An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analyses
2.1.1. Total Tannins
2.1.2. Total Phenolics
2.1.3. Fatty Acids Fingerprint
2.1.4. Phenolic Compounds Fingerprint
2.2. Antioxidant Activity Assessment
2.3. Diversity of Vicia Sativa Genotypes Based on Phytochemical and Antioxidant Descriptors
2.3.1. Hierarchical Cluster Analysis
2.3.2. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Materials
3.2. Chemicals and Standards
3.3. Extraction
3.4. Total Phenolic Content (TPC)
3.5. Total Tannin Content
3.6. Determination of Phenolic Compounds Content by LC–MS/MS Analysis
3.7. Determination of Fatty Acids Content by GC-FID Analysis
3.8. Antioxidant Properties Evaluation
3.8.1. Ferric Reducing Antioxidant Power (FRAP) Assay
3.8.2. DPPH Radical Scavenging Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burow, M.; Wittstock, U. Regulation and Function of Specifier Proteins in Plants. Phytochem. Rev. 2009, 8, 87–99. [Google Scholar] [CrossRef]
- Tetlow, I.J. Recent Developments in Understanding the Regulation of Starch Metabolism in Higher Plants. J. Exp. Bot. 2004, 55, 2131–2145. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.E.; Lemoine, R.; Sauer, N. Sugar Transporters in Higher Plants–A Diversity of Roles and Complex Regulation. Trends Plant Sci. 2000, 5, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of Primary Plant Metabolism during Plant-Pathogen Interactions and Its Contribution to Plant Defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteki, M.; Farajmand, B.; Amanifar, S.; Barkhordari, R.; Ahadiyan, Z.; Dashtaki, E.; Mohammadlou, M.; Vander Heyden, Y. Classification and Authentication of Iranian Walnuts According to Their Geographical Origin Based on Gas Chromatographic Fatty Acid Fingerprint Analysis Using Pattern Recognition Methods. Chemom. Intell. Lab. Syst. 2017, 171, 251–258. [Google Scholar] [CrossRef]
- Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. Classification of Quinoa Varieties Based on Protein Fingerprinting by Capillary Electrophoresis with Ultraviolet Absorption Diode Array Detection and Advanced Chemometrics. Food Chem. 2021, 341, 128207. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Oberoi, H.S.; Spier, M.R.; Brar, S.K. Agricultural-Based Protein By-Products: Characterization and Applications. In Protein Byproducts; Elsevier: Amsterdam, The Netherlands, 2016; pp. 21–36. ISBN 978-0-12-802391-4. [Google Scholar]
- Barros, L.; Baptista, P.; Correia, D.; Casal, S.; Oliveira, B.; Ferreira, I. Fatty Acid and Sugar Compositions, and Nutritional Value of Five Wild Edible Mushrooms from Northeast Portugal. Food Chem. 2007, 105, 140–145. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M. Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 501–535. ISBN 978-0-08-100593-4. [Google Scholar]
- Ruiz-Rodriguez, A.; Reglero, G.; Ibañez, E. Recent Trends in the Advanced Analysis of Bioactive Fatty Acids. J. Pharm. Biomed. Anal. 2010, 51, 305–326. [Google Scholar] [CrossRef] [Green Version]
- De La Cruz Garcia, C.; Lopez Hernandez, J.; Simal Lozano, J. Gas Chromatographic Determination of the Fatty-Acid Content of Heat-Treated Green Beans. J. Chromatogr. A 2000, 891, 367–370. [Google Scholar] [CrossRef]
- Sholikhah, E.N. Indonesian Medicinal Plants as Sources of Secondary Metabolites for Pharmaceutical Industry. J. Med. Sci. 2016, 48, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Korkina, L.; Kostyuk, V.; Potapovich, A.; Mayer, W.; Talib, N.; De Luca, C. Secondary Plant Metabolites for Sun Protective Cosmetics: From Pre-Selection to Product Formulation. Cosmetics 2018, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Panzella, L.; Napolitano, A. Natural Phenol Polymers: Recent Advances in Food and Health Applications. Antioxidants 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kumar, V.; Roy, D.; Kushwaha, R.; Vaswani, S. Application of Herbal Feed Additives in Animal Nutrition—A Review. Int. J. Livest. Res. 2014, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Bors, W.; Michel, C. Chemistry of the Antioxidant Effect of Polyphenols. Ann. N. Y. Acad. Sci. 2002, 957, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedzwiecki, A.; Roomi, M.; Kalinovsky, T.; Rath, M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.L.; Maia, B.H.L.N.S.; Ferriani, A.P.; Teixeira, S.D. Flavonoids: Classification, Biosynthesis and Chemical Ecology. In Flavonoids-From Biosynthesis to Human Health; Justino, G.C., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3423-7. [Google Scholar]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [Green Version]
- Naczk, M.; Shahidi, F. Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, A.; Venter, P.; Pasch, H. Recent Advances and Trends in the Liquid-Chromatography–Mass Spectrometry Analysis of Flavonoids. J. Chromatogr. A 2016, 1430, 16–78. [Google Scholar] [CrossRef] [PubMed]
- Merken, H.M.; Beecher, G.R. Measurement of Food Flavonoids by High-Performance Liquid Chromatography: A Review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent Developments in Altering the Fatty Acid Composition of Ruminant-Derived Foods. Animals 2013, 7, 132–162. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review: Nutraceutical Polyphenols. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of Wine, Alcohol and Polyphenols on Cardiovascular Disease Risk Factors: Evidences from Human Studies. Alcohol Alcohol. 2013, 48, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Tirado-Kulieva, V.A.; Hernández-Martínez, E.; Minchán-Velayarce, H.H.; Pasapera-Campos, S.E.; Luque-Vilca, O.M. A Comprehensive Review of the Benefits of Drinking Craft Beer: Role of Phenolic Content in Health and Possible Potential of the Alcoholic Fraction. Curr. Res. Food Sci. 2023, 6, 100477. [Google Scholar] [CrossRef]
- Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R. Importance of Medium Chain Fatty Acids in Animal Nutrition. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012048. [Google Scholar] [CrossRef]
- Ford, L.; Stratakos, A.C.; Theodoridou, K.; Dick, J.T.A.; Sheldrake, G.N.; Linton, M.; Corcionivoschi, N.; Walsh, P.J. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS Omega 2020, 5, 9093–9103. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.F.; Gao, X.L.; Nan, Z.B.; Zhang, Z.X. Potential Value of the Common Vetch (Vicia sativa L.) as an Animal Feedstuff: A Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Xi, H.; Nguyen, V.; Ward, C.; Liu, Z.; Searle, I.R. Chromosome-Level Assembly of the Common Vetch (Vicia Sativa) Reference Genome. Gigabyte 2022, 2022, gigabyte38. [Google Scholar] [CrossRef] [PubMed]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D.N. Annual Intercrops: An Alternative Pathway for Sustainable Agriculture. Austr. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Tigka, E.; Beslemes, D.; Kakabouki, I.; Pankou, C.; Bilalis, D.; Tokatlidis, I.; Vlachostergios, D.N. Seed Rate and Cultivar Effect on Contribution of Vicia Sativa L. Green Manure to Soil Amendment under Mediterranean Conditions. Agriculture 2021, 11, 733. [Google Scholar] [CrossRef]
- Agriculture, Livestock and Fishery. Available online: http://www.statistics.gr/en/statistics (accessed on 30 June 2022).
- Berger, J.D.; Robertson, L.D.; Cocks, P.S. Agricultural Potential of Mediterranean Grain and Forage Legumes: 2) Anti-Nutritional Factor Concentrations in the Genus Vicia. Gen. Resour. Crop Evol. 2003, 50, 201–212. [Google Scholar] [CrossRef]
- Aletor, V.A.; Goodchild, A.V.; El Moneim, A.M.A. Nutritional and Antinutritional Characteristics of Selected Vicia Genotypes. Anim. Feed Sci. Technol. 1994, 47, 125–139. [Google Scholar] [CrossRef]
- Parissi, Z.; Irakli, M.; Tigka, E.; Papastylianou, P.; Dordas, C.; Tani, E.; Abraham, E.M.; Theodoropoulos, A.; Kargiotidou, A.; Kougiteas, L.; et al. Analysis of Genotypic and Environmental Effects on Biomass Yield, Nutritional and Antinutritional Factors in Common Vetch. Agronomy 2022, 12, 1678. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Manyelo, T.G.; Selaledi, L.; Mabelebele, M. The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients. Molecules 2020, 25, 4680. [Google Scholar] [CrossRef]
- Gharachorloo, M.; Ghiassi Tarzi, B.; Baharinia, M. The Effect of Germination on Phenolic Compounds and Antioxidant Activity of Pulses. J. Am. Oil Chem. Soc. 2013, 90, 407–411. [Google Scholar] [CrossRef]
- Aid, F. Plant Lipid Metabolism. In Advances in Lipid Metabolism; Valenzuela Baez, R., Ed.; Intech Open: London, UK, 2020; ISBN 978-1-78984-458-0. [Google Scholar]
- Grela, E.R.; Samolińska, W.; Rybiński, W.; Kiczorowska, B.; Kowalczuk-Vasilev, E.; Matras, J.; Wesołowska, S. Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries. Animals 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Gamal-Eldeen, A.M.; Kawashty, S.A.; Ibrahim, L.F.; Shabana, M.M.; El-Negoumy, S.I. Evaluation of Antioxidant, Anti-Inflammatory, and Antinociceptive Properties of Aerial Parts of Vicia sativa and Its Flavonoids. J. Nat. Remedies 2004, 4, 81–96. [Google Scholar] [CrossRef]
- Amarowicz, R. Common Vetch (Vicia Sativum) Seeds as a Source of Bioactive Compounds. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 369–375. ISBN 978-0-12-375688-6. [Google Scholar]
- Megías, C.; Pastor-Cavada, E.; Torres-Fuentes, C.; Girón-Calle, J.; Alaiz, M.; Juan, R.; Pastor, J.; Vioque, J. Chelating, Antioxidant and Antiproliferative Activity of Vicia Sativa Polyphenol Extracts. Eur. Food Res. Technol. 2009, 230, 353–359. [Google Scholar] [CrossRef]
- Orak, H.H.; Karamać, M.; Amarowicz, R.; Orak, A.; Janiak, M.A.; Tenikecier, H.S. Variations of Genotypes of Vicia Species as Influenced by Seed Phenolic Compounds and Antioxidant Activity. Zemdirbyste 2022, 109, 35–42. [Google Scholar] [CrossRef]
- Vlachostergios, D.N.; Lithourgidis, A.S.; Dordas, C.A.; Baxevanos, D. Advantages of Mixing Common Vetch Cultivars Developed from Conventional Breeding Programs When Grown under Low-Input Farming System. Crop Sci. 2011, 51, 1274–1281. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Iliopoulos, V.; Haroutounian, S.A. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS. Antioxidants 2021, 10, 1174. [Google Scholar] [CrossRef]
- Pavlopoulos, D.T.; Myrtsi, E.D.; Tryfinopoulou, P.; Iliopoulos, V.; Koulocheri, S.D.; Haroutounian, S.A. Phytoestrogens as Biomarkers of Plant Raw Materials Used for Fish Feed Production. Molecules 2023, 28, 3623. [Google Scholar] [CrossRef]
- Ichihara, K.; Fukubayashi, Y. Preparation of Fatty Acid Methyl Esters for Gas-Liquid Chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [Green Version]
- GC Analysis of a 37-Component FAME Mix on EquityTM-1 (15 m × 0.10 mm I.D., 0.10 μm), Fast GC Analysis. Available online: https://www.sigmaaldrich.com/GR/en/technical-documents/protocol/analytical-chemistry/gas-chromatography/gc-analysis-of-a-37-component-fame-mix-g004278 (accessed on 15 November 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Megías, C.; Cortés-Giraldo, I.; Girón-Calle, J.; Vioque, J.; Alaiz, M. Determination of β-Cyano-L-Alanine, γ-Glutamyl-β-Cyano-L-Alanine, and Common Free Amino Acids in Vicia Sativa (Fabaceae) Seeds by Reversed-Phase High-Performance Liquid Chromatography. J. Anal. Meth. Chem. 2014, 2014, 409089. [Google Scholar] [CrossRef] [Green Version]
Samples | Weight (g) | Yield (%) | ||
---|---|---|---|---|
Biomass | Hexane | DCM | MeOH | |
Line A | 30 | 0.50 | 0.85 | 1.82 |
BI-65 | 100 | 0.60 | 0.69 | 7.71 |
BI-233 | 30 | 0.97 | 1.61 | 11.10 |
Leonidas | 100 | 0.45 | 0.43 | 5.78 |
Istros | 30 | 2.83 | 1.37 | 9.17 |
M-6900 | 30 | 0.84 | 0.57 | 5.29 |
Grains | ||||
BI-65 | 30 | 0.46 | 0.92 | 3.75 |
Istros | 30 | 0.56 | 0.50 | 1.33 |
M-6900 | 30 | 0.49 | 0.84 | 3.52 |
Samples | TTC (mg CE/Kg DM) 1 | TPC (mg GAE/Kg DM) 2 |
---|---|---|
Biomass | ||
Line A | 680.5 ± 12.7 | 306.4 ± 17.5 |
BI-65 | 408.7 ± 54.4 | 1129.3 ± 5.9 |
BI-233 | <LOD 3 | 1418.3 ± 22.2 |
Leonidas | <LOD | 764.1 ± 6.8 |
Istros | <LOD | 1610.2 ± 23.7 |
M-6900 | 876.3 ± 50.9 | 1851.3 ± 81.2 |
Grains | ||
BI-65 | 1603.2 ± 226.7 | 420.2 ± 3.1 |
Istros | <LOD | 582.2 ± 102.5 |
M-6900 | <LOD | 656.4 ± 53.3 |
Compound | Vicia sativa (Plant Biomass) | Vicia sativa (Grains) | |||||||
---|---|---|---|---|---|---|---|---|---|
Line A | BI-65 | BI-233 | Leonidas | Istros | M-6900 | BI-65 | Istros | M-6900 | |
Caproic acid | 0.22 | 1.02 | 1.56 | 0.32 | 5.65 | nf | nf | nf | nf |
Caprylic acid | 0.24 | 1.26 | 2.50 | 1.92 | 8.45 | 1.87 | 0.19 | nf | nf |
Capric acid | nf | 1.73 | 3.07 | 2.16 | 10.22 | 2.71 | nf | nf | nf |
Lauric acid | 0.27 | 7.95 | 28.70 | 8.95 | 47.49 | 11.27 | 0.37 | 0.55 | 0.28 |
Tridecanoic acid | 0.04 | 0.10 | 2.00 | 0.20 | 0.98 | 0.22 | nf | 0.19 | 0.14 |
Myristic acid | 4.82 | 16.29 | 28.80 | 16.77 | 83.01 | 27.83 | 6.00 | 8.26 | 6.24 |
Pentadecanoic acid | 1.77 | 3.61 | 5.68 | 3.21 | 18.40 | 8.23 | 2.08 | 2.83 | 2.16 |
cis-10-Pentadecenoic acid | nf | 5.97 | nf | nf | nf | nf | nf | nf | nf |
Palmitic acid | 148.72 | 207.55 | 287.01 | 193.30 | 1052.64 | 262.07 | 204.56 | 239.74 | 175.32 |
Palmitoleic acid | 0.92 | 3.77 | 7.54 | 5.36 | 10.22 | 5.68 | 1.21 | 2.23 | 0.44 |
Margaric acid | 1.025 | 3.57 | 5.01 | 3.45 | 16.68 | 5.43 | 1.27 | 2.28 | 1.48 |
cis-10-Heptadecenoic acid | nf | nf | 2.35 | 0.93 | nf | nf | nf | nf | nf |
Stearic acid | 43.04 | 51.89 | 77.74 | 40.77 | 278.56 | 74.23 | 56.07 | 69.61 | 52.52 |
Oleic acid | 188.80 | 125.40 | 267.18 | 131.52 | 719.16 | 178.48 | 258.06 | 342.60 | 206.94 |
Linoleic acid | 606.72 | 289.74 | 607.87 | 386.52 | 2691.00 | 538.82 | 819.11 | 931.47 | 728.91 |
Linolenic acid | 151.49 | 193.91 | 201.967 | 178.07 | 1004.01 | 253.02 | 201.27 | 247.38 | 186.83 |
Arachidic acid | 26.04 | 96.57 | 63.23 | 43.38 | 221.85 | 76.27 | 34.80 | 42.32 | 32.22 |
cis-11-Eicosenoic acid | 6.15 | 2.95 | 6.97 | 3.95 | 130.23 | 13.27 | 8.03 | 10.32 | 7.17 |
cis-11,14-Eicosadienoic acid | 1.59 | 1.63 | 2.75 | 2.10 | 11.29 | 2.90 | 1.55 | 2.35 | 1.88 |
Heneicosanoic acid | 3.57 | 8.84 | 9.95 | 6.31 | 44.45 | 14.81 | 5.88 | 5.61 | 4.13 |
cis-11,14,17-Eicosatrienoic acid | nf | nf | 10.15 | nf | nf | nf | nf | nf | nf |
cis-5,8,11,14,17-Eicosapentaenoic acid | nf | nf | 0.30 | 1.05 | nf | nf | nf | nf | nf |
Behenic acid | 5.59 | 20.70 | 18.12 | 12.98 | 76.05 | 30.71 | 7.62 | 9.66 | 7.37 |
Erucic acid | 8.42 | 10.96 | 15.10 | 8.41 | 62.79 | 23.37 | 10.51 | 7.51 | 6.25 |
Tricosanoic acid | 2.38 | 10.54 | 10.84 | 7.04 | 45.64 | 14.82 | 3.36 | 4.30 | 3.64 |
Lignoceric acid | 8.69 | 29.23 | 24.68 | 14.91 | 105.26 | 42.22 | 12.11 | 15.76 | 12.76 |
Nervonic acid | 0.51 | nf | 75.60 | 33.99 | 228.40 | nf | nf | 3.82 | 0.47 |
Total fatty acids | 1211.04 | 1095.17 | 1766.68 | 1107.59 | 6872.45 | 1588.24 | 1634.05 | 1948.80 | 1437.15 |
Compound | Vicia sativa (Plant Biomass) | Vicia sativa Grains | |||||||
---|---|---|---|---|---|---|---|---|---|
Line A | BI-65 | BI-233 | Leonidas | Istros | M-6900 | BI-65 | Istros | M-6900 | |
Gallocatechin | nf | nf | nf | nf | 0.08 | 0.23 | nf | nf | nf |
Procyanidin B1 | nf | 0.11 | nf | 0.07 | nf | nf | nf | 0.03 | 0.02 |
Chlorogenic Acid | 0.02 | 3.01 | 0.80 | 2.33 | nf | 0.78 | 0.07 | nf | nf |
Procyanidin B2 | nf | nf | nf | 0.04 | nf | nf | nf | nf | nf |
Daidzin | nf | nf | tr | nf | nf | nf | nf | nf | nf |
Quercetagetin-7-o-glucoside | tr | 0.03 | nf | 0.01 | 0.01 | 0.01 | nf | nf | nf |
Epigallocatechin Gallate | nf | nf | nf | nf | nf | nf | nf | tr | nf |
Glycitin | nf | nf | tr | tr | nf | nf | nf | nf | nf |
Rutin | 0.37 | 11.19 | nf | 6.22 | 2.04 | 5.52 | nf | nf | nf |
Isoquercetin | 6.27 | 33.91 | 3.32 | 9.21 | 19.95 | 10.51 | tr | tr | tr |
Diosmin | nf | 0.28 | nf | nf | 0.23 | 0.24 | nf | nf | nf |
Hesperidin | nf | nf | nf | nf | 0.13 | nf | nf | nf | nf |
Quercitrin | nf | nf | nf | 0.02 | nf | nf | nf | nf | nf |
3′,4′,7-trihydroxyisoflavone | nf | nf | nf | nf | nf | tr | nf | nf | nf |
Secoisolariciresinol | 2.52 | 11.21 | 29.82 | 12.31 | 46.33 | nf | nf | nf | nf |
Ononin | nf | tr | nf | nf | 0.01 | nf | nf | nf | nf |
Daidzein | nf | nf | nf | nf | nf | 0.01 | nf | nf | nf |
Glycitein | nf | 0.04 | 0.30 | 0.10 | 0.12 | 0.65 | nf | nf | nf |
Luteolin | nf | 0.54 | nf | 0.24 | 0.41 | 1.82 | nf | nf | nf |
Apigenin | nf | 2.65 | 0.38 | 0.37 | 0.78 | 2.35 | 0.01 | nf | nf |
Genistein | 0.04 | 2.57 | 1.93 | nf | 3.86 | 7.56 | nf | nf | nf |
Diosmetin | tr | nf | 0.16 | 0.12 | 0.11 | 0.24 | tr | tr | nf |
Isoliquiritigenin | 0.01 | 0.46 | 0.52 | 0.13 | 0.41 | 1.72 | nf | nf | nf |
Samples | DPPH (mg TE/Kg DM) 1 | FRAP (mmol Fe (II)/Kg DM) 2 | ||||
---|---|---|---|---|---|---|
Hex | DCM | MeOH | Hex | DCM | MeOH | |
Biomass | ||||||
Line A | <LOD 3 | <LOD | 272.1 ± 2.5 | 3.03 ± 0.04 | 7.79 ± 0.05 | 5.82 ± 0.11 |
BI-65 | 64.2 ± 1.9 | <LOD | 611.3 ± 31.8 | 4.78 ± 0.07 | 10.50 ± 0.20 | 25.02 ± 0.49 |
BI-233 | 5.9 ± 7.7 | <LOD | <LOD | 3.39 ± 0.06 | 2.70 ± 0.01 | 13.23 ± 0.02 |
Leonidas | <LOD | <LOD | 171.1 ± 69.7 | 2.25 ± 0.07 | 2.74 ± 0.04 | 10.65 ± 0.08 |
Istros | 181.3 ± 11.1 | <LOD | 129.2 ± 46.1 | 10.81 ± 0.40 | 34.02 ± 0.70 | 15.50 ± 0.21 |
M-6900 | 231.3 ± 34.6 | <LOD | 1609.9 ± 182.5 | 14.50 ± 0.29 | 8.42 ± 0.11 | 20.00 ± 0.32 |
Grains | ||||||
BI-65 | <LOD | <LOD | 152.3 ± 23.6 | 6.79 ± 0.03 | 15.99 ± 0.08 | 5.70 ± 0.23 |
Istros | <LOD | <LOD | 85.0 ± 26.6 | 1.99 ± 0.03 | 8.77 ± 0.03 | 1.92 ± 0.01 |
M-6900 | <LOD | <LOD | <LOD | 7.21 ± 0.04 | 9.02 ± 0.20 | 2.37 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrtsi, E.D.; Vlachostergios, D.N.; Petsoulas, C.; Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties. Plants 2023, 12, 2807. https://doi.org/10.3390/plants12152807
Myrtsi ED, Vlachostergios DN, Petsoulas C, Evergetis E, Koulocheri SD, Haroutounian SA. An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties. Plants. 2023; 12(15):2807. https://doi.org/10.3390/plants12152807
Chicago/Turabian StyleMyrtsi, Eleni D., Dimitrios N. Vlachostergios, Christos Petsoulas, Epameinondas Evergetis, Sofia D. Koulocheri, and Serkos A. Haroutounian. 2023. "An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties" Plants 12, no. 15: 2807. https://doi.org/10.3390/plants12152807
APA StyleMyrtsi, E. D., Vlachostergios, D. N., Petsoulas, C., Evergetis, E., Koulocheri, S. D., & Haroutounian, S. A. (2023). An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties. Plants, 12(15), 2807. https://doi.org/10.3390/plants12152807