28 ** | 0.43 ** | 0.65 ** | 0.12 | −0.05 | 0.10 | 0.56 ** | 0.15 * | 0.33 ** | 1 | |
OT | −0.06 | −0.005 | −0.16 * | −0.16 * | 0.07 | 0.12 | 0.16 * | −0.16 * | 0.09 | −0.14 * | 0.15 * | −0.006 | 0.07 | 0.15 * | 1 |
Autumn | Winter | Spring | |
---|---|---|---|
Growing data | |||
Sowing | 19 September 2016 | 15 November 2016 | 5 April 2017 |
Transplanting | 11 October 2016 | 27 December 2016 | 27 April 2017 |
Harvest | 7 December 2016 | 5 April 2017 | 5 June 2017 |
Vegetation period (days) | 58 | 100 | 40 |
Climatic data | |||
Average day temperature (°C) | 11.9 | 10.8 | 26.3 |
Average night temperature (°C) | 5.7 | 1.8 | 15.3 |
Average maximum temperature (°C) | 17.3 | 24.1 | 30.4 |
Average minimum temperature (°C) | −1.8 | −6.9 | 12.8 |
Average air humidity (%) | 87.2 | 81.5 | 74.2 |
Photoperiod (h) | 11-9 | 9–13 | 14–15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, M.; Savić, S.; Delcourt, A.; Hilbert, J.-L.; Hance, P.; Dragišić Maksimović, J.; Maksimović, V. Phenolics and Sesquiterpene Lactones Profile of Red and Green Lettuce: Combined Effect of Cultivar, Microbiological Fertiliser, and Season. Plants 2023, 12, 2616. https://doi.org/10.3390/plants12142616
Stojanović M, Savić S, Delcourt A, Hilbert J-L, Hance P, Dragišić Maksimović J, Maksimović V. Phenolics and Sesquiterpene Lactones Profile of Red and Green Lettuce: Combined Effect of Cultivar, Microbiological Fertiliser, and Season. Plants. 2023; 12(14):2616. https://doi.org/10.3390/plants12142616
Chicago/Turabian StyleStojanović, Milica, Slađana Savić, Abigaël Delcourt, Jean-Louis Hilbert, Philippe Hance, Jelena Dragišić Maksimović, and Vuk Maksimović. 2023. "Phenolics and Sesquiterpene Lactones Profile of Red and Green Lettuce: Combined Effect of Cultivar, Microbiological Fertiliser, and Season" Plants 12, no. 14: 2616. https://doi.org/10.3390/plants12142616
APA StyleStojanović, M., Savić, S., Delcourt, A., Hilbert, J. -L., Hance, P., Dragišić Maksimović, J., & Maksimović, V. (2023). Phenolics and Sesquiterpene Lactones Profile of Red and Green Lettuce: Combined Effect of Cultivar, Microbiological Fertiliser, and Season. Plants, 12(14), 2616. https://doi.org/10.3390/plants12142616