Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop
Abstract
:1. Introduction
2. Results
2.1. Effect of Culture Medium on Shoot Rates, Shoot Number, Shoot Length and Callus Percentage
2.2. Effects of Culture Medium on Shoot Percentage, Shoot Number, Shoot Length, Rooting Rates, Root Number and Root Length
2.3. Acclimatization
3. Discussion
4. Materials and Methods
4.1. Plant Material and Sterilization
4.2. In Vitro Propagation
4.3. In Vitro Rooting
4.4. Growth Conditions
4.5. Acclimatization to Ex Vitro Conditions
4.6. Data Collection
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haunold, A.; Nickerson, G.B.; Gampert, U.; Whitney, P.A.; Hampton, R.O. Agronomic and quality characteristics of native North American hops. J. Am. Soc. Brew. Chem. 1993, 51, 133–137. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Patzak, J.; Krofta, K.; Henychová, A.; Nesvadba, V. Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulus L.), play a key role in contents of bitter acids and polyphenols in hop cone. Int. J. Food Sci. Technol. 2015, 50, 1864–1872. [Google Scholar] [CrossRef]
- Dostálek, P.; Karabín, M.; Jelínek, L. Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 2017, 22, 1761. [Google Scholar] [CrossRef]
- Rodolfi, M.; Rinaldi, M.; Caligiani, A.; Paciulli, M.; Lolli, V.; Chiancone, B.; Ganino, T. Hop green sprouts preservation and valorisation as semi-finished and finished products: Impact of different treatments on microstructural, physical and chemical traits. Eur. Food Res. Technol. 2022, 248, 1203–1215. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet Resour. Crop Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J. Sci. Food Agric. 2014, 94, 1914–1916. [Google Scholar] [CrossRef]
- Tardío, J.; De Cortes Sánchez-Mata, M.; Morales, R.; Molina, M.; García-Herrera, P.; Fernández-Ruiz, V.; Cámara, M.; Pardo-De-Santayana, M.; Matallana-González, M.C.; Ruiz-Rodríguez, B.M.; et al. Ethnobotanical and food composition monographs of selected Mediterranean wild edible plants. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; de Cortes Sánchez-Mata, M., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 273–470. ISBN 978-1-4939-3327-3. [Google Scholar]
- Maietti, A.; Brighenti, V.; Bonetti, G.; Tedeschi, P.; Prencipe, F.P.; Benvenuti, S.; Brandolini, V.; Pellati, F. Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). J. Pharm. Biomed. Anal. 2017, 142, 28–34. [Google Scholar] [CrossRef]
- Rossini, F.; Virga, G.; Loreti, P.; Provenzano, M.E.; Danieli, P.P.; Ruggeri, R. Beyond beer: Hop shoot production and nutritional composition under Mediterranean climatic conditions. Agronomy 2020, 10, 1547. [Google Scholar] [CrossRef]
- Ponticelli, M.; Russo, D.; Faraone, I.; Sinisgalli, C.; Labanca, F.; Lela, L.; Milella, L. The promising ability of Humulus lupulus L. Iso-α-acids vs. diabetes, inflammation, and metabolic syndrome: A systematic review. Molecules 2021, 26, 954. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S. Flora d’Italia; Edagricole: Milano, Italy, 2017; Volume 1. [Google Scholar]
- Rossini, F.; Virga, G.; Loreti, P.; Iacuzzi, N.; Ruggeri, R.; Provenzano, M.E. Hops (Humulus lupulus L.) as a novel multipurpose crop for the Mediterranean region of Europe: Challenges and opportunities of their cultivation. Agriculture 2021, 11, 484. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org (accessed on 30 January 2023).
- Marceddu, R.; Carrubba, A.; Sarno, M. Cultivation trials of hop (Humulus lupulus L.) in semi-arid environments. Heliyon 2020, 6, e05114. [Google Scholar] [CrossRef] [PubMed]
- Rossini, F.; Loreti, P.; Provenzano, M.E.; De Santis, D.; Ruggeri, R. Agronomic performance and beer quality assessment of twenty hop cultivars grown in central Italy. Ital. J. Agron. 2016, 11, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, R.; Loreti, P.; Rossini, F. Exploring the potential of hop as a dual purpose crop in the Mediterranean environment: Shoot and cone yield from nine commercial cultivars. Eur. J. Agron. 2018, 93, 11–17. [Google Scholar] [CrossRef]
- Ruggeri, R.; Tolomio, M.; Muganu, M.; Loreti, P.; Virga, G.; Iacuzzi, N.; Rossini, F. Establishment of a commercial organic hopyard in a Mediterranean environment: Production attributes and their relationship with soil texture. Sci. Hortic. 2023, 310, 111720. [Google Scholar] [CrossRef]
- Bauerle, W.L. Disentangling photoperiod from hop vernalization and dormancy for global production and speed breeding. Sci. Rep. 2019, 9, 16003. [Google Scholar] [CrossRef] [Green Version]
- Potopová, V.; Lhotka, O.; Možný, M.; Musiolková, M. Vulnerability of hop-yields due to compound drought and heat events over European key-hop regions. Int. J. Climatol. 2021, 41, E2136–E2158. [Google Scholar] [CrossRef]
- Dubey, P.K.; Singh, A.; Chaurasia, R.; Pandey, K.K.; Bundela, A.K.; Dubey, R.K.; Abhilash, P.C. Planet friendly agriculture: Farming for people and the planet. Curr. Res. Environ. Sustain. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Machado, M.P.; Gomes, E.N.; Francisco, F.; Bernert, A.F.; Bespalhok Filho, J.C.; Deschamps, C. Micropropagation and establishment of Humulus lupulus L. plantlets under field conditions at southern Brazil. J. Agric. Sci. 2018, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Ammirato, P.V. Patterns of development in culture. In Tissue Culture in Forestry and Agriculture; Plenum Press: New York, NY, USA, 1985; pp. 9–29. [Google Scholar]
- Donnelly, D.; Vidaver, W.E. Glossary of Plant Tissue Culture; Belhaven Press: London, UK, 1988; p. 141. [Google Scholar]
- Bairu, M.W.; Kane, M.E. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul. 2011, 63, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Gurriaran, M.J.; Revilla, M.A.; Tames, R.S. Adventitious shoot regeneration in cultures of Humulus lupulus L. (hop) cvs. Brewers Gold and Nugget. Plant Cell Rep. 1999, 18, 1007–1011. [Google Scholar]
- Postman, J.D.; DeNoma, J.S.; Reed, B.M. Detection and elimination of viruses in USDA hop (Humulus lupulus) germplasm collection. Acta Hortic. 2005, 668, 143–148. [Google Scholar] [CrossRef]
- Martinez, D.; Tamés, R.S.; Angeles Revilla, M. Cryopreservation of in vitro-grown shoot-tips of hop (Humulus lupulus L.) using encapsulation/dehydration. Plant Cell Rep. 1999, 19, 59–63. [Google Scholar] [CrossRef]
- Reed, B.M.; Okut, N.; D’Achino, J.; Narver, L.; DeNoma, J. Cold storage and cryopreservation of hops (Humulus L.) shoot cultures through application of standard protocols. CryoLetters 2003, 24, 389–396. [Google Scholar]
- Horlemann, C.; Schwekendiek, A.; Höhnle, M.; Weber, G. Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.). Plant Cell Rep. 2003, 22, 210–217. [Google Scholar] [CrossRef]
- Liberatore, C.M.; Mattion, G.; Rodolfi, M.; Ganino, T.; Fabbri, A.; Chiancone, B. Chemical and physical pre-treatments to improve in vitro seed germination of Humulus lupulus L., cv. Columbus. Sci. Hortic. 2018, 235, 86–94. [Google Scholar] [CrossRef]
- Batista, D.; Sousa, M.J.; Pais, M.S. Plant regeneration from stem and petiole-derived callus of Humulus lupulus L. (hop) clone Bragança and var. Brewers Gold. Vitr. Cell. Dev. Biol. Plant 1996, 32, 37–41. [Google Scholar] [CrossRef]
- Batista, D.; Ascensão, L.; Sousa, M.J.; Pais, M.S. Adventitious shoot mass production of hop (Humulus lupulus L.) var. Eroica in liquid medium from organogenic nodule cultures. Plant Sci. 2000, 151, 47–57. [Google Scholar] [CrossRef]
- Batista, D.; Fonseca, S.; Serrazina, S.; Figueiredo, A.; Pais, M.S. Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment. Plant Cell Rep. 2008, 27, 1185–1196. [Google Scholar] [CrossRef]
- Roy, A.; Leggett, G.; Koutoulis, A. In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep. 2001, 20, 489–495. [Google Scholar] [CrossRef]
- Skof, S.; Bohanec, B.; Kastelec, D.; Luthar, Z. Spontaneous induction of tetraploidy in hop using adventitious shoot regeneration method. Plant Breed. 2007, 126, 416–421. [Google Scholar] [CrossRef]
- Peredo, E.L.; Arroyo-Garcia, R.; Revilla, M.Á. Epigenetic changes detected in micropropagated hop plants. J. Plant Physiol. 2009, 166, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Gatica-Arias, A.; Weber, G. Genetic transformation of hop (Humulus lupulus L. cv. Tettnanger) by particle bombardment and plant regeneration using a temporary immersion system. Vitr. Cell. Dev. Biol. Plant 2013, 49, 656–664. [Google Scholar] [CrossRef]
- Clapa, D.; Hârța, M. Establishment of an Efficient Micropropagation System for Humulus lupulus L. cv. Cascade and Confirmation of Genetic Uniformity of the Regenerated Plants through DNA Markers. Agronomy 2021, 11, 2268. [Google Scholar] [CrossRef]
- De Souza, R.; Adams, C.R.; de Melo, R.C.; Guidolin, A.F.; Michel, A.; Coimbra, J.L.M. Phenotypical changes in hop induced by micropropagation. Plant Cell Tissue Organ Cult. 2021, 147, 379–387. [Google Scholar] [CrossRef]
- Brar, D.S.; Jain, S.M. Somaclonal Variation: Mechanism and Applications in Crop Improvement. In Current Plant Science and Biotechnology in Agriculture; Jain, S.M., Brar, D.S., Ahloowalia, B.S., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 15–37. [Google Scholar]
- Martins, M.; Sarmento, D.; Oliveira, M.M. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 2004, 23, 492–496. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Orlikowska, T.; Trojak-Goluch, A.; Wojtania, A. Application and Improvement of In Vitro Culture Systems for Commercial Production of Ornamental, Fruit, and Industrial Plants in Poland. Acta Soc. Bot. Pol. 2022, 91, 914. [Google Scholar] [CrossRef]
- Fortes, A.M.; Santos, F.; Pais, M.S. Organogenic nodule formation in hop: A tool to study morphogenesis in plants with biotechnological and medicinal applications. J. Biomed. Biotechnol. 2010, 13, 583691. [Google Scholar] [CrossRef] [Green Version]
- Liberatore, C.M.; Rodolfi Beghèa, D.; Fabbri, A.; Ganino, T.; Chianconea, B. Adventitious shoot organogenesis and encapsulation technology in hop (Humulus lupulus L.). Sci. Hortic. 2020, 270, 109416. [Google Scholar]
- Motegi, T.; Kusunoki, M.; Nishi, T.; Hamada, T.; Sato, N.; Imamura, T.; Mohri, N. Short rib-polydactyly syndrome, Majewski type, in two male siblings. Hum. Genet. 1979, 49, 269–275. [Google Scholar] [CrossRef]
- Peredo, E.L.; Ángeles Revilla, M.; Arroyo-García, R. Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. J. Plant Physiol. 2006, 163, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Smýkalová, I.; Ortová, M.; Lipavská, H.; Patzak, J. Efficient in vitro micropropagation and regeneration of Humulus lupulus on low sugar, starch-Gelrite media. Plant Biol. 2001, 44, 7–12. [Google Scholar] [CrossRef]
- Heale, J.B.; Legg, T.; Connell, S. Humulus lupulus L. (Hop): In vitro culture; attempted production of bittering components and novel disease resistance. In Medicinal and Aromatic Plants II; Bajaj, Y.P.S., Ed.; Biotechnology in Agriculture and Forestry; Springer: Berlin, Germany, 1989; Volume 7, pp. 264–285. [Google Scholar]
- Connell, S.A.; Heale, J.B. Development of an in vitro selection system for novel sources of resistance to Verticillium wilt in hops. In Plant Tissue Culture and Its Agricultural Applications; Withers, L.A., Alderson, P.G., Eds.; Butterworths: London, UK, 1986; pp. 451–459. [Google Scholar]
- Rakouský, S.; Matoušek, J. Direct organogenesis in hop-a prerequisite for an application of A. tumefaciens-mediated transformation. Biol. Plant. 1994, 36, 191–200. [Google Scholar] [CrossRef]
- White, P.R. Potentially unlimited growth of excised plant callus in an artificial nutrient. Am. J. Bot. 1939, 26, 59–64. [Google Scholar] [CrossRef]
- Thorpe, J.P. The molecular clock hypothesis: Biochemical evolution, genetic differentiation and systematics. Annu. Rev. Ecol. Evol. Syst. 1982, 13, 139–168. [Google Scholar]
- Van Voorthuizen, M.J.; Nisler, J.; Song, J.; Spíchal, L.; Jameson, P.E. Targeting cytokinin homeostasis in rapid cycling Brassica rapa with plant growth regulators INCYDE and TD-K. Plants 2021, 10, 39. [Google Scholar] [CrossRef]
- Ružić, D.V.; Vujović, T.I. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Hortic. Sci. 2008, 35, 12–21. [Google Scholar]
- Sharma, V.; Gupta, S.K.; Dhiman, M. Regeneration of plants from nodal and internodal segment cultures of Ephedra gerardiana using thidiazuron. Plant Tissue Cult. Biotechnol. 2012, 22, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Alatar, A.A. Thidiazuron induced efficient in vitro multiplication and ex vitro conservation of Rauvolfia serpentina—A potent antihypertensive drug producing plant. Biotechnol. Biotechnol. Equip. 2015, 29, 489–497. [Google Scholar]
- Bird, K.T. Comparisons of herbicide toxicity using in vitro cultures of Myriophyllum spicatum. J. Aquat. Plant Manag. Soc. 1993, 31, 43. [Google Scholar]
- Alvarenga, I.C.A.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. In vitro culture of Achillea millefolium L.: Quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult. 2015, 122, 299–308. [Google Scholar] [CrossRef]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef] [PubMed]
- De-Souza, R.; Adams, C.R.; de-Melo, R.C.; Guidolin, A.F.; Michel, A.; Coimbra, J.L.M. Growth Regulators and Their Reflection on Different Hop Genotypes Cultivated under in Vitro Conditions. Braz. J. Biol. 2021, 82, e242596. [Google Scholar] [CrossRef]
- Gentile, A.; Jàquez Gutiérrez, M.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ Cult. 2014, 118, 373–381. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.A.; El Sohly, M.A. In Vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 18–26. [Google Scholar] [CrossRef]
- Barboza, S.B.S.C.; Caldas, L.S. Etiolation and regeneration in the in vitro multiplication of hybrid PE x SC-52 pineapple. Pesqui. Agropecuária Bras. 2001, 36, 417–423. [Google Scholar]
- Morais, T.P.; Asmar, S.A.; Luz, J.M.Q. Plant growth regulators on in vitro culture of Mentha x piperita L. Rev. Bras. De Plantas Med. 2014, 16, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Deepa, A.V.; Anju, M.; Dennis Thomas, T. The Applications of TDZ in Medicinal Plant Tissue Culture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Guo, B.; Abbasi, B.H.; Zeb, A.; Xu, L.L.; Wei, Y.H. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011, 10, 8984–9000. [Google Scholar]
- Dodds, J.H.; Roberts, L.W. Experiments in Plant Tissue Culture; Cambridge University Press: London, UK, 1985; pp. 120–129. [Google Scholar]
- Mercier, H. Auxinas. In Fisiologia Vegetal; Kerbauy, G.B., Ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2019; pp. 175–198. [Google Scholar]
- Hirakawa, T.; Tanno, S. In vitro propagation of Humulus lupulus through the induction of axillary bud development. Plants 2022, 11, 1066. [Google Scholar] [CrossRef]
- Barrales-López, A.; Robledo-Paz, A.; Trejo, C.; Espitia-Rangel, E.; Rodríguez-De, J.L. Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. Plantlets. Vitr. Cell. Dev. Biol. Plant 2015, 51, 274–283. [Google Scholar] [CrossRef]
- Lubell-Brand, J.D.; Kurtz, L.E.; Brand, M.H. An in vitro–ex vitro micropropagation system for hemp. HortTechnology 2021, 31, 199–207. [Google Scholar] [CrossRef]
- Lakho, M.A.; Jatoi, M.A.; Solangi, N.; Abul-Soad, A.A.; Qazi, M.A.; Abdi, G. Optimizing in vitro nutrient and ex vitro soil medium-driven resposes for multiplication, rooting, and acclimatization of pineapple. Sci. Rep. 2023, 13, 1275. [Google Scholar] [CrossRef] [PubMed]
- Kastrytskaya, M.S.; Kukharchyk, N.V.; Hashenka, O.A. Acclimatization of hop cultivars after in vitro propagation. Soil Sci. Agrochem. 2014, 1, 370–379. [Google Scholar]
- Mongelli, A.; Rodolfi, M.; Ganino, T.; Marieschi, M.; Caligiani, A.; Dall’Asta, C.; Bruni, R. Are Humulus lupulus L. ecotypes and cultivars suitable for the cultivation of aromatic hop in Italy? A phytochemical approach. Ind. Crops Prod. 2016, 83, 693–700. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
Culture Medium | Shoot Percentage [%] | Shoots [n.] | Shoot Length [cm] | Callus Percentage [%] |
---|---|---|---|---|
H1 | 81 b | 3.1 ± 1.3 a | 2.7 ± 1.0 b | 93 a |
H2 | 69 c | 2.4 ± 0.8 bc | 2.3 ± 0.6 c | 79 b |
H3 | 53 d | 2.1 ± 0.6 c | 2.0 ± 0.5 c | 45 e |
H4 | 71 c | 3.2 ± 0.6 a | 2.0 ± 0.4 c | 59 d |
H5 | 79 b | 3.1 ± 1.2 a | 2.1 ± 0.6 c | 66 c |
H6 | 89 a | 2.5 ± 1.0 bc | 3.0 ± 0.8 ab | 70 c |
H7 | 83 ab | 2.6 ± 1.0 bc | 3.0 ± 1.0 ab | 90 a |
H8 | 89 a | 2.6 ± 1.0 bc | 3.1 ± 0.9 a | 90 a |
H9 | 86 a | 2.7 ± 0.9 b | 3.1 ± 0.8 a | 91 a |
Significance | ** | ** | ** | ** |
Culture Medium | Shoot Percentage [%] | Shoots [n.] | Shoot Length [cm] | Rooting Percentage [%] | Roots [n.] | Root Length [cm] |
---|---|---|---|---|---|---|
HR1 | 90 a | 2.1 ± 1.1 a | 2.51 ± 1.8 a | 72 a | 7.2 ± 3.7 a | 1.17 ± 0.6 a |
HR2 | 94 a | 2.2 ± 1.1 a | 1.30 ± 1.2 b | 58 b | 7.2 ± 3.7 a | 0.61 ± 0.3 c |
HR3 | 82 a | 2.1 ± 1.1 a | 2.07 ± 1.7 ab | 50 c | 4.2 ± 3.4 b | 0.56 ± 0.6 c |
HR4 | 90 a | 1.9 ± 1.3 a | 2.33 ± 1.7 a | 72 a | 6.1 ± 3.6 a | 0.78 ± 0.5 b |
HR5 | 84 a | 2.1 ± 1.3 a | 2.02 ± 1.6 ab | 50 c | 3.1 ± 3.3 b | 0.40 ± 0.3 d |
Significance | n.s. | n.s. | ** | * | ** | ** |
Components | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 |
---|---|---|---|---|---|---|---|---|---|
MS salts and vitamins 1 | x | x | x | x | x | x | x | x | x |
Sucrose (mL L−1) | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 |
Maltose (mL L−1) | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
IAA 2 (mL L−1) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
BAP 3 (mL L−1) | 1 | - | - | 2 | - | - | 0.5 | 0.5 | - |
mT 4 (ml L−1) | - | 1 | - | - | 2 | - | 0.5 | - | 0.5 |
TDZ 5 (ml L−1) | - | - | 1 | - | - | 2 | - | 0.5 | 0.5 |
Agar (g L−1) | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
pH | 5.8 |
Components | HR1 | HR2 | HR3 | HR4 | HR5 |
---|---|---|---|---|---|
MS salts and vitamins 1 | x | x | x | x | x |
Sucrose (mL L−1) | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 |
Maltose (mL L−1) | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
IAA 2 (mL L−1) | 1 | 2 | - | - | 0.5 |
IBA 3 (mL L−1) | - | - | 1 | 2 | 0.5 |
Agar (g L−1) | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
pH | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacuzzi, N.; Salamone, F.; Farruggia, D.; Tortorici, N.; Vultaggio, L.; Tuttolomondo, T. Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop. Plants 2023, 12, 2877. https://doi.org/10.3390/plants12152877
Iacuzzi N, Salamone F, Farruggia D, Tortorici N, Vultaggio L, Tuttolomondo T. Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop. Plants. 2023; 12(15):2877. https://doi.org/10.3390/plants12152877
Chicago/Turabian StyleIacuzzi, Nicolò, Francesco Salamone, Davide Farruggia, Noemi Tortorici, Lorena Vultaggio, and Teresa Tuttolomondo. 2023. "Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop" Plants 12, no. 15: 2877. https://doi.org/10.3390/plants12152877
APA StyleIacuzzi, N., Salamone, F., Farruggia, D., Tortorici, N., Vultaggio, L., & Tuttolomondo, T. (2023). Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop. Plants, 12(15), 2877. https://doi.org/10.3390/plants12152877