Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies
Abstract
:1. Introduction
2. Results
2.1. Ploidy Levels in Seedling Progenies of Polyploid Chinese Cherry
2.2. Karyotype Characteristics of Polyploid Chinese Cherry
2.3. rDNA Chromosomal Distribution in Polyploid Chinese Cherry
2.4. GISH Analysis between Chinese Cherry and Cerasus Diploid Relatives
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Chromosome Preparation
4.2. Probe Labeling and Fluorescence In Situ Hybridization
4.3. Karyotype Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Peer, Y.V.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Bodt, S.D.; Maere, S.; Peer, Y.V.D. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 2005, 20, 591–597. [Google Scholar] [PubMed]
- Dunham, M.J.; Badrane, H.; Ferea, T.; Adams, J.; Brown, P.O.; Rosenzweig, F.; Botstein, D. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2002, 99, 16144–16149. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, A.C.; Chun, H.J.E.; Grant, A.; Otto, S.P. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet. 2006, 2, e145. [Google Scholar] [CrossRef] [PubMed]
- Scattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S.; Tate, J.A. Advances in the study of polyploidy since Plant speciation. New Phytol. 2003, 161, 173–191. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef]
- Levin, D.A. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Yü, D.J.; Lu, L.T.; Gu, C.Z.; Li, C.L.; Chen, S.H. Rosaceae (3), Amygdaloideae. In Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1986. [Google Scholar]
- Dong, Y.; Liu, X. Crops and Their Wild Relatives in China (Vol. Fruit Crops); China Agricultural Press: Beijing, China, 2008; pp. 37–48. [Google Scholar]
- Liu, C.; Liu, M. The Seed Relics Identification of Houma Shaanxi Copper Casting Sites; Cultural Relic Press: Beijing, China, 1993; pp. 134–136. [Google Scholar]
- Oldén, E.J.; Nybom, N.J.H. On the origin of Prunus cerasus L. Hereditas 2010, 59, 327–345. [Google Scholar] [CrossRef]
- Horvath, A.; Zanetto, A.; Christmann, H.; Laigret, F.; Tavaud, M. Origin of sour cherry (Prunus cerasus L.) genomes. Acta Hortic. 2008, 795, 131–136. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.M.; Zhang, J.; Chen, T.; Chen, Q.; Tang, H.R.; Wang, X.R. Ploidy level of Chinese cherry (Cerasus pseudocerasus Lindl.) and comparative study on karyotypes with four Cerasus species. Sci. Hortic. 2018, 232, 46–51. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.R.; Pan, J.S.; Zheng, K.W. Studies on karyotype on drupe species in Rosaceae. J. Laiyang Agric. Col. 1992, 9, 123–129. [Google Scholar]
- Luo, Z.W.; Zhang, R.M.; Kearsey, M.J. Theoretical basis for genetic linkage analysis in autotetraploid species. Proc. Natl. Acad. Sci. USA 2004, 101, 7040–7045. [Google Scholar] [CrossRef]
- Lavia, G.I.; Ortiz, A.M.; Robledo, G.; Fernández, A.; Seijo, G. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Ann. Bot. 2011, 108, 103. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, L.L.; Ruan, X.A.; Chen, D.J.; Zhu, A.D.; Chen, C.L.; Bertrand, D.; Jiao, W.B.; Hao, B.H.; Lyon, M.P.; et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 2013, 45, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.C.; Sousa, S.M.; Vale, A.A.; Pierre, P.M.O.; Franco, A.L.; Campos, J.M.S.; Vieira, R.; Viccini, L. Lippia alba (Verbenaceae): A new tropical autopolyploid complex. Am. J. Bot. 2014, 101, 1002–1012. [Google Scholar] [CrossRef]
- Liu, B.; Poulsen, E.G.; Davis, T.M. Insight into octoploid strawberry (Fragaria) subgenome composition revealed by GISH analysis of pentaploid hybrids. Genome 2016, 59, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nan, H.; Chen, Q.; He, W.; Zhang, L.; Wang, X.R.; Tang, H.R. Genomic in situ hybridization analysis between Rubus coreanus and its relatives in Rubus (Sect. Idaeobatus). Plant Biosyst. 2016, 150, 401–404. [Google Scholar] [CrossRef]
- Chester, M.; Leitch, A.R.; Soltis, P.S.; Soltis, D.E. Review of the application of modern cytogenetyic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridization). Genes 2010, 1, 166–192. [Google Scholar] [CrossRef]
- Boff, T.; Schifino-Wittmann, M.T. Segmental allopolyploidy and paleopolyploidy in species of Leucaena Benth: Evidence from meiotic behaviour analysis. Hereditas 2003, 138, 27–35. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Fu, H.Q.; Zhang, J.; Chen, T.; Sun, B.; Luo, Y.; Zhang, Y.; Tang, H.R.; Wang, X.R. Genome affinity in Rubus (Rosaceae) inferred from meiotic chromosome pairing of sixteen wild and cultivated bramble resources. Indian J. Genet. Plant Br. 2018, 78, 496–506. [Google Scholar]
- Garcia, S.; Garnatje, T.; Kovařík, A. Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma 2012, 121, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Davis, T.M. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol. 2011, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Schneeweiss, H.; Schneeweiss, G.M.; Stuessy, T.F.; Mabuchi, T.; Park, J.M.; Jang, C.G.; Sun, B.Y. Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol. 2007, 174, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Maghuly, F.; Schmoellerl, B.; Temsch, E.M.; Laimer, M. Genome size, karyotyping and FISH physical mapping of 45S and 5S genes in two cherry rootstocks: Prunus subhirtella and Prunus incisa × serrula. J. Biotechnol. 2010, 149, 88–94. [Google Scholar] [CrossRef]
- Yamamoto, M. Recent progress on studies of chromosome observation in deciduous fruit trees. J. Japan Soc. Hort. Sci. 2012, 81, 305–313. [Google Scholar] [CrossRef]
- Tan, J.R.; Wang, J.; Luo, L.; Yu, C.; Xu, T.L.; Wu, Y.Y.; Cheng, T.R.; Wang, J.; Pan, H.T.; Zhang, Q.X. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity. Sci. Rep. 2017, 7, 15437. [Google Scholar] [CrossRef] [PubMed]
- Rho, I.R.; Hwang, Y.J.; Lee, H.I.; Lee, C.H.; Lim, K.B. Karyotype analysis using FISH (fluorescence in situ hybridization) in Fragaria. Sci. Hortic. 2012, 136, 95–100. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.R.; Chen, Q.; Zhang, L.; Tang, H.R.; Luo, Y.; Liu, Z.J. Phylogenetic insight into subgenera Idaeobatus and Malachobatus (Rubus, Rosaceae) inferring from ISH analysis. Mol. Cytogenet. 2015, 8, 11. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takada, N.; Yamamoto, T.; Terakami, S.; Shigeta, N.; Kubo, T.; Tominaga, S. Fluorescent staining and fluorescence in situ hybridization of rDNA of chromsomes in pear (Pyrus spp.). J. Japan Soc. Hort. Sci. 2012, 81, 35–40. [Google Scholar] [CrossRef]
- Lim, K.Y.; Leitch, I.J.; Leitch, A.R. Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus. Theor. Appl. Genet. 1998, 97, 1027–1033. [Google Scholar] [CrossRef]
- Mishima, M.; Ohmido, N.; Fukui, K.; Yahara, T. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 2002, 110, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Shimada, T.; Haji, T.; Mase, N.; Sato, Y. Physical mapping of the 18S ribosomal RNA gene of peach [Prunus persica (L.) Batsch] chromosomes by fluorescence in situ hybridization. Breed. Sci. 1999, 49, 49–51. [Google Scholar] [CrossRef]
- Corredor, E.; Roman, M.; Garcia, E.; Perera, E.; Arus, P.; Naranjo, T. Physical mapping of rDNA genes establishes the karyotype of Almond. Ann. Appl. Biol. 2004, 144, 219–222. [Google Scholar] [CrossRef]
- Roa, F.; Guerra, M. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol. Biol. 2012, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Galetti, P.M., Jr. Conservative distribution of 5S rDNA loci in Schizodon (Pisces, Anostomidae) chromosomes. Chromosome Res. 2000, 8, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Feng, Y.; Wang, Y.; Zhang, J.; Chen, Q.; Liu, Z.S.; Liu, C.L.; He, W.; Wang, H.; Yang, S.F.; et al. Accurate chromosome identification in the Prunus subgenus Cerasus (Prunus pseudocerasus) and its relatives by oligo-FISH. Int. J. Mol. Sci. 2022, 23, 13213. [Google Scholar] [CrossRef]
- Qu, M.M.; Li, K.P.; Han, Y.L.; Chen, L.; Li, Z.Y.; Han, Y.H. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet. Genome Res. 2018, 153, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.Y.; Werlemark, G.; Matyasek, R.; Bringlose, J.B.; Sieber, V.; Ei Mokadem, H.; Meynet, J.; Hemming, J.; Leitch, A.R.; Roberts, A.V. Evolutionay implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 2005, 94, 501–506. [Google Scholar] [CrossRef]
- Herklotz, V.; Kovarik, A.; Lunerova, J.; Lippitsch, S.; Groth, M.; Ritz, C.M. The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. Plant J. 2018, 94, 77–90. [Google Scholar] [CrossRef]
- Vozarova, R.; Herklotz, V.; Kovarik, A.; Tynkevich, Y.O.; Volkov, R.A.; Ritz, C.M.; Lunerova, J. Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front. Plant Sci. 2021, 12, 643548. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Lin, C.S.; De Jong, H.; Chang, S.B. Two reported cytotypes of the emergent orchid model species Erycina pusilla are two different species. Euphytica 2017, 213, 233. [Google Scholar] [CrossRef]
- Salesses, G. Stuii Cito Logi la Prunus I Speciile Sectici Euprunus. Ann. Amelior. Plant. 1970, 20, 383–388. [Google Scholar]
- Jiang, J.M. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019, 27, 153–165. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhang, J.; Feng, Y.; Chen, Q.; Liu, Z.S.; Liu, C.L.; He, W.; Wang, H.; Yang, S.F.; et al. Comparative analysis of transposable elements and the identification of candidate centromeric elements in the Prunus subgenus Cerasus and its relatives. Genes 2022, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Chen, T.; Chen, Q.; Wang, L.; Liu, Z.S.; Wang, H.; Xie, R.; He, W.; Liu, C.L.; et al. Evolution of Rosaceae plastomes highlights unique Cerasus diversification and independent origins of fruiting cherry. Front. Plant. Sci. 2021, 12, 736053. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Q.; Zhang, J.; Wang, Y.; Wang, H.; Zhang, Y.; Luo, Y.; Tang, H.R.; Wang, X.R. Phylogeography of 912 cherry accessions insight into independent origins of fruiting cherries and domestication footprints of cultivated Chinese cherry (Prunus pseudocerasus Lindl.). Plants 2023, 12, 2258. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q. Application on DNA Molecular Markers Technology in Plant Study; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Zhang, D.M.; Sang, T. Physical mapping of ribosomal RNA genes in Peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: Implications for phylogeny and concerted evolution. Am. J. Bot. 1999, 86, 735–740. [Google Scholar] [CrossRef]
- Fukui, K.; Kamisugi, Y.K.; Sakai, T. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 1994, 37, 105–111. [Google Scholar] [CrossRef]
- Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for centromeric position on chromosomes. Hereditas 1964, 52, 201–220. [Google Scholar] [CrossRef]
- Stebbins, G.L. Chromosomal Evolution in Higher Plants; Edward Arnold Ltd.: London, UK, 1971. [Google Scholar]
Code | Locality | Number | Parental Trees (2n) | Self- and Open-Pollinated Progeny Seeds (2n) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bagged Flowers | Seeds | 4x = 32 | 4x + 1 = 33 | 5x = 40 | 6x − 1 = 47 | 6x = 48 | 6x + 1 = 49 | |||
Self-pollinated | ||||||||||
MY3 | Miyi, Sichuan | 14 | 32 | ND | 22/5 | - | - | - | - | - |
XC1 | Xichang, Sichuan | 14 | NA | 4x = 32 | 8/3 | 1/1 | 1/1 | - | - | - |
XC2 | 16 | 36 | ND | 15/11 | - | - | - | - | - | |
MZ3 | Mengzi, Yunnan | 16 | 36 | ND | 23/3 | - | - | - | - | - |
AQ3 | Anqiu, Shandong | 11 | 9 | ND | 35/3 | - | - | - | - | - |
BJ7 | Bijie, Guizhou | 29 | 16 | 4x = 32 | 3/2 | - | 1/1 | - | - | - |
TH2 | Taihe, Anhui | 26 | 13 | 4x = 32 | 1/1 | - | - | 1/1 | - | - |
NY1 | Nayong, Yunnan | 17 | 40 | 4x = 32 | 24/6 | 3/1 | - | - | 13/1 | - |
PD3 | Puding, Yunnan | 13 | 25 | 6x = 48 | - | - | 15/4 | 65/9 | 4/1 | |
Open-pollinated | ||||||||||
BZ * | Bazhong, Sichuan | NA | NA | 4x = 32 | 164/32 | - | 40/6 | - | 6/1 | - |
LY4 | Luoyang, He’nan | NA | NA | 4x = 32 | 12/7 | - | 4/4 | - | 1/1 | - |
Code | Karyotype Formula | Relative Length Constitution | As.K (%) | Lc/Sc | MAR | Type |
---|---|---|---|---|---|---|
MY3 | 2n = 4x = 32 = 24 m (4SAT) + 8 sm | 4L + 8M2 + 16M1 + 4S | 65.82 | 2.16 | 1.43 | 1B |
MZ3 | 2n = 4x = 32 = 24 m + 8sm | 4L + 8M2 + 20M1 | 58.56 | 2.10 | 1.43 | 1B |
NY1 | 2n = 4x = 32 = 24 m (8SAT) + 8 sm | 4L + 8M2 + 16M1 + 4S | 59.04 | 2.32 | 1.46 | 1B |
BZ | 2n = 4x = 32 = 24 m (8SAT) + 8 sm | 4L + 8M2 + 20M1 | 57.82 | 2.01 | 1.38 | 1B |
LY4 | 2n = 4x = 32 = 24 m (4SAT) + 8 sm | 4L + 8M2 + 16M1 + 4S | 58.55 | 2.39 | 1.40 | 1B |
PD3 | 2n = 6x = 48 = 42 m (6SAT) + 6 sm | 6L + 12M2 + 30M1 | 56.98 | 2.03 | 1.33 | 1B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, X.; Feng, Y.; Wang, J.; Zhang, J.; Liu, Z.; Wang, H.; Chen, T.; He, W.; Wu, Z.; et al. Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies. Plants 2023, 12, 3116. https://doi.org/10.3390/plants12173116
Wang Y, Li X, Feng Y, Wang J, Zhang J, Liu Z, Wang H, Chen T, He W, Wu Z, et al. Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies. Plants. 2023; 12(17):3116. https://doi.org/10.3390/plants12173116
Chicago/Turabian StyleWang, Yan, Xueou Li, Yan Feng, Juan Wang, Jing Zhang, Zhenshan Liu, Hao Wang, Tao Chen, Wen He, Zhiwei Wu, and et al. 2023. "Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies" Plants 12, no. 17: 3116. https://doi.org/10.3390/plants12173116
APA StyleWang, Y., Li, X., Feng, Y., Wang, J., Zhang, J., Liu, Z., Wang, H., Chen, T., He, W., Wu, Z., Lin, Y., Zhang, Y., Li, M., Chen, Q., Zhang, Y., Luo, Y., Tang, H., & Wang, X. (2023). Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies. Plants, 12(17), 3116. https://doi.org/10.3390/plants12173116