Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii
Abstract
:1. Introduction
2. Results
2.1. Relative Water Content of Leaves and Above-Ground Biomass of Cotton Plants
2.2. Soluble Sugar, Soluble Protein, Nitrogen, and Tannin
2.3. Aphid Life History Parameters
2.4. Changes in Metabolic Enzyme Activity of Aphids
2.5. Aphid Feeding Behaviors
3. Discussion
4. Materials and Methods
4.1. Host Plants and Drought Treatments
4.2. Aphids
4.3. Relative Water Content of Leaves and Above-Ground Dry Mass of Plants
4.4. Soluble Sugar, Soluble Protein, N, and Tannin Determination
4.5. Effects of Drought Treatments on Aphid Life History, Population Abundance, and Changes in Metabolic Enzyme Levels
4.6. Aphid Feeding Behaviors
4.7. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.; Rico-Medina, A.; Cao-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Gely, C.; Laurance, S.; Stork, N.E. How do herbivorous insects respond to drought stress in trees? Biol. Rev. 2020, 95, 434–448. [Google Scholar] [CrossRef]
- Covarrubias, A.A.; Reyes, J.L. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ. 2010, 33, 481–489. [Google Scholar] [CrossRef]
- Xie, H.; Shi, J.; Shi, F.; Xu, H.; He, K.; Wang, Z. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. J. Exp. Bot. 2020, 71, 2713–2722. [Google Scholar] [CrossRef]
- Huberty, A.F.; Denno, R.F. Plant water stress and its consequences for herbivorous insects: A new synthesis. Ecol. 2004, 85, 1383–1398. [Google Scholar] [CrossRef]
- Seleiman, M.F.; AI-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants-Basel 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Archer, T.L.; Bynum, E.D., Jr.; Onken, A.B.; Wendt, C.W. Influence of water and nitrogen fertilizer on biology of the Russian wheat aphid (Homoptera: Aphididae) on wheat. Crop Prot. 1995, 14, 165–169. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, H.; Yuan, L.; Wei, J.; Zhang, W.; Ge, F. Plant stomatal closure improves aphid feeding under elevated CO2. Global Change Biol. 2015, 21, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- Showler, A.T.; Moran, P.J. Effects of drought stressed cotton, Gossypium hirsutum L.; on beet armyworm, Spodoptera exigua (Hübner) oviposition, and larval feeding preferences and growth. J. Chem. Ecol. 2003, 29, 1997. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plantarum 2018, 162, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Sun, Y.; Peng, X.; Wang, Q.; Marvin, H.; Ge, F. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. J. Exp. Bot. 2016, 67, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.; Zhu, Y.M.; Chen, Y.; Qiu, C.W.; Zhu, S.J.; Wu, F.B. Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiol. Plant. 2019, 165, 343–355. [Google Scholar] [CrossRef]
- Zhao, M.H.; Zheng, X.X.; Liu, J.P.; Zeng, Y.Y.; Wu, G. Time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens in response to elevated CO2. Environ. Pollut. 2020, 265, 114767. [Google Scholar] [CrossRef]
- White, T.C.R. The abundance of invertebrate herbivory in relation to the availability of nitrogen in stressed food plants. Oecol. 1984, 63, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Price, P.W. The plant vigor hypothesis and herbivore attack. Oikos 1991, 62, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Leybourne, D.J.; Preedy, K.F.; Valentine, T.A.; Bos, J.I.B.; Karley, A.J. Drought has negative consequences on aphid fitness and plant vigor: Insights from a meta-analysis. Ecol. Evol. 2021, 11, 11915–11929. [Google Scholar] [CrossRef] [PubMed]
- Mewis, I.; Khan, M.A.M.; Glawischnig, E.; Schreiner, M.; Ulrichs, C. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS ONE 2012, 7, e48661. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.; Jackson, G.E.; Grace, J. The response of aphids to plant water stress-the case of Myzus persicae and Brassica oleracea var. capitata. Entomol. Exp. Appl. 2012, 142, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.; Wright, D.J.; Rossiter, J.T.; Staley, J.T. Aphids in a changing world: Testing the plant stress, plant vigour and pulsed stress hypotheses. Agr. Forest Entomol. 2012, 14, 177–185. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Taxonomic issues. In Aphids as Crop Pests, 2nd ed.; Emden, H.F.V., Harrington, R., Eds.; Cromwell Press: Trowbridge, UK, 2017; p. 11. [Google Scholar]
- Reinbold, C.; Herrbach, E.; Brault, V. Posterior midgut and hindgut are both sites of acquisition of Cucurbit aphid-borne yellows virus in Myzus persicae and Aphis gossypii. J. Gen. Virol. 2003, 84, 3473–3484. [Google Scholar] [CrossRef]
- Kalleshwaraswamy, C.M.; Kumar, N.K.K. Transmission efficiency of Papaya ringspot virus by three aphid species. Phytopathol. 2008, 98, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, C.; Desneux, N.; Lu, Y. Impact of temperature on survival rate, fecundity, and feeding behavior of two aphids, Aphis gossypii and Acyrthosiphon gossypii, when reared on cotton. Insects 2021, 12, 565. [Google Scholar] [CrossRef]
- Zou, J.; Hu, W.; Li, Y.; He, J.; Zhu, H.; Zhou, Z. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J. Integr. Agr. 2020, 19, 495–508. [Google Scholar] [CrossRef]
- Parimala, P.; Muthuchelian, K. Physiological response of non-Bt and Bt cotton to short-term drought stress. Photosynthetica 2010, 48, 630–634. [Google Scholar] [CrossRef]
- Megha, B.R.; Mummigatti, U.V.; Chimmad, V.P.; Aladakatti, Y.R. Evaluation of hirsutum cotton genotypes for water stress using Peg-6000 by slanting glass plate technique. Int. J. Pure and App. Biosci. 2017, 5, 740–750. [Google Scholar] [CrossRef]
- Sconiers, W.B.; Eubanks, M.D. Not all droughts are created equal? the effects of stress severity on insect herbivore abundance. Arthropod-Plant Inte. 2017, 11, 45–60. [Google Scholar] [CrossRef]
- Fanti, S.C.; Gualtieri De Andrade Perez, S.C.J. Water stress and accelerated aging effects on the viability of osmoconditioned Chorisia speciosa seeds. Pesq. Agropec. Bras. 2003, 38, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Song, S. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiol. Bioch. 2013, 68, 61–70. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Q.; Sun, R.; Zhang, B. Deep sequencing reveals important roles of micrornas in response to drought and salinity stress in cotton. J. Exp. Bot. 2015, 66, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Amjid, M.W.; Malik, T.A.; Shah, M.K.N.; Saleem, M.A.; Sajjad, Y.; Mehmood, R. Inheritance pattern of physio-morphological traits of cotton under drought stress. Sci. Lett. 2016, 4, 51–59. [Google Scholar]
- Khederi, S.J.; Khanjani, M.; Hoseini, M.A.; Hoseininia, A.; Safari, H. Effects of drought stress and super absorbent polymer on susceptibility of pepper to damage caused by Aphis gossypii Glover (Hem.: Aphididae). J. Crop Prot. 2015, 5, 49–57. [Google Scholar] [CrossRef]
- Inbar, M.; Doostdar, H.; Mayer, R.T. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 2003, 94, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Bisigato, A.J.; Saín, C.L.; Campanella, M.V.; Cheli, G.H. Leaf traits, water stress, and insect herbivory: Is food selection a hierarchical process? Arthropod-Plant Inte. 2015, 9, 477–485. [Google Scholar] [CrossRef]
- Björkman, C. Interactive effects of host resistance and drought stress on the performance of a gall-making aphid living on Norway spruce. Oecol. 2000, 123, 223–231. [Google Scholar] [CrossRef]
- De Bruyn, L.; Scheirs, J.; Verhagen, R. Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass. Oecol. 2002, 130, 594–599. [Google Scholar] [CrossRef]
- Staley, J.T.; Mortimer, S.R.; Masters, G.J.; Morecroft, M.D.; Bron, V.K.; Taylor, M.E. Drought stress differentially affects leaf-mining species. Ecol. Entomol. 2006, 31, 460–469. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; Jermy, T.; van Loon, J.J.A. Insect-Plant Biology: From Physiology to Evolution; Chapman & Hall Press: London, UK, 1998. [Google Scholar]
- Fischer, K.; Fiedler, F.K. Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: Evidence against the nitrogen limitation hypothesis. Oecol. 2000, 124, 235–241. [Google Scholar] [CrossRef]
- Chen, F.J.; Wu, G.; Ge, F. Impacts of elevated CO2 on the population abundance and reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. J. Appl. Entomol. 2004, 128, 723–730. [Google Scholar] [CrossRef]
- Ma, K.; Tang, Q.; Liang, P.; Xia, J.; Gao, X. Toxicity and sublethal effects of two plant allelochemicals on the demographical traits of cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). PLoS ONE 2019, 14, e0221646. [Google Scholar] [CrossRef]
- Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 2002, 156, 145–169. [Google Scholar] [CrossRef]
- Wu, G.; Chen, F.J.; Xiao, N.W.; Ge, F. Influences of elevated CO2 and pest damage on the allocation of plant defense compounds in Bt-transgenic cotton and enzymatic activity of cotton aphid. Insect Sci. 2011, 18, 401–408. [Google Scholar] [CrossRef]
- Francis, F.; Vanhaelen, N.; Haubruge, E. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 2005, 58, 166–174. [Google Scholar] [CrossRef]
- Yang, S.; Wu, H.; Xie, J.; Rantala, M.J. Depressed performance and detoxification enzyme activities of Helicoverpa armigera fed with conventional cotton foliage subjected to methyl jasmonate exposure. Entomol. Exp. Appl. 2013, 147, 186–195. [Google Scholar] [CrossRef]
- Jakobs, R.; Schweiger, R.; Müller, C. Aphid infestation leads to plant part-specific changes in phloem sap chemistry, which may indicate niche construction. New Phyt. 2018, 221, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, M.; Bale, J.S.; Newbury, H.J.; Lind, R.J.; Pritchard, J. A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid (Rhopalosiphum padi), which is associated with dehydration and reduced performance. J. Insect Physiol. 2009, 55, 758–765. [Google Scholar] [CrossRef]
- Nalam, V.J.; Keeretaweep, J.; Sarowar, S.; Shah, J. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. The Plant Cell 2012, 24, 1643–1653. [Google Scholar] [CrossRef] [Green Version]
- Tjallingii, W.F.; Esch, T.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, H.; Ge, F. Plant-aphid interactions under elevated CO2: Some cues from aphid feeding behavior. Front. Plant Sci. 2016, 7, 502. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.H.; Wu, J.; Zhang, Z.F.; Liu, T.X. Phloem nutrition of detached cabbage leaves varies with leaf age and influences performance of the green peach aphid, Myzus persicae. Entomol. Exp. Appl. 2018, 166, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Han, J.M.; Lei, Z.; Zhang, Y.; Yi, X.; Zhang, W.F.; Zhang, Y.L. Drought introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. Physiol. Plantarum 2018, 166, 873–887. [Google Scholar] [CrossRef]
- Kulkarni, M.; Schneider, B.; Raveh, E.; Tel-Zur, N. Leaf anatomical characteristics and physiological responses to short-term drought in Ziziphus mauritiana (Lamk.). Sci. Hortic. 2010, 124, 316–322. [Google Scholar] [CrossRef]
- Barrs, H.D.; Weatherley, P.E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Xu, L.; Hua, X.; Tang, Y.; He, G.; Cao, Y.; Feng, Y.; Yuan, S.; Ming, J. Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Front. Plant Sci. 2017, 8, 1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TWOSEX-MSChart:A Computer Program for the Age Stage, Two-Sex Life Table Analysis. National Chung Hsing University: Taichung, Taiwan, 2022. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 May 2022).
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sinica 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chi, H. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Turkish J. Agric. For. 2012, 61, 37–45. [Google Scholar]
Values | PEG-6000 Concentration | ||
---|---|---|---|
0% (52) | 1% (35) | 3% (35) | |
Nymph (d) | 5.49 ± 0.16 b | 5.67 ± 0.15 b | 6.37 ± 0.17 a |
Adult longevity (d) | 33.60 ± 0.64 a | 27.97 ± 1.19 b | 26.97 ± 0.63 b |
APOP (d) | 0.43 ± 0.12 a | 0.13 ± 0.08 b | 0.13 ± 0.06 b |
Fecundity (nymphs per adult female) | 52.66 ± 2.07 a | 34.40 ± 2.67 b | 25.90 ± 1.45 c |
Population Parameters | PEG-6000 Concentration | ||
---|---|---|---|
0% (52) | 1% (35) | 3% (35) | |
Intrinsic rate of increase (r) (d−1) | 0.28 ± 0.01 a | 0.27 ± 0.01 a | 0.24 ± 0.01 b |
Finite rate (λ) (d−1) | 1.33 ± 0.01 a | 1.32 ± 0.01 a | 1.27 ± 0.01 b |
Net reproduction rate (R0) (offspring) | 47.60 ± 2.83 a | 29.49 ± 3.03 b | 22.20 ± 1.96 c |
Mean generation time (T) (d) | 13.66 ± 0.38 a | 12.3 ± 0.33 b | 13.02 ± 0.34 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, C.; Li, H.; Gao, Y.; Yang, Y.; Lu, Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii. Plants 2023, 12, 2886. https://doi.org/10.3390/plants12152886
Liu J, Wang C, Li H, Gao Y, Yang Y, Lu Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii. Plants. 2023; 12(15):2886. https://doi.org/10.3390/plants12152886
Chicago/Turabian StyleLiu, Jinping, Chen Wang, Huatong Li, Yu Gao, Yizhong Yang, and Yanhui Lu. 2023. "Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii" Plants 12, no. 15: 2886. https://doi.org/10.3390/plants12152886