Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act
Abstract
:1. Introduction
2. Results
2.1. Soil Carbon and Nitrogen
2.2. Crop Carbon and Nitrogen
2.3. Crop C and N as a Percentage of Soil C and N
2.4. Variation and Limitation in Yield
2.5. Estimation of Yield Potential from the Reproductive Sink
3. Discussion
3.1. Regenerating Soil and Reducing the Nitrogen Footprint
3.2. Managing the Yield Gap
4. Materials and Methods
4.1. Study Region and Crops
4.2. Crop Sequence and Nitrogen Inputs
4.3. Sampling and Processing Soil and Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, H.H. Facing the Erosion Problem. Science 1935, 81, 321–326. [Google Scholar] [CrossRef]
- FAO. Status of the World’s Soil Resources; Food and Agriculture Organisation of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Lal, R. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Syers, J.K. Managing soils for long term productivity. Philos. Trans. R. Soc. B 1997, 352, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, P.; Chivenge, P.; Manson, A.; Chaplot, V. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma 2014, 235–236, 372–381. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Jacobs, S.; Merbold, L.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya. Soil Tillage Res. 2018, 176, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Kawashima, H.; Bazin, M.J.; Lynch, J.M. A modelling study of world protein supply and nitrogen fertiliser demand in the 21st century. Environ. Conserv. 1997, 24, 50–56. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food wedges: Framing the global food demand and supply challenge towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Meng, Q.; Hou, P.; Wu, L.; Chen, X.; Cui, Z.; Zhang, F. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res. 2013, 143, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Sylvester-Bradley, R.; Kindred, D.R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J. Exp. Bot. 2009, 60, 1939–1951. [Google Scholar] [CrossRef] [Green Version]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Calderini, D.F.; Slafer, G.A. Changes in yield and yield stability in wheat during the 20th century. Field Crops Res. 1998, 57, 335–347. [Google Scholar] [CrossRef]
- Finger, R. Evidence of slowing yield growth—The example of Swiss cereal yields. Food Policy 2010, 35, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Dawe, D.; Dobermann, A.; Moya, P.; Abdulrachman, S.; Singh, B.; Lal, P.; Li, S.Y.; Lin, B.; Panaullah, G.; Sariam, O.; et al. How widespread are yield declines in long-term rice experiments in Asia? Field Crops Res. 2000, 66, 175–193. [Google Scholar] [CrossRef]
- Cui, Z.; Dou, Z.; Chen, X.; Ju, X.; Zhang, F. Managing agricultural nutrients for food security in China: Past, present and future. Agron. J. 2014, 106, 191–198. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Van Grinsven, J.M.; Holland, M.; Jacobsen, B.H.; Klimont, Z.; Sutton, M.A.; Willems, W.J. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 2013, 47, 3571–3579. [Google Scholar] [CrossRef]
- Azevedo, L.B.; van Zelm, R.; Leuven, R.S.E.W.; Hendriks, A.J.; Huijbregts, M.A.J. Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environ. Pollut. 2015, 200, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Ascott, M.J.; Gooddy, D.C.; Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Binley, A.M. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 2017, 8, 1416. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertiliser production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Robertson, M.J.; Preston, N.P.; Bonnett, G.D. Costs and benefits of food production in contrasting agro-ecological production systems. In Food Production and Nature Conservation: Conflicts and Solutions; Gordon, I.J., Prins, H.T., Squire, G.R., Eds.; Routledge: Oxford, UK, 2017; pp. 155–172. [Google Scholar]
- Squire, G.R. Limits to crop production. In Food Production and Nature Conservation: Conflicts and Solutions; Gordon, I.J., Prins, H.T., Squire, G.R., Eds.; Routledge: Oxford, UK, 2017; pp. 41–67. [Google Scholar]
- Lobell, D.B.; Cassmann, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitude and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 2013, 143, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Muller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Squire, G.R. Defining sustainable limits during and after intensification in a maritime agricultural ecosystem. Ecosyst. Health Sustain. 2017, 3, 1368873. [Google Scholar] [CrossRef] [Green Version]
- Lilly, A.; Baggaley, N.J.; Edwards, A.C. Changes in the carbon concentrations and other soil properties of some Scottish agricultural soils: Evidence from a res-sampling campaign. Soil Use Manag. 2019, 36, 299–307. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Bruneau, P.M.C.; Towers, W. (Eds.) The State of Scotland’s Soil; Natural Scotland: Edinburgh, UK, 2011; Available online: https://www.sepa.org.uk/media/138741/state-of-soil-report-final.pdf (accessed on 10 June 2023).
- Valentine, T.A.; Hallett, P.D.; Binnie, K.; Young, M.W.; Squire, G.R.; Hawes, C.; Bengough, A.G. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Ann. Bot. 2012, 110, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Hawes, C.; Squire, G.R.; Hallett, P.D.; Watson, C.A.; Young, M. Arable plant communities as indicators of farming practice. Agric. Ecosyst Environ. 2010, 138, 17–26. [Google Scholar] [CrossRef]
- Benaud, P.; Anderson, K.; Evans, M.; Farrow, L.; Glendell, M.; James, M.R.; Quine, T.A.; Quinton, J.N.; Rawlins, B.; Rickson, R.J.; et al. National-scale geodata describe widespread accelerated soil erosion. Geoderma 2020, 371, 114378. [Google Scholar] [CrossRef]
- Ferrier, R.C.; Edwards, A.V.; Hirst, D.; Littlewood, I.G.; Watts, C.D.; Morris, R. Water Quality of Scottish Rivers: Spatial and Temporal Trends. Sci. Total Environ. 2001, 265, 327–342. [Google Scholar] [CrossRef]
- Squire, G.R.; Young, M.W.; Hawes, C. Agroecological management and increased grain legume area needed to meet nitrogen reduction targets for greenhouse gas emissions. Nitrogen 2022, 3, 539–554. [Google Scholar] [CrossRef]
- Fenton, A. The Food of the Scots; Compendium of Scottish Ethnology; John Donald: Edinburgh, UK, 2007; Volume 5. [Google Scholar]
- Gregory, P.J.; McGowan, M.; Biscoe, P.V.; Hunter, B. Water relations of winter wheat. 1. Growth of the root system. J. Agric. Sci. 1978, 91, 91–102. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, M.J.; Slafer, G.A.; Berry, P.; Parry, M.J.; Snape, J.W.; Angus, W.J. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bingham, I.J.; Karley, A.J.; White, P.J.; Thomas, W.T.B.; Russell, J.R. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur. J. Agron. 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Grandy, A.S.; Robertson, G.P. Land-Use Intensity Effects on Soil Organic Carbon Accumulation Rates and Mechanisms. Ecosystems 2007, 10, 58–73. [Google Scholar] [CrossRef]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Crocker, G.J. Long-term management impacts on soil C, N and physical fertility: Part III: Tamworth crop rotation experiment. Soil Tillage Res. 2006, 91, 48–56. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Lugato, E.; Bampa, F.; Panagos, P.; Montanarella, L.; Jones, A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Chang. Biol. 2015, 20, 3557–3567. [Google Scholar] [CrossRef] [Green Version]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Rahmati, M.; Eskandari, I.; Kouselou, M.; Feiziasl, V.; Mahdavinia, G.R.; Aliasgharzad, N.; McKenzie, B.M. Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices. Soil Tillage Res. 2020, 200, 104632. [Google Scholar] [CrossRef]
- Rees, R.M.; Bingham, I.J.; Baddeley, J.A.; Watson, C.A. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 2005, 128, 130–154. [Google Scholar] [CrossRef]
- Newton, A.C.; Guy, D.C. Assessing effects of crop history and soil amendments on yields of subsequent crops. Agric. Sci. 2020, 11, 100495. [Google Scholar] [CrossRef]
- Leip, A.; Weiss, F.; Lesschen, J.P.; Westhoek, H. The nitrogen footprint of food products in the European Union. J. Agric. Sci. 2014, 152, S20–S33. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.; Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 2019, 10, 3389. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, G.V.; Rao, I.M.; Nakahara, K.; Sahrawat, K.L.; Ando, Y.; Kawashima, T. Potential for biological nitrification inhibition to reduce nitrification and N20 emissions in pasture crop-livestock systems. Animal 2013, 7, 322–332. [Google Scholar] [CrossRef]
- Whetton, R.L.; Harty, M.A.; Holden, N.M. Communicating Nitrogen Loss Mechanisms for Improving Nitrogen Use Efficiency Management, Focused on Global Wheat. Nitrogen 2022, 3, 213–246. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galiena, A.; Pisante, M. Multiple benefits of legumes for agricultural sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Maluk, M.; Ferrando Molina, F.; Lopez del Egido, L.; Langarica Fuentes, A.; Yohannes, G.G.; Young, M.W.; Martin, P.; Gantlett, R.; Kenicer, G.; Hawes, C.; et al. Fields with no recent legume cultivation have sufficient nitrogen fixing rhizobia for crops of faba bean (Vicia faba L.). Plant Soil 2022, 472, 345–368. [Google Scholar] [CrossRef]
- Lynch, J.P.; Doyle, D.; McAuley, S.; McHardy, F.; Danneels, Q.; Black, L.C.; White, E.M.; Spink, J. The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of Ireland. Eur. J. Agron. 2017, 87, 40–49. [Google Scholar] [CrossRef]
- Florence, A.; Ennos, R.A.; Hoad, S.P.; Hoebe, P.N. Variation in light interception traits in European spring barley landraces. Field Crops Res. 2019, 21, 107549. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Hawkesford, M.J.; Barraclough, P.B.; Holdsworth, M.J.; Kerr, S.; Kightley, S.; Shewry, P.R. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 2009, 114, 329–342. [Google Scholar] [CrossRef]
- Nourish Scotland: A Charity Focusing on Food Policy and Practice. Available online: https://www.nourishscotland.org/ (accessed on 10 June 2023).
- Gu, B.; van Grinsven, H.J.; Lam, S.K.; Oenema, O.; Sutton, M.A.; Mosier, A.; Chen, D. A credit system to solve agricultural nitrogen pollution. Innovation 2021, 2, 100079. [Google Scholar] [CrossRef]
- Squire, G.R.; Quesada, N.; Begg, G.S.; Iannetta, P.P.M. Transitions to a greater legume inclusion in cropland: Defining opportunities and estimating benefits for the nitrogen economy. Food Energy Secur. 2019, 8, e00175. [Google Scholar] [CrossRef] [Green Version]
- Economic Report on Scottish Agriculture 2020, and All Previous Annual Reports in This Series, Edinburgh, Scottish Government. Available online: https://www.gov.scot/collections/economic-report-on-scottish-agriculture/ (accessed on 1 June 2023).
- Fertiliser Practice. British Survey of Fertiliser Practice 2020 (and All Previous Yearbooks). Available online: https://www.gov.uk/government/statistics/british-survey-of-fertiliser-practice-2020 (accessed on 10 June 2023).
- Squire, G.R.; Young, M.; Ford, L.; Banks, G.; Hawes, C. Defining targets for reversing declines of soil carbon in high-intensity arable cropping. Agronomy 2020, 10, 973. [Google Scholar] [CrossRef]
- Bailey, N.T.J. Statistical Methods in Biology, 3rd ed.; Online Publication; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Mony, C.; Reay, G.; Wardlaw, J. Pesticide Usage in Scotland: Arable Crops 2014. Science and Advice for Scottish Agriculture, Edinburgh UK. 2014. Available online: https://www.sasa.gov.uk/document-library/arable-crops-and-potato-stores-2014 (accessed on 10 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squire, G.R.; Young, M.W.; Banks, G. Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act. Plants 2023, 12, 2742. https://doi.org/10.3390/plants12142742
Squire GR, Young MW, Banks G. Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act. Plants. 2023; 12(14):2742. https://doi.org/10.3390/plants12142742
Chicago/Turabian StyleSquire, Geoffrey R., Mark W. Young, and Gillian Banks. 2023. "Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act" Plants 12, no. 14: 2742. https://doi.org/10.3390/plants12142742
APA StyleSquire, G. R., Young, M. W., & Banks, G. (2023). Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act. Plants, 12(14), 2742. https://doi.org/10.3390/plants12142742