Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar
Abstract
:1. Introduction
2. Results
2.1. Total Soluble Solids, Titratable Acidity and pH
2.2. Weight Loss, Ethylene Production Rates, Fruit Firmness, Peel Color, and CI Incidence
2.3. Total Phenolics (TP), Total Flavonoids (TF) and Total Antioxidant Capacity (TAC)
2.4. Total Carotenes (TC) and Individual Carotenoid Compounds
3. Discussion
3.1. Total Soluble Solids, Titratable Acidity and pH
3.2. Weight Loss, Peel Color, Fruit Firmness, Ethylene Production Rates, and CI Incidence
3.3. Total Antioxidants and Total Antioxidant Capacity
3.4. Total Carotenes and Individual Carotenoid Compounds
4. Materials and Methods
4.1. Fruit Material and Storage
4.2. Total Soluble Solids (TSS), Titratable Acidity (TA), and pH
4.3. Weight Loss (WL), Ethylene Production Rates, Fruit Firmness, Peel Color, and Chilling Injury (CI) Incidence
4.4. Total Phenolics (TP), Total Flavonoids (TF) and Total Antioxidant Capacity (TAC)
4.5. Total Carotenes (TC) and Individual Carotenoid Compounds
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kafkaletou, M.; Karantzi, A.; Christopoulos, M.; Tsantili, E. Changes in carotenoid compounds and quality traits during storage of ‘Farbaly’ apricots (Prunus armeniaca L.) at 1 °C in air. Acta Hort. 2017, 1256, 267–274. [Google Scholar] [CrossRef]
- Cardarelli, M.; Botondi, R.; Vizovitis, K.; Mencarelli, F. Effects of Exogenous Propylene on Softening, Glycosidase, and Pectinmethylesterase Activity during Postharvest Ripening of Apricots. J. Agric. Food Chem. 2002, 50, 1441–1446. [Google Scholar] [CrossRef]
- Dong, L.; Lurie, S.; Zhou, H.-W. Effect of 1-methylcyclopropene on ripening of ‘Canino’ apricots and ‘Royal Zee’ plums. Postharvest Biol. Technol. 2002, 24, 135–145. [Google Scholar] [CrossRef]
- Infante, R.; Meneses, C.; Defilippi, B.G. Effect of harvest maturity stage on the sensory quality of ‘Palsteyn’ apricot (Prunus armeniaca L.) after cold storage. J. Hortic. Sci. Biotechnol. 2008, 83, 828–832. [Google Scholar] [CrossRef]
- Feng, J.; Stanley, J.; Othman, M.; Woolf, A.; Kosasih, M.; Olsson, S.; Clare, G.; Cooper, N.; Wang, X. Segregation of apricots for storage potential using non-destructive technologies. Postharvest Biol. Technol. 2013, 86, 17–22. [Google Scholar] [CrossRef]
- Stanley, J.; Prakash, R.; Marshall, R.; Schröder, R. Effect of harvest maturity and cold storage on correlations between fruit properties during ripening of apricot (Prunus armeniaca). Postharvest Biol. Technol. 2013, 82, 39–50. [Google Scholar] [CrossRef]
- Aubert, C.; Bony, P.; Chalot, G.; Hero, V. Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chem. 2010, 119, 1386–1398. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ruiz, D.; Valero, D.; Rivera, D.; Obón, C.; Sánchez-Roca, C.; Gil, M.I. Health Benefits from Pomegranates and Stone Fruit, Including Plums, Peaches, Apricots and Cherries. In Bioactives in Fruit: Health Benefits and Functional Foods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 125–167. [Google Scholar]
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Drogoudi, P.D.; Vemmos, S.; Pantelidis, G.; Petri, E.; Tzoutzoukou, C.; Karayiannis, I. Physical Characters and Antioxidant, Sugar, and Mineral Nutrient Contents in Fruit from 29 Apricot (Prunus armeniaca L.) Cultivars and Hybrids. J. Agric. Food Chem. 2008, 56, 10754–10760. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, D.; Egea, J.; Gil, M.I.; Tomás-Barberán, F.A. Characterization and Quantitation of Phenolic Compounds in New Apricot (Prunus armeniaca L.) Varieties. J. Agric. Food Chem. 2005, 53, 9544–9552. [Google Scholar] [CrossRef] [PubMed]
- Parlakpinar, H.; Olmez, E.; Acet, A.; Ozturk, F.; Tasdemir, S.; Ates, B.; Gul, M.; Otlu, A. Beneficial effects of apricot-feeding on myocardial ischemia-reperfusion injury in rats. Food Chem. Toxicol. 2009, 47, 802–808. [Google Scholar] [CrossRef]
- Burgos, L.; Egea, J.; Guerriero, R.; Viti, R.; Monteleone, P.; Audergon, J.M. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J. Hortic. Sci. 1997, 72, 147–154. [Google Scholar] [CrossRef]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’ apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 26–34. [Google Scholar] [CrossRef]
- Egea, J.; Ruiz, D.; Martínez-Gómez, P. Influence of rootstock on the productive behaviour of ‘Orange Red’ apricot under Mediterranean conditions. Fruits 2004, 59, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Piagnani, M.; Castellari, L.; Sgarbi, P.; Bassi, D. Fruit quality evaluation of diverse apricot cultivars. In Fruits and Roots: A Celebration and Forward Look; Bishop, G., Fountain, M., Harrison, R., Saville, R., Eds.; East Malling Research: Kent, UK, 2013. [Google Scholar]
- Carbone, K.; Ciccoritti, R.; Paliotta, M.; Rosato, T.; Terlizzi, M.; Cipriani, G. Chemometric classification of early-ripening apricot (Prunus armeniaca, L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Sci. Hortic. 2018, 227, 187–195. [Google Scholar] [CrossRef]
- Kafkaletou, M.; Kalantzis, I.; Karantzi, A.; Christopoulos, M.V.; Tsantili, E. Phytochemical characterization in traditional and modern apricot (Prunus armeniaca L.) cultivars–Nutritional value and its relation to origin. Sci. Hortic. 2019, 253, 195–202. [Google Scholar] [CrossRef]
- Muzzaffar, S.; Bhat, M.M.; Wani, T.A.; Wani, I.A.; Masoodi, F.A. Postharvest Biology and Technology of Apricot. In Postharvest Biology and Technology of Temperate Fruits; Mir, S.A., Shah, M.A., Mir, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 201–222. [Google Scholar]
- Guillén, F.; Weksler, A.; Lurie, S.; Friedman, H. Characterization of new early-season commercial apricot cultivars in Israel and comparison to a local cultivar. Isr. J. Plant Sci. 2016, 63, 31–37. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Ezzat, A.; Nyéki, J.; Soltész, M.; Amriskó, L.; Balázs, G.I.; Mikita, T.; Szabó, Z. Storability of some apricot varieties as affected by storage period. Int. J. Hortic. Sci. 2012, 18, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Baldwin, E.; Tsantili, E.; Plotto, A.; Sun, X.; Wang, L.; Kafkaletou, M.; Wang, Z.; Narciso, J.; Zhao, W.; et al. Modified humidity clamshells to reduce moisture loss and extend storage life of small fruits⋆. Food Packag. Shelf Life 2019, 22, 100376. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J.; Tomás-Barberán, F.A.; Gil, M.I. Carotenoids from New Apricot (Prunus armeniaca L.) Varieties and Their Relationship with Flesh and Skin Color. J. Agric. Food Chem. 2005, 53, 6368–6374. [Google Scholar] [CrossRef] [PubMed]
- Leccese, A.; Bureau, S.; Reich, M.; Renard, M.G.C.C.; Audergon, J.-M.; Mennone, C.; Bartolini, S.; Viti, R. Pomological and Nutraceutical Properties in Apricot Fruit: Cultivation Systems and Cold Storage Fruit Management. Plant Foods Hum. Nutr. 2010, 65, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Egea, I.; Flores, F.B.; Martínez-Madrid, M.C.; Romojaro, F.; Sánchez-Bel, P. 1-Methylcyclopropene affects the antioxidant system of apricots (Prunus armeniaca L. cv. Búlida) during storage at low temperature. J. Sci. Food Agric. 2010, 90, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Hernández, M.H.; Martínez-Hernández, G.B.; Avalos-Belmontes, F.; Miranda-Molina, F.D.; Artés-Hernández, F. Postharvest quality retention of apricots by using a novel sepiolite–loaded potassium permanganate ethylene scavenger. Postharvest Biol. Technol. 2020, 160, 111061. [Google Scholar]
- Christen, D.; Gabioud Rebeaud, S.; Cotter, P.Y.; Gasser, F. Influence of fruit maturity, 1-methylcyclopropene (1-MCP) treatment and storage temperature on ethylene production and firmness of ‘Goldrich’ and ‘Orangered’ apricots. Acta Hort. 2018, 1214, 159–164. [Google Scholar] [CrossRef]
- Gabioud Rebeaud, S.; Cioli, L.; Cotter, P.-Y.; Christen, D. Cultivar, maturity at harvest and postharvest treatments influence softening of apricots. Postharvest Biol. Technol. 2023, 195, 112134. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Juan, W.S.; Valdés, H.; Moya-León, M.A.; Infante, R.; Campos-Vargas, R. The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biol. Technol. 2009, 51, 212–219. [Google Scholar] [CrossRef]
- Palou, L.; Crisosto, C.H.; Garner, D.; Basinal, L.M. Effect of continuous exposure to exogenous ethylene during cold storage on postharvest decay development and quality attributes of stone fruits and table grapes. Postharvest Biol. Technol. 2003, 27, 243–254. [Google Scholar] [CrossRef]
- Awalgaonkar, G.; Beaudry, R.; Almenar, E. Ethylene-removing packaging: Basis for development and latest advances. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3980–4007. [Google Scholar] [CrossRef]
- Hua, X.; Li, T.; Wu, C.; Zhou, D.; Fan, G.; Li, X.; Cong, K.; Yan, Z.; Cheng, X. Pulsed light improved the shelf life of apricot (after simulated long-distance air transportation) by regulating cell wall metabolism. Postharvest Biol. Technol. 2023, 196, 112187. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Mitchell, F.G.; Johnson, S. Factors in fresh market stone fruit quality. Postharvest News Inf. 1995, 6, 17–21. [Google Scholar]
- Koushesh Saba, M.; Arzani, K.; Barzegar, M. Postharvest Polyamine Application Alleviates Chilling Injury and Affects Apricot Storage Ability. J. Agric. Food Chem. 2012, 60, 8947–8953. [Google Scholar] [CrossRef]
- Manolopoulou, H.; Mallidis, C. Storage and Processing of Apricots. In Proceedings of the ISHS Acta Horticulturae 488: XI International Symposium on Apricot Culture, Veria-Makedonia, Greece, 1 May 1999; pp. 567–576. [Google Scholar]
- Leccese, A.; Bartolini, S.; Viti, R. Genotype, Harvest Season, and Cold Storage Influence on Fruit Quality and Antioxidant Properties of Apricot. Int. J. Food Prop. 2012, 15, 864–879. [Google Scholar] [CrossRef]
- Campbell, O.E.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization and the Effect of Maturity at Harvest on the Phenolic and Carotenoid Content of Northeast USA Apricot (Prunus armeniaca) Varieties. J. Agric. Food Chem. 2013, 61, 12700–12710. [Google Scholar] [CrossRef] [PubMed]
- Milović, M.; Kevrešan, Ž.; Mastilović, J.; Kovač, R.; Kalajdžić, J.; Magazin, N.; Bajić, A.; Milić, B.; Barać, G.; Keserović, Z. Could an Early Treatment with GA and BA Impact Prolonged Cold Storage and Shelf Life of Apricot? Horticulturae 2022, 8, 1220. [Google Scholar]
- Ezzat, A.; Hegedűs, A.; Szabó, S.; Ammar, A.; Szabó, Z.; Nyéki, J.; Molnár, B.; Holb, I.J. Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life. Appl. Sci. 2020, 10, 8071. [Google Scholar]
- Marty, I.; Bureau, S.; Sarkissian, G.; Gouble, B.; Audergon, J.M.; Albagnac, G. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J. Exp. Bot. 2005, 56, 1877–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopoulos, M.V.; Gkatzos, D.; Kafkaletou, M.; Bai, J.; Fanourakis, D.; Tsaniklidis, G.; Tsantili, E. Edible Coatings from Opuntia ficus-indica Cladodes Alongside Chitosan on Quality and Antioxidants in Cherries during Storage. Foods 2022, 11, 699. [Google Scholar]
- Ezzat, A. Apricot fruit chilling injuries during the cold storage affected by harvest maturity. Int. J. Hortic. Sci. 2019, 25, 28–31. [Google Scholar] [CrossRef]
- Gunes, G.; Liu, R.H.; Watkins, C.B. Controlled-Atmosphere Effects on Postharvest Quality and Antioxidant Activity of Cranberry Fruits. J. Agric. Food Chem. 2002, 50, 5932–5938. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. J. Jpn. Soc. Food Sci. Technol. 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
Cultivar | TSS (°Brix) | TA (% Malic Acid, w/w) | pH |
---|---|---|---|
Orange Red | 11.60 ± 0.95 1 | 0.56 ± 0.10 | 4.10 ± 0.15 |
Orange Rubis | 14.00 ± 0.53 | 0.52 ± 0.04 | 4.29 ± 0.04 |
Storage Days | Probabilities | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Temperature (°C) | 0 | 7 | 14 | 21 | 28 | Pc | Pd | Pt | Pc×d | Pc×t | Pd×t | Pc×d×t | |
Peel color parameters | ||||||||||||||
L* | Orange Red | 1 | 52.25 ± 1.53 ab 1 | 44.55 ± 3.16 b | 48.69 ± 4.14 ab | 46.01 ± 2.81 ab | 54.12 ± 1.02 a | *** | * | ns | ** | ns | ns | ns |
5 | 52.25 ± 1.53 ab | 52.72 ± 2.61 ab | 50.05 ± 4.63 ab | 45.42 ± 3.66 ab | 52.58 ± 4.50 ab | |||||||||
Orange Rubis | 1 | 44.79 ± 2.19 b | 46.03 ± 0.88 ab | 48.57 ± 1.85 ab | 47.84 ± 2.74 ab | 46.11 ± 0.65 ab | ||||||||
5 | 44.79 ± 2.19 b | 48.60 ± 0.75 ab | 49.39 ± 5.74 ab | 46.54 ± 1.35 ab | 48.43 ± 3.30 ab | |||||||||
h° | Orange Red | 1 | 59.87 ± 1.89 | 44.06 ± 6.78 | 51.94 ± 9.35 | 46.96 ± 3.86 | 62.00 ± 2.95 | ns | * | ns | * | ns | ns | ns |
5 | 59.87 ± 1.89 | 58.63 ± 6.07 | 53.34 ± 8.19 | 48.44 ± 6.36 | 59.75 ± 9.17 | |||||||||
Orange Rubis | 1 | 51.76 ± 3.92 | 53.77 ± 2.19 | 60.18 ± 4.61 | 57.06 ± 6.78 | 55.02 ± 1.54 | ||||||||
5 | 51.76 ± 3.92 | 60.36 ± 2.22 | 59.96 ± 11.60 | 51.12 ± 5.41 | 59.86 ± 12.51 | |||||||||
C* | Orange Red | 1 | 44.81 ± 0.48 ab | 41.43 ± 1.47 abc | 41.67 ± 1.90 abc | 41.41 ± 2.54 abc | 45.27 ± 0.55 a | *** | ns | ns | ** | ns | ns | ns |
5 | 44.81 ± 0.48 ab | 44.07 ± 1.67 ab | 42.76 ± 3.06 ab | 38.47 ± 2.76 bcd | 43.85 ± 3.51 ab | |||||||||
Orange Rubis | 1 | 34.21 ± 0.91 de | 32.87 ± 2.50 de | 34.36 ± 0.41 de | 35.54 ± 1.97 cde | 31.52 ± 3.59 e | ||||||||
5 | 34.21 ± 0.91 de | 33.63 ± 1.16 de | 34.92 ± 4.78 cde | 35.09 ± 0.83 cde | 33.53 ± 0.28 de | |||||||||
Carotenes | ||||||||||||||
b-cryptoxanthine (μg 100 g−1 FW) | Orange Red | 1 | 6.50 ± 3.09 ab | 6.16 ± 1.29 ab | 10.10 ± 2.76 a | 5.10 ± 1.22 ab | 7.72 ± 0.63 ab | *** | * | ns | ns | ns | ns | ns |
5 | 6.50 ± 3.09 ab | 6.44 ± 1.51 ab | 6.14 ± 2.50 ab | 8.96 ± 3.63 ab | 6.44 ± 1.48 ab | |||||||||
Orange Rubis | 1 | 5.30 ± 0.97 ab | 3.15 ± 1.03 b | 7.68 ± 2.01 ab | 3.97 ± 1.32 ab | 3.83 ± 3.65 ab | ||||||||
5 | 5.30 ± 0.97 ab | 2.50 ± 1.34 b | 5.36 ± 3.77 ab | 2.82 ± 1.04 b | 3.83 ± 0.69 ab | |||||||||
Lutein (μg 100 g−1 FW) | Orange Red | 1 | 8.66 ± 3.57 | 9.17 ± 5.57 | 7.94 ± 2.74 | 7.07 ± 3.15 | 7.57 ± 4.43 | *** | ns | ns | ns | ns | ns | ns |
5 | 8.66 ± 3.57 | 9.25 ± 2.38 | 3.32 ± 1.74 | 10.92 ± 6.38 | 7.62 ± 5.96 | |||||||||
Orange Rubis | 1 | 7.28 ± 2.48 | 3.98 ± 0.47 | 3.84 ± 1.77 | 6.93 ± 1.71 | 3.38 ± 1.34 | ||||||||
5 | 7.28 ± 2.48 | 3.50 ± 2.20 | 3.35 ± 1.05 | 4.82 ± 1.02 | 5.37 ± 2.54 |
Storage Days | Probabilities | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Temperature (°C) | 0 + 2 | 7 + 2 | 14 + 2 | 21 + 2 | Pc | Pd | Pt | Pc×d | Pc×t | Pd×t | Pc×d×t | |
Peel color parameters | |||||||||||||
L* | Orange Red | 1 | 44.03 ± 5.63 1 | 41.96 ± 2.04 | 50.87 ± 1.14 | 45.57 ± 4.47 | ns | ns | ns | ns | ns | ns | ns |
5 | 44.03 ± 5.63 | 44.69 ± 1.84 | 46.51 ± 4.10 | 49.42 ± 0.83 | |||||||||
Orange Rubis | 1 | 45.98 ± 2.22 | 45.66 ± 3.96 | 45.49 ± 4.24 | 45.39 ± 0.36 | ||||||||
5 | 45.98 ± 2.22 | 48.14 ±2.67 | 45.34 ± 1.15 | 46.51 ± 0.36 | |||||||||
h° | Orange Red | 1 | 49.44 ± 4.21 ab | 44.04 ± 4.29 b | 58.75 ± 3.38 ab | 52.80 ± 6.34 ab | *** | * | ns | ** | ns | ns | ns |
5 | 49.44 ± 4.21 ab | 49.85 ± 5.33 ab | 52.22 ± 6.60 ab | 61.34 ± 2.46 a | |||||||||
Orange Rubis | 1 | 57.41 ± 2.46 ab | 58.35 ± 9.67 ab | 52.99 ± 8.88 ab | 59.74 ± 6.01 a | ||||||||
5 | 57.41 ± 2.46 ab | 63.62 ± 1.85 a | 54.61 ± 1.64 ab | 63.13 ± 3.49 a | |||||||||
C* | Orange Red | 1 | 39.24 ± 2.79 abc | 35.21 ± 2.85 abcd | 42.36 ± 1.16 a | 37.63 ± 5.37 abc | *** | * | ns | ns | ns | ns | ns |
5 | 39.24 ± 2.79 abc | 36.45 ± 1.40 abcd | 39.09 ± 4.78 abc | 40.88 ± 1.16 ab | |||||||||
Orange Rubis | 1 | 30.76 ± 2.26 cd | 31.53 ± 3.28 cd | 32.98 ± 2.20 bcd | 31.31 ± 5.17 cd | ||||||||
5 | 30.76 ± 2.26 cd | 28.49 ± 1.56 d | 33.17 ± 1.56 bcd | 33.94 ± 1.95 abcd | |||||||||
Carotenes | |||||||||||||
b-cryptoxanthine (μg 100 g−1 FW) | Orange Red | 1 | 7.71 ± 0.25 | 11.62 ± 5.84 | 11.07 ± 2.45 | 10.43 ± 0.50 | *** | ns | ns | ns | ns | ns | ns |
5 | 7.71 ± 0.25 | 12.70 ± 1.77 | 8.27 ± 1.57 | 5.99 ± 1.80 | |||||||||
Orange Rubis | 1 | 3.48 ± 1.47 | 3.63 ± 0.73 | 3.65 ± 1.04 | 5.14 ± 0.53 | ||||||||
5 | 3.48 ± 1.47 | 3.83 ± 0.29 | 3.92 ± 1.28 | 3.52 ± 1.33 | |||||||||
Lutein (μg 100 g−1 FW) | Orange Red | 1 | 6.15 ± 0.76 | 6.39 ± 2.03 | 14.03 ± 3.57 | 6.63 ± 2.32 | ns | *** | ns | ns | ns | ns | ns |
5 | 6.15 ± 0.76 | 15.51 ± 0.32 | 13.69 ± 1.59 | 7.82 ± 1.82 | |||||||||
Orange Rubis | 1 | 9.95 ± 0.91 | 6.76 ± 2.67 | 13.43 ± 2.28 | 6.47 ± 2.29 | ||||||||
5 | 9.95 ± 0.91 | 10.35 ± 4.65 | 16.50 ± 6.54 | 4.02 ± 2.19 |
Cultivar | Temperature (°C) | Storage Days | Probabilities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
14 | 21 | 28 | Pc | Pd | Pt | Pc×d | Pc×t | Pd×t | Pc×d×t | |||
Chilling injury incidence (%) | Orange Red | 1 | 0.00 ± 0.00 b 1 | 1.85 ± 3.21 b | 5.56 ± 2.78 b | ns | *** | *** | * | ns | * | ns |
5 | 0.00 ± 0.00 b | 11.11 ± 11.11 ab | 19.44 ± 2.78 a | |||||||||
Orange Rubis | 1 | 5.33 ± 9.24 b | 1.33 ± 2.31 b | 5.33 ± 2.31 b | ||||||||
5 | 4.00 ± 4.00 b | 6.67 ± 6.11 b | 10.67 ± 2.31 ab | |||||||||
14 + 2 | 21 + 2 | |||||||||||
Orange Red | 1 | 0.93 ± 1.60 c | 20.37 ± 1.60 ab | ns | ** | ns | *** | ns | ns | ns | ||
5 | 2.78 ± 2.78 bc | 26.85 ± 6.99 a | ||||||||||
Orange Rubis | 1 | 12.00 ± 4.00 abc | 14.67 ± 15.14 abc | |||||||||
5 | 12.00 ± 0.00 abc | 8.00 ± 6.93 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafkaletou, M.; Velliou, A.; Christopoulos, M.V.; Ouzounidou, G.; Tsantili, E. Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar. Plants 2023, 12, 2875. https://doi.org/10.3390/plants12152875
Kafkaletou M, Velliou A, Christopoulos MV, Ouzounidou G, Tsantili E. Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar. Plants. 2023; 12(15):2875. https://doi.org/10.3390/plants12152875
Chicago/Turabian StyleKafkaletou, Mina, Anna Velliou, Miltiadis V. Christopoulos, Georgia Ouzounidou, and Eleni Tsantili. 2023. "Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar" Plants 12, no. 15: 2875. https://doi.org/10.3390/plants12152875
APA StyleKafkaletou, M., Velliou, A., Christopoulos, M. V., Ouzounidou, G., & Tsantili, E. (2023). Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar. Plants, 12(15), 2875. https://doi.org/10.3390/plants12152875