Economic Uses of Salt-Tolerant Plants
Abstract
:1. Introduction
1.1. Population and Food
1.2. Salinisation
1.3. Salinisation, Plant Growth, and Crop Yields
1.4. Ways to Deal with the Salinity Problem
2. eHALOPH and the Current Review
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494. [Google Scholar] [CrossRef] [PubMed]
- Glaros, A.; Marquis, S.; Major, C.; Quarshie, P.; Ashton, L.; Green, A.G.; Kc, K.B.; Newman, L.; Newell, R.; Yada, R.Y.; et al. Horizon scanning and review of the impact of five food and food production models for the global food system in 2050. Trends Food Sci. Technol. 2022, 119, 550. [Google Scholar] [CrossRef]
- Flowers, T.J.; Yeo, A.R. Breeding for salinity resistance in crop plants: Where next? Funct. Plant Biol. 1995, 22, 875–884. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Cochard, R.; Ranamukhaarachchi, S.L.; Shivakoti, G.P.; Shipin, O.V.; Edwards, P.J.; Seeland, K.T. The 2004 tsunami in ACEH and southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 3–40. [Google Scholar] [CrossRef]
- Reid, J.A.; Mooney, W.D. Tsunami occurrence 1900–2020: A global review, with examples from Indonesia. Pure Appl. Geophys. 2022, 180, 1549–1571. [Google Scholar] [CrossRef]
- Enriquez, A.R.; Wahl, T.; Baranes, H.E.; Talke, S.A.; Orton, P.M.; Booth, J.F.; Haigh, I.D. Predictable changes in extreme sea levels and coastal flood risk due to long-term tidal cycles. J. Geophys. Res.-Ocean. 2022, 127, e2021JC018157. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Kebede, A.S. Indirect impacts of coastal climate change and sea-level rise: The UK example. Clim. Policy 2012, 12, S28–S52. [Google Scholar] [CrossRef]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Natl. Acad. Sci. USA 2013, 89, 281–301. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2015; p. 151. [Google Scholar]
- Thorslund, J.; Bierkens, M.F.P.; Essink, G.H.P.O.; Sutanudjaja, E.H.; van Vliet, M.T.H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 2021, 12, 4232. [Google Scholar] [CrossRef] [PubMed]
- Vicente, O. Improving agricultural production and food security under climate change conditions. Agrolife Sci. J. 2022, 11, 241–252. [Google Scholar] [CrossRef]
- Bernstein, L. Salt tolerance of field crops. US Agric. Inf. Bull. 1960, 217, 1–6. [Google Scholar]
- Kreeb, K. Salt injuries on cultural crops. Zeit Pflanzenkrankh 1960, 67, 385–399. [Google Scholar]
- Ayers, A.D.; Wadleigh, C.H.; Bernstein, L. Salt tolerance in six varieties of lettuce. Am. Soc. Plant Sci. 1951, 57, 237–242. [Google Scholar]
- Bernstein, L.; Ayers, A.D. Salt tolerance in six varieties of green beans. Proc. Am. Soc. Hortic. Sci. 1951, 57, 243–248. [Google Scholar]
- Bernstein, L.; Wadleigh, C.H.; Ayers, A.D. The salt tolerance of white rose potatoes. Amer. Soc. Hort. Sci. 1951, 57, 231–236. [Google Scholar]
- Maas, E.V.; Hoffmann, G.J. Crop salt tolerance: Evaluation of existing data. In Managing Water for Irrigation: Proceedings of the International Salinity Conference; Dregne, H.E., Ed.; Texas Technical University Press: Lubbock, TX, USA, 1977; pp. 187–197. [Google Scholar]
- Ashraf, M.; Munns, R. Evolution of approaches to increase the salt tolerance of crops. Crit. Rev. Plant Sci. 2022, 41, 128–160. [Google Scholar] [CrossRef]
- Epstein, E.; Norlyn, J.D.; Rush, D.W.; Kingsbury, R.W.; Kelley, D.B.; Cunningham, G.A.; Wrona, A.F. Saline culture of crops—A genetic approach. Science 1980, 210, 399–404. [Google Scholar] [CrossRef]
- Blum, A. Breeding crop varieties for stress environments. Crit. Rev. Plant Sci. 1985, 2, 199–238. [Google Scholar] [CrossRef]
- Jefferies, R.L.; Pitman, M.G. Perspectives of the biology of halophytes in natural habitats in relation to forage production. Reclam. Reveg. Res. 1986, 5, 227–243. [Google Scholar]
- Maas, E.V. Crop salt tolerance. In Agricultural Salinity Assessment and Management; Tanji, K., Ed.; American Society of Civil Engineers: New York, NY, USA, 1990; pp. 262–304. [Google Scholar]
- van Straten, G.; de Vos, A.C.; Rozema, J.; Bruning, B.; van Bodegom, P.M. An improved methodology to evaluate crop salt tolerance from field trials. Agric. Water Manag. 2019, 213, 375–387. [Google Scholar] [CrossRef]
- Misle, E.; Kahlaoui, B. Converting classic data of salt tolerance into an allometric crop salinity response function. Plant Biosyst. 2021, 155, 235–240. [Google Scholar] [CrossRef]
- Boyko, H. Sand deserts—Granaries of future. Futures 1969, 1, 191–197. [Google Scholar] [CrossRef]
- Boyko, H. Salinity and Aridity: New Approaches to Old Problems; Dr W Junk: The Hague, The Netherlands, 1966. [Google Scholar]
- Boyko, H. Principles and experiments regarding irrigation with highly saline and sea water without desalinization. Trans. N. Y. Acad. Sci. Ser. II 1964, 26, 1087–1102. [Google Scholar] [CrossRef]
- Mudie, P.J.; Schmitt, W.R.; Luard, E.J.; Rutherford, J.W.; Wolfson, F.H. Preliminary Studies on Seawater Irrigation; Foundation for Ocean research Publication: San Diego, CA, USA, 1972. [Google Scholar]
- Malcolm, C.V. Use of halophytes for forage production on saline wastelands. J. Aust. Inst. Agric. Sci. 1969, 35, 38. [Google Scholar]
- Mudie, P.J. The Potential Economic Uses of Halophytes; Academic Press, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Aronson, J.A. Haloph a Data Base of Salt Tolerant Plants of the World; Office of Arid Land Studies, University of Arizona: Tucson, AZ, USA, 1989. [Google Scholar]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Cassaniti, C.; Romano, D.; Hop, M.; Flowers, T.J. Growing floricultural crops with brackish water. Environ. Exp. Bot. 2013, 92, 165–175. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Rozema, J.; Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 2013, 92, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. Biomed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Nizar, M.; Hajer, G.; Kamel, H. Potential Use of Halophytes and Salt Tolerant Plants in Ruminant Feeding: A Tunisian Case Study; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, L.Y.; Zhao, Y.; Han, G.L.; Guo, J.R.; Meng, Z.; Chen, M. Progress in the study and use of seawater vegetables. J. Agric. Food Chem. 2020, 68, 5998–6006. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Hoste, H.; Custodio, L. A systematic review on the ethnoveterinary uses of Mediterranean salt-tolerant plants: Exploring its potential use as fodder, nutraceuticals or phytotherapeutics in ruminant production. J. Ethnopharmacol. 2021, 267, 113464. [Google Scholar] [CrossRef] [PubMed]
- Holguin Pena, R.J.; Hernandez, D.M.; Ghasemi, M.; Puente, E.O.R. Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biol. Colomb. 2021, 26, 116–126. [Google Scholar] [CrossRef]
- Spradlin, A.; Saha, S. Saline aquaponics: A review of challenges, opportunities, components, and system design. Aquaculture 2022, 555, 738173. [Google Scholar] [CrossRef]
- Caparros, P.G.; Ozturk, M.; Gul, A.; Batool, T.S.; Pirasteh-Anosheh, H.; Unal, B.T.; Altay, V.; Toderich, K.N. Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environ. Exp. Bot. 2022, 193, 104666. [Google Scholar] [CrossRef]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant Cell Physiol. 2016, 57, e1–e10. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magne, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Buhmann, A.; Papenbrock, J. An economic point of view of secondary compounds in halophytes. Funct. Plant Biol. 2013, 40, 952–967. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.; Pereira, C.G.; Oliveira, M.; Zengin, G.; Custodio, L. Salt-tolerant plants as sources of antiparasitic agents for human use: A comprehensive review. Mar. Drugs 2023, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Selmar, D. Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforsch. Volkenrode 2008, 58, 139–144. [Google Scholar]
- Benjamin, J.J.; Lucini, L.; Jothiramshekar, S.; Parida, A. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol. Biochem. 2019, 135, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Dadkhah, N.; Esmaeili, M.; Pirdashti, H.; Sepanloo, M.G. Response of two halophyte plants (Nitraria schoberi and Halocnemum strobilaceum) to potassium sulfate under saline condition. Ukr. J. Ecol. 2017, 7, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Elansary, H.O.; Mattar, M.A.; Elhindi, K.M.; Alotaibi, M.A.; Mishra, A. Differential accumulation of metabolites in Suaeda species provides new insights into abiotic stress tolerance in C4-halophytic species in elevated CO2 conditions. Agronomy 2021, 11, 131. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J.; Ren, T.; Du, H.; Liu, H.; Li, Y.; Zhang, C. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum. Plant Biol. 2020, 22, 813–821. [Google Scholar] [CrossRef]
- Boestfleisch, C.; Wagenseil, N.B.; Buhmann, A.K.; Seal, C.E.; Wade, E.M.; Muscolo, A.; Papenbrock, J. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. Aob Plants 2014, 6, plu046. [Google Scholar] [CrossRef]
- Hafsi, C.; Falleh, H.; Saada, M.; Ksouri, R.; Abdelly, C. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity. Plant Physiol. Biochem. 2017, 118, 609–617. [Google Scholar] [CrossRef]
- Vafadar, F.; Amooaghaie, R.; Ehsanzadeh, P.; Ghanadian, M. Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyiboiss. Biologia 2020, 75, 2147–2158. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yang, H.; Wu, W.; Ma, L.; Huang, T.; Wang, X. Physiological and biochemical responses of a medicinal halophyte Limonium bicolor (Bag.) Kuntze to salt-stress. Pak. J. Bot. 2016, 48, 1371–1377. [Google Scholar]
- Souid, A.; Gabriele, M.; Longo, V.; Pucci, L.; Bellani, L.; Smaoui, A.; Abdelly, C.; Hamed, K.B. Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Funct. Plant Biol. 2016, 43, 607–619. [Google Scholar]
- Rodrigues, M.J.; Monteiro, I.; Placines, C.; Castaneda-Loaiza, V.; Slusarczyk, S.; Matkowski, A.; Pereira, C.; Pousao-Ferreira, P.; Custodio, L. The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L. Ind. Crops Prod. 2019, 139, 111510. [Google Scholar] [CrossRef]
- Sonar, B.A.; Nivas, M.D.; Gaikward, D.K.; Chavan, P.D. Assessment of salinity-induced antioxidative defense system in Colubrina asiatica Brong. J. Stress Physiol. Biochem. 2011, 7, 193–200. [Google Scholar]
- Wang, L.X.; Pan, D.Z.; Lv, X.J.; Cheng, C.L.; Li, J.; Liang, W.Y.; Xing, J.H.; Chen, W. A multilevel investigation to discover why Kandelia candel thrives in high salinity. Plant Cell Environ. 2016, 39, 2486–2497. [Google Scholar] [CrossRef]
- Atzori, G.; de Vos, A.C.; van Rijsselberghe, M.; Vignolini, P.; Rozema, J.; Mancuso, S.; van Bodegom, P.M. Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. Under field conditions. Agric. Water Manag. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Falleh, H.; Jalleli, I.; Ksouri, R.; Boulaaba, M.; Guyot, S.; Magne, C.; Abdelly, C. Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances. Plant Physiol. Biochem. 2012, 52, 1–8. [Google Scholar] [CrossRef]
- Slama, I.; M’Rabet, R.; Ksouri, R.; Talbi, O.; Debez, A.; Abdelly, C. Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum. Flora 2015, 213, 69–76. [Google Scholar] [CrossRef]
- Bueno, M.; Lendinez, M.L.; Calero, J.; Cordovilla, M.D. Salinity responses of three halophytes from inland saltmarshes of Jaen (southern Spain). Flora 2020, 266, 151589. [Google Scholar] [CrossRef]
- de Souza, M.M.; Mendes, C.R.; Doncato, K.B.; Badiale-Furlong, E.; Costa, C.S.B. Growth, phenolics, photosynthetic pigments, and antioxidant response of two new genotypes of sea asparagus (Salicornia neei Lag.) to salinity under greenhouse and field conditions. Agriculture 2018, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Ventura, Y.; Myrzabayeva, M.; Alikulov, Z.; Omarov, R.; Khozin-Goldberg, I.; Sagi, M. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AoB Plants 2014, 6, plu053. [Google Scholar] [CrossRef]
- Sahito, Z.A.; Khan, D.; Ahmed, N. Some parameters of growth of river Cooba seedlings under salt stress. Int. J. Biol. Biotechnol. 2013, 10, 339–352. [Google Scholar]
- Ashour, H.A.; Esmail, S.E.A.; Kotb, M.S. Alleviative effects of chitosan or humic acid on Vitex trifolia ‘purpurea’ grown under salinity stress. Ornam. Hortic.-Rev. Bras. De Hortic. Ornam. 2021, 27, 88–102. [Google Scholar] [CrossRef]
- Kathiresan, K.; Ravi, A.V. Seasonal changes in tannin content of mangrove leaves. Indian For. 1990, 116, 390–392. [Google Scholar]
- Bautista, I.; Boscaiu, M.; Lidon, A.; Llinares, J.V.; Lull, C.; Donat, M.P.; Mayoral, O.; Vicente, O. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol. Plant. 2016, 38, 9. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chen, F.A.; Venkatesalu, V.; Kuo, D.H.; Shea, P.C. Evaluation of antioxidant polyphenols from selected mangrove plants of India. Asian J. Chem. 2008, 20, 1311–1322. [Google Scholar]
- Malcolm, C. Economic and environmental aspects of the sustainable use of halophytic forages. In Halophytes and Biosaline Agriculture; Choukr-Allah, R., Malcolm, C.V., Hamdy, A., Eds.; Dekker: New York, NY, USA, 1996; pp. 363–376. [Google Scholar]
- El Shaer, H.M. Halophytes and salt-tolerant plants as potential forage for ruminants in the near east region. Small Rumin. Res. 2010, 91, 3–12. [Google Scholar] [CrossRef]
- Barrett-Lennard, E.G.; Norman, H.C. Agriculture in salinising landscapes in southern Australia selected research snapshots. In Future of Sustainable Agriculture in Saline Environments; Negacz, K., Vellinga, P., Barrett-Lennard, E., Choukr-Allah, R., Elzengo, T., Eds.; CRC Press: Boca Raton, FA, USA, 2021; pp. 29–49. [Google Scholar]
- Rao, N.K.; McCann, I.; Shahid, S.A.; Butta, K.U.R.; Al Araj, B.; Ismail, S. Sustainable use of salt-degraded and abandoned farms for forage production using halophytic grasses. Crop Pasture Sci. 2017, 68, 483–492. [Google Scholar] [CrossRef]
- Masters, D.; Tiong, M.; Vercoe, P.; Norman, H. The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Rumin. Res. 2010, 91, 56–62. [Google Scholar] [CrossRef]
- Temel, S.; Surmen, M.; Tan, M. Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. J. Anim. Plant Sci. 2015, 25, 1419–1428. [Google Scholar]
- Norman, H.C.; Revell, D.K.; Mayberry, D.E.; Rintoul, A.J.; Wilmot, M.G.; Masters, D.G. Comparison of in vivo organic matter digestion of native Australian shrubs by sheep to in vitro and in sacco predictions. Small Rumin. Res. 2010, 91, 69–80. [Google Scholar] [CrossRef]
- Kafi, M.; Salehi, M. Potentially domesticable Chenopodiaceae halophytes of Iran. In Sabkha Ecosystems, Vol vi: Asia/Pacific; Gul, B., Boer, B., Khan, M.A., Clusener Godt, M., Hameed, A., Eds.; Tasks for vegetation science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 49, pp. 269–288. [Google Scholar]
- Watson, M.C. Atriplex species as irrigated forage crops. Agric. Ecosyst. Environ. 1990, 32, 107–118. [Google Scholar] [CrossRef]
- Watson, M.C.; Oleary, J.W. Performance of Atriplex species in the San Joaquin valley, California, under irrigation and with mechanical harvests. Agric. Ecosyst. Environ. 1993, 43, 255–266. [Google Scholar] [CrossRef]
- Colomer, J.S.; Passera, C.B. The nutritional-value of Atriplex spp as fodder for arid regions. J. Arid. Environ. 1990, 19, 289–295. [Google Scholar] [CrossRef]
- Diaz, F.J.; Benes, S.E.; Grattan, S.R. Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin valley of California. Agric. Water Manag. 2013, 118, 59–69. [Google Scholar] [CrossRef]
- Norman, H.C.; Masters, D.G.; Barrett-Lennard, E.G. Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environ. Exp. Bot. 2013, 92, 96–109. [Google Scholar] [CrossRef]
- Norman, H.C.; Duncan, E.G.; Masters, D.G. Halophytic shrubs accumulate minerals associated with antioxidant pathways. Grass Forage Sci. 2019, 74, 345–355. [Google Scholar] [CrossRef]
- Waldron, B.L.; Sagers, J.K.; Peel, M.D.; Rigby, C.W.; Bugbee, B.; Creech, J.E. Salinity reduces the forage quality of forage Kochia: A halophytic Chenopodiaceae shrub. Rangel. Ecol. Manag. 2020, 73, 384–393. [Google Scholar] [CrossRef]
- Esfahan, E.Z.; Assareh, M.H.; Jafari, M.; Jafari, A.A.; Javadi, S.A.; Karimi, G. Phenological effects on forage quality of two halophyte species Atriplex leucoclada and Suaeda vermiculata in four saline rangelands of Iran. J. Food Agric. Environ. 2010, 8, 999–1003. [Google Scholar]
- Glenn, E.; Tanner, R.; Miyamoto, S.; Fitzsimmons, K.; Boyer, J. Water use, productivity and forage quality of the halophyte Atriplex nummularia grown on saline waste water in a desert environment. J. Arid. Environ. 1998, 38, 45–62. [Google Scholar] [CrossRef]
- Al-Dakheel, A.J.; Hussain, M.I.; Rahman, A.Q.M.A. Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. Accessions. Agric. Water Manag. 2015, 159, 148–154. [Google Scholar] [CrossRef]
- Mahmood, S.; Irshad, A.; Ishtiaq, S. Bunch grass (Cenchrus ciliaris L.): A potential forage crop for saline environment. Philipp. J. Crop Sci. 2014, 39, 52–57. [Google Scholar]
- Ashour, N.I.; Serag, M.S.; ElHaleem, A.K.A.; Mekki, B.B. Forage production from three grass species under saline irrigation in egypt. J. Arid. Environ. 1997, 37, 299–307. [Google Scholar] [CrossRef]
- Vago, M.E.; Jaurena, G.; Estevez, J.M.; Castro, M.A.; Zavala, J.A.; Ciancia, M. Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants. Plant Physiol. Biochem. 2021, 166, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.E.; Colmer, T.D.; Frost, K.; Henry, D.; Cornwall, D.; Hulm, E.; Deretic, J.; Hughes, S.R.; Craig, A.D. Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant Soil 2008, 304, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Muscolo, A.; Panuccio, M.R.; Eshel, A. Ecophysiology of Pennisetum clandestinum: A valuable salt tolerant grass. Environ. Exp. Bot. 2013, 92, 55–63. [Google Scholar] [CrossRef]
- Reiahisamani, N.; Esmaeili, M.; Sima, N.A.K.; Zaefarian, F.; Zeinalabedini, M. Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils. Genet. Resour. Crop Evol. 2018, 65, 1879–1891. [Google Scholar] [CrossRef]
- Fowler, J.L.; Hageman, J.H.; Moore, K.J.; Suzukida, M.; Assadian, H.; Valenzuela, M. Salinity effects on forage quality of Russian thistle. J. Range Manag. 1992, 45, 559–563. [Google Scholar] [CrossRef]
- Aslam, Z.; Bhatti, A.S.; Mujtaba, M. Aster tripolium: A winter forage: For salt-affected soils. In Halophytes in Different Climates; Aslam, Z., Bhatti, A.S., Mujtaba, M., Eds.; Backhuys: Leiden, The Netherlands, 1999; pp. 95–103. [Google Scholar]
- Abideen, Z.; Qasim, M.; Rizvi, R.F.; Gul, B.; Ansari, R.; Khan, M.A. Oilseed halophytes: A potential source of biodiesel using saline degraded lands. Biofuels 2015, 6, 241–248. [Google Scholar] [CrossRef]
- Abideen, Z.; Hameed, A.; Koyro, H.-W.; Gul, B.; Ansari, R.; Khan, M. Sustainable biofuel production from non-food sources—An overview. Emir. J. Food Agric. 2014, 26, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Abideen, Z.; Ansari, R.; Hasnain, M.; Flowers, T.J.; Werner-Koyro, H.; El-Kablawy, A.; Abouleish, M.; Khan, M.A. Potential use of saline resources for biofuel production using halophytes and marine algae: Prospects and pitfalls. Front. Plant Sci. 2023, 14, 1026063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.F.; Fan, H.; Ungar, I.A. Survey of halophyte species in China. Plant Sci. 2002, 163, 491–498. [Google Scholar]
- Menzel, U.; Lieth, H. Halophyte database vers. 2.0 update. In Cash Crop Halophytes; Lieth, H., Mochtchenko, M., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 221–223. [Google Scholar]
- Khan, M.A.; Qaiser, M. Halophytes of Pakistan: Characteristics, distribution and potential economic usages. In Sabkha Ecosystems; Khan, M., Kust, G.S., Barth, H.-J., Boer, B., Eds.; Springer: Amsterdam, The Netherlands, 2006; pp. 129–153. [Google Scholar]
- Jacobsen, T.; Adams, R.M. Salt and silt in ancient Mesopotamian agriculture. Science 1958, 128, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.W. The agricultural use of native plants on problem soils. In Soil Mineral Stresses: Approaches to Crop Improvement; Yeo, A.R., Flowers, T.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 127–143. [Google Scholar]
- Raghuvanshi, R.; Srivastava, A.K.; Verulkar, S.; Suprasanna, P. Unlocking allelic diversity for sustainable development of salinity stress tolerance in rice. Curr. Genom. 2021, 22, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kota, S.; Flowers, T.J. Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age. Theor. Appl. Genet. 2021, 134, 3495–3533. [Google Scholar] [CrossRef]
- Mujeeb-Kazi, A.; Munns, R.; Rasheed, A.; Ogbonnaya, F.C.; Ali, N.; Hollington, P.; Dundas, I.; Saeed, N.; Wang, R.; Rengasamy, P.; et al. Breeding strategies for structuring salinity tolerance in wheat. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 155, pp. 121–187. [Google Scholar]
- Naeem, M.; Iqbal, M.; Shakeel, A.; Ul-Allah, S.; Hussain, M.; Rehman, A.; Zafar, Z.U.; Athar, H.U.R.; Ashraf, M. Genetic basis of ion exclusion in salinity stressed wheat: Implications in improving crop yield. Plant Growth Regul. 2020, 92, 479–496. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Al-Azzawi, M.J.; Flowers, T.J. Distribution and potential uses of halophytes within the Gulf Cooperation Council States. Agronomy 2022, 12, 1030. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Garcia-Caparros, P.; Nogales, A.; Abreu, M.M.; Santos, E.; Cortinhas, L.; Caperta, A.D. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environ. Exp. Bot. 2023, 212, 105397. [Google Scholar] [CrossRef]
- Eshel, A.; Oren, I.; Alekperov, C.; Eilam, T.; Zilberstain, A. Biomass production by desert halophytes: Alleviating the pressure on scarce resources of arable soil and fresh water. Eur. J. Plant Sci. Biotechnol. 2011, 5, 48–53. [Google Scholar]
- Breckle, S.-W. Is sustainable agriculture with seawater irrigation realistic? In Salinity and Water Stress Improving Crop Efficiency; Ashraf, M., Ozturk, M., Athar, H.R., Eds.; Tasks for Vegetation Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 187–196. [Google Scholar]
All Salt-Tolerant Plants | Rank | Halophytes | |
---|---|---|---|
1 | Amaranthaceae | 1 | Amaranthaceae |
2 | Poaceae | 2 | Poaceae |
3 | Fabaceae | 3 | Fabaceae |
4 | Plumbaginaceae | 4 | Plumbaginaceae |
5 | Asteraceae | 5 | Zosteraceae |
6 | Cyperaceae | 6 | Asteraceae |
7 | Tamaricaceae | 7 | Hydrocharitaceae |
8 | Hydrocharitaceae | 8 | Rhizophoraceae |
9 | Myrtaceae | 9 | Cymodoceaceae |
10 | Aizoaceae | 10 | Myrtaceae |
11 | Zosteraceae | 11 | Acanthaceae |
12 | Brassicaceae | 12 | Aizoaceae |
13 | Rhizophoraceae | 13 | Cyperaceae |
14 | Solanaceae | 14 | Brassicaceae |
15 | Cymodoceaceae | 15 | Tamaricaceae |
16 | Malvaceae | 16 | Malvaceae |
17 | Acanthaceae | 17 | Posidoniaceae |
18 | Apiaceae | 18 | Casuarinaceae |
19 | Arecaceae | 19 | Lythraceae |
20 | Zygophyllaceae | 20 | Solanaceae |
Code | Use | Sub Code | Use |
---|---|---|---|
000.0 | FOOD AND DRINK | 0100.0 | Vegetables and fruit |
0200.0 | Beverages | ||
0300.0 | Cooking fats and oils | ||
0400.0 | Miscellaneous food and drinks | ||
0500.0 | Breeding stock | ||
CROP LISTED BY FAO | 0001.0 | ||
1000.0 | DOMESTIC PRODUCTS | 1200.0 | Soaps |
1300.0 | Cosmetics | ||
1400.0 | Dental | ||
1700.0 | Roofing thatching and green roofs | ||
2000.0 | TIMBER | 2100.0 | Fuel |
2200.0 | Sawn timber | ||
2400.0 | Construction timber | ||
2500.0 | Carpentry | ||
3000.0 | FORAGE | 3100.0 | Grazing |
3200.0 | Browse | ||
3300.0 | Fodder | ||
4000.0 | LAND USE | 4500.0 | Soil stabilization |
4600.0 | Soil improvement | ||
4700.0 | Salt tolerance | ||
4800.0 | Ornamental | ||
5000.0 | FIBERS | 5100.0 | Cordage |
5200.0 | Textiles | ||
6000.0 | TOXINS | 6000.0 | |
7000.0 | MEDICAL | 7100.0 | General including traditional medicine |
7160.0 | Antibiotics | ||
8000.0 | CHEMICALS | 8100.0 | Carbohydrates |
8200.0 | Lipids, Essential oils | ||
8300.0 | Bioenergy/Biofuel |
SEPASAL Code | SEPASAL Descriptor | All | % | Halo-Phytes | % |
---|---|---|---|---|---|
0 | FOOD AND DRINK; Crops | 152 | 11.1 | 107 | 11.7 |
1000 | DOMESTIC PRODUCTS | 39 | 2.9 | 27 | 2.9 |
2000 | TIMBER | 80 | 5.9 | 56 | 6.1 |
3000 | FORAGE | 275 | 20.1 | 189 | 20.6 |
4000 | LAND USE | 206 | 15.1 | 149 | 16.2 |
5000 | FIBERS | 27 | 2.0 | 14 | 1.5 |
6000 | TOXINS | 42 | 3.1 | 25 | 2.7 |
7000 | MEDICAL | 404 | 29.6 | 258 | 28.1 |
8000 | CHEMICALS | 140 | 10.3 | 93 | 10.1 |
Totals | 1365 | 100 | 918 | 100 |
Family | Number | % | Sum % | % All Species in Family |
---|---|---|---|---|
Fabaceae | 50 | 12 | 54 | |
Amaranthaceae | 42 | 10 | 23 | 13 |
Asteraceae | 24 | 6 | 29 | 47 |
Plumbaginaceae | 21 | 5 | 34 | 38 |
Poaceae | 20 | 5 | 39 | 13 |
Rhizophoraceae | 16 | 4 | 43 | 84 |
Solanaceae | 12 | 3 | 46 | 67 |
Apiaceae | 11 | 3 | 49 | 85 |
Malvaceae | 11 | 3 | 51 | 73 |
Metabolite | Flavonoids | Phenols and Polyphenols | Tannins | |||
---|---|---|---|---|---|---|
Number of families with metabolite | 35 (116 spp) | 36 (102 spp) | 11 (21 spp) | |||
Families accounting for at least 70% of occurrences and % of total reported for the metabolite | Amaranthaceae | 18 | Amaranthaceae | 22 | Amaranthaceae Rhizophoraceae Acanthaceae Aizoaceae Fabaceae | 27 19 12 8 8 |
Plumbaginaceae | 10 | Fabaceae | 7 | |||
Fabaceae | 9 | Plumbaginaceae | 7 | |||
Asteraceae | 9 | Asteraceae | 6 | |||
Hydrocharitaceae | 3 | Rhizophoraceae | 6 | |||
Poaceae | 3 | Brassicaceae | 4 | |||
Rhizophoraceae | 3 | Poaceae | 4 | |||
Aizoaceae | 3 | Acanthaceae | 3 | |||
Apiaceae | 3 | Aizoaceae | 3 | |||
Apocynaceae | 3 | Arecaceae | 3 | |||
Brassicaceae | 3 | Cymodoceaceae | 3 | |||
Cyperaceae | 3 | Malvaceae | 3 |
Family | Genus Species | Effect of Salt on Concentration of Flavonoids | References |
---|---|---|---|
Aizoaceae | Sesuvium portulacastrum | 200 and 500 mM NaCl increased some and decreased others of a large range of flavonoids (DW basis) | [52] |
Amaranthaceae | Halocnemum strobilaceum | No significant effect with increasing soil K2SO4 to 135 kg ha−1 soil (presumed DW basis) | [53] |
Amaranthaceae | Salicornia brachiata | 200 and 500 mM NaCl increased a large range of flavonoids (DW basis) | [52] |
Amaranthaceae | Suaeda fruticosa | No effect of 500 mM NaCl on kaempferol at 400 ppm CO2. A 10 -fold decrease in kaempferol in 500 mM NaCl at 900 ppm CO2 (presumed DW basis) | [54] |
Amaranthaceae | Suaeda maritima | 200 and 500 mM NaCl increased some and decreased others of a large range of flavonoids (DW basis) | [52] |
Amaranthaceae | Suaeda monoica | A 10-fold increase in kaempferol in 500 mM NaCl at 900 ppm CO2 (presumed DW basis) | [54] |
Apocynaceae | Apocynum venetum | Over the range 50 to 400 mM NaCl, kaempferol and quercetin increased to maximal values at 100 mM NaCl (DW basis) | [55] |
Asteraceae | Tripolium pannonicum | No effect of 15 or 50 PSU over 5 weeks (FW basis) | [56] |
Brassicaceae | Lepidium latifolium | Increased over 24 h exposure to 30 PSU (FW basis) | [56] |
Fabaceae | Sulla carnosa | No effect of 100 mM NaCl (DW basis) | [57] |
Lamiaceae | Dracocephalum kotschyi | Increased over the range 25–75 mM NaCl then declined at 100 mM (DW basis) | [58] |
Nitrariaceae | Nitraria schoberi | Increased with increasing soil K2SO4 to 135 kg ha−1 soil (presumed DW basis) | [53] |
Plantaginaceae | Plantago coronopus | Increased (by 74%) over 5 weeks at 15 PSU (FW basis) | [56] |
Plumbaginaceae | Limonium bicolor | No effect as NaCl increased to 200 mM; decreased at 300 mM NaCl (DW basis) | [59] |
Plumbaginaceae | Limonium delicatulum | Small increase to 200 mM NaCl over the range 50 to 500 mM; then a decline (DW basis) | [60] |
Polygonaceae | Polygonum maritimum | Declined as NaCl increased to 300 mM (DW basis) | [61] |
Rhamnaceae | Colubrina asiatica | Increased from 0 through 100, 200 and 300 mM NaCl (DW basis) | [62] |
Rhizophoraceae | Bruguiera cylindrica | No effect of 15 or 50 PSU over 7 weeks (FW basis) | [56] |
Rhizophoraceae | Kandelia candel | Increased from 0, through 200 and 500 mM NaCl (FW basis) | [63] |
Family | Genus Species | Effect of Salt on Concentration of Phenols and Polyphenols | References |
---|---|---|---|
Aizoaceae | Mesembryanthemum crystallinum | No effect of seawater concentrations with EC values of 2, 4, 8, 12, 16, 20, and 35 dS m−1 | [64] |
Aizoaceae | Mesembryanthemum edule | Effect of 300 and 600 mM NaCl checked on range of phenols and polyphenols in two provenances. Polyphenols declined in both (DW basis) | [65] |
Aizoaceae | Sesuvium portulacastrum | 200 mM NaCl had no effect on total polyphenols in leaves, but concentrations (DW basis) were reduced in stems and roots | [66] |
Amaranthaceae | Atriplex halimus | Decreased over 5 weeks at 15 PSU (FW basis) | [56] |
Amaranthaceae | Atriplex portulacoides | Decreased over 5 weeks at 15 PSU (FW basis) | [56] |
Amaranthaceae | Atriplex prostrata | Total phenols (DW basis) increased in leaves from 10 through 100 to 200 and 300 mM NaCl | [67] |
Amaranthaceae | Salicornia dolichostachya | Decreased over 5 weeks at 15 PSU (FW basis) | [56] |
Amaranthaceae | Salicornia neei | No effect of NaCl concentrations up to 769 mM on phenolics of two genotypes | [68] |
Apiaceae | Crithmum maritimum | Small effects of 50 or 100 mM NaCl on 4 genotypes: total polyphenols either increased, decreased of were unaffected | [69] |
Asteraceae | Tripolium pannonicum | No effect of 15 PSU over 5 weeks Increased to 22.5 PSU; no further increase at 30 PSU (FW basis) | [56] |
Brassicaceae | Lepidium latifolium | Increased over 24 h exposure to 30 PSU. Decreased over 5 weeks at 15 PSU (FW basis) | [56] |
Fabaceae | Acacia stenophylla | Phenols increased by 156% at seawater salinity increased from 0.6 to 16.7 dS m−1 (FW basis) | [70] |
Fabaceae | Sulla carnosa | Total polyphenols increased in 100 mM NaCl (DW basis) | [57] |
Lamiaceae | Dracocephalum kotschyi | Increased over the range 25–75 mM NaCl then declined at 100 mM (DW basis) | [58] |
Lamiaceae | Vitex trifolia | Elevating salinity to 5000 ppm increased concentration of total phenols compared to 260 ppm (DW basis) | [71] |
Plantaginaceae | Plantago coronopus | Total phenols (DW basis) increased in leaves from 10 through 100 to 200 mM NaCl then no change at 300 mM | [67] |
Plantaginaceae | Plantago coronopus | Increased over 5 weeks at 15 PSU (FW basis) | [56] |
Plumbaginaceae | Frankenia pulverulenta | Total phenols (DW basis) increased in leaves from 10 through 100 to 200 mM NaCl then no change at 300 mM. | [67] |
Plumbaginaceae | Limonium bicolor | Phenols decreased (79%) as NaCl increased to 300 mM NaCl (DW basis) | [59] |
Rhizophoraceae | Bruguiera cylindrica | Increased from 15 to 50 PSU over 7 weeks (FW basis) | [56] |
Rhizophoraceae | Kandelia candel | Increased from 0, through 200 and 500 mM NaCl (FW basis) | [63] |
SEPASAL Codes | Forage 3000 | Grazing 3100 | Browse 3200 | Fodder 3300 | All | % |
---|---|---|---|---|---|---|
Amaranthaceae | 36 | 22 | 6 | 40 | 104 | 38 |
Poaceae | 38 | 26 | 1 | 19 | 84 | 68 |
Fabaceae | 24 | 6 | 1 | 12 | 43 | 84 |
Cyperaceae | 3 | 1 | 0 | 0 | 4 | 85 |
All families | 112 | 64 | 13 | 86 | 275 | 100 |
Species | Effect of Increasing Salinity on Quality | References |
---|---|---|
Atriplex amnicola | Some quality measures reduced; was genotypic variation | [79] |
Atriplex gardneri | Forage quality much reduced | [89] |
Atriplex leucoclada | Higher quality at lower salinity site and dropped with age | [90] |
Atriplex nummularia | Little effect of salinity on yield or nutrients | [91] |
Bassia prostrata | Forage quality reduced | [89] |
Cenchrus ciliaris | Tolerant genotypes identified with adequate nutritive value | [92] |
Carbohydrate, protein, and micronutrients increased per unit of dry weight | [93] | |
Diplachne fusca (Leptochloa fusca) | Little effect on crude protein, fibre, fat, and soluble carbohydrate on dry weight basis | [94] |
Lotus tenuis | Yield decreased but carbohydrates more digestible | [95] |
Melilotus albus | Digestible dry matter declined but fibre maintained at high salinity | [96] |
Melilotus indicus | No digestible dry matter beyond 80 mM NaCl but fibre maintained | [96] |
Melilotus siculus | Digestible dry matter retained but fibre decreased at high salinity | [96] |
Pennisetum clandestinum | The percentage of crude protein and crude fibre preserved | [97] |
Salicornia europaea | Seed oil content increased | [98] |
Salsola tragus | Total nitrogen increased but fibre decreased on a dry weight basis | [99] |
Sporobolus pumilus (Spartina patens) | Little effect on crude protein, fibre, fat, and soluble carbohydrate on dry weight basis | [94] |
Sporobolus virginicus | Little effect on crude protein, fibre, fat, and soluble carbohydrate on dry weight basis | [94] |
Suaeda vermiculata | Higher quality at lower salinity site and dropped with age | [90] |
Tripolium pannonicum | Little effect on total nitrogen or micronutrients | [100] |
Families | No. | % |
---|---|---|
Amaranthaceae | 63 | 23 |
Poaceae | 53 | 20 |
Fabaceae | 24 | 9 |
Cyperaceae | 12 | 4 |
Asteraceae | 10 | 4 |
Tamaricaceae | 9 | 3 |
Rhizophoraceae | 8 | 3 |
Myrtaceae | 7 | 3 |
Aizoaceae | 6 | 2 |
Juncaceae | 6 | 2 |
Zosteraceae | 6 | 2 |
Brassicaceae | 5 | 2 |
Casuarinaceae | 4 | 1 |
Hydrocharitaceae | 4 | 1 |
Families | Number | Percentage |
---|---|---|
Fabaceae | 14 | 15 |
Amaranthaceae | 12 | 13 |
Poaceae | 10 | 11 |
Rhizophoraceae | 9 | 10 |
Tamaricaceae | 9 | 10 |
Arecaceae | 7 | 7 |
Casuarinaceae | 5 | 5 |
Myrtaceae | 5 | 5 |
Combretaceae | 4 | 4 |
Malvaceae | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Caparros, P.; Al-Azzawi, M.J.; Flowers, T.J. Economic Uses of Salt-Tolerant Plants. Plants 2023, 12, 2669. https://doi.org/10.3390/plants12142669
Garcia-Caparros P, Al-Azzawi MJ, Flowers TJ. Economic Uses of Salt-Tolerant Plants. Plants. 2023; 12(14):2669. https://doi.org/10.3390/plants12142669
Chicago/Turabian StyleGarcia-Caparros, Pedro, Mohammed J. Al-Azzawi, and Timothy J. Flowers. 2023. "Economic Uses of Salt-Tolerant Plants" Plants 12, no. 14: 2669. https://doi.org/10.3390/plants12142669