Assessing the Potential Distribution of Oxalis latifolia, a Rapidly Spreading Weed, in East Asia under Global Climate Change
Abstract
:1. Introduction
2. Results
2.1. Contribution of Bioclimatic Variables and Evaluation of Model Performance
2.2. Predicting the Distribution of O. latifolia under Global Climate Change
2.3. Habitat Suitability Index and Future Potential Habitats in East Asia
3. Discussion
4. Materials and Methods
4.1. Global Occurrence Points
4.2. Environmental Variables
4.3. Model Development
4.4. Model Evaluation and Validation
4.5. Prediction of the Potential Habitat and Habitat Expansion of O. latifolia in East Asia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, G. A review of the biology and control of selected weed species in the genus Oxalis: O. stricta L., O. latifolia HBK and O. pes-caprae L. Crop Prot. 1987, 6, 355–364. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Royo-Esnal, A.; López, M.L. Control of Oxalis latifolia: A review and proposals for its improvement. Cien. Inv. Agr. 2008, 35, 121–136. [Google Scholar] [CrossRef]
- Everard, M.; Gupta, N.; Chapagain, P.S.; Shrestha, B.B.; Preston, G.; Tiwari, P. Can control of invasive vegetation improve water and rural livelihood security in Nepal? Ecosyst. Serv. 2018, 32, 125–133. [Google Scholar] [CrossRef]
- Esler, A. Some aspects of the autecology of Oxalis latifolia HBK. In Proceedings of the New Zealand Weed Control Conference, Christchurch, New Zealand, 3–5 July 1962; pp. 87–90. [Google Scholar]
- Holm, L.; Doll, J.; Holm, E.; Pancho, J.V.; Herberger, J.P. World Weeds: Natural Histories and Distribution; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Shrestha, B.B.; Shrestha, U.B.; Sharma, K.P.; Thapa-Parajuli, R.B.; Devkota, A.; Siwakoti, M. Community perception and prioritization of invasive alien plants in Chitwan-Annapurna Landscape, Nepal. J. Environ. Manag. 2019, 229, 38–47. [Google Scholar] [CrossRef]
- Atwal, B.; Gopal, R. Oxalis latifolia and its control by chemical and mechanical methods in hills. Indian J. Weed Sci. 1972, 4, 74–80. [Google Scholar]
- Thomas, P. The effect of Oxalis latifolia competition in maize. S. Afr. J. Plant Soil 1991, 8, 132–135. [Google Scholar] [CrossRef]
- Bradley, B.A.; Blumenthal, D.M.; Wilcove, D.S.; Ziska, L.H. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef]
- Jackson, D. A growth study of Oxalis latifolia HBK. N. Z. J. Sci. 1960, 3, 600–609. [Google Scholar]
- Chawdhry, M.; Sagar, G. Control of Oxalis latifolia HBK and O, pes-caprae L. by defoliation. Weed Res. 1974, 14, 293–299. [Google Scholar] [CrossRef]
- Yang, Y.; Bian, Z.; Ren, W.; Wu, J.; Liu, J.; Shrestha, N. Spatial patterns and hotspots of plant invasion in China. Glob. Ecol. Conserv. 2023, 43, e02424. [Google Scholar] [CrossRef]
- Xu, H.; Qiang, S.; Genovesi, P.; Ding, H.; Wu, J.; Meng, L.; Han, Z.; Miao, J.; Hu, B.; Guo, J. An inventory of invasive alien species in China. NeoBiota 2012, 15, 1–26. [Google Scholar] [CrossRef]
- Ministry of the Environment; Ministry of Agriculture, Forestry and Fisheries. The List of Alien Species That May Have adverse Effects on Ecosystems in Japan. 2015. Available online: https://www.env.go.jp/naure/intro/2outline/iaslist.html (accessed on 23 March 2023). (In Japanese).
- Jeong, S.; Lee, J.; Kwon, Y.; Shin, H.; Kim, S.; Ahn, J.; Huh, T. Invasive Alien Plants in South Korea; Korea National Arboretum: Pocheon, Republic of Korea, 2016. [Google Scholar]
- Munkhnast, D.; Chuluunjav, C.; Urgamal, M.; Wong, L.J.; Pagad, S. GRIIS Checklist of Introduced and Invasive Species—Mongolia. GRIIS 2020. Available online: https://www.gbif.org/dataset/ca55b876-88ef-44a1-b752-c38977af7d2f (accessed on 23 March 2023).
- Ahmad, R.; Khuroo, A.A.; Hamid, M.; Charles, B.; Rashid, I. Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers. Conserv. 2019, 28, 2319–2344. [Google Scholar] [CrossRef]
- Araújo, M.B.; Anderson, R.P.; Márcia Barbosa, A.; Beale, C.M.; Dormann, C.F.; Early, R.; Garcia, R.A.; Guisan, A.; Maiorano, L.; Naimi, B. Standards for distribution models in biodiversity assessments. Sci. Adv. 2019, 5, eaat4858. [Google Scholar] [CrossRef]
- Rahimian Boogar, A.; Salehi, H.; Pourghasemi, H.R.; Blaschke, T. Predicting habitat suitability and conserving Juniperus spp. habitat using SVM and maximum entropy machine learning techniques. Water 2019, 11, 2049. [Google Scholar] [CrossRef]
- Bosso, L.; De Conno, C.; Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manag. 2017, 60, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Sharifian, S.; Mortazavi, M.S.; Nozar, S.L.M. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Environ. Sci. Pollut. Res. 2023, 30, 75300–75313. [Google Scholar] [CrossRef]
- Adhikari, P.; Jeon, J.-Y.; Kim, H.W.; Shin, M.-S.; Adhikari, P.; Seo, C. Potential impact of climate change on plant invasion in the Republic of Korea. J. Ecol. Environ. 2019, 43, 36. [Google Scholar] [CrossRef]
- Adhikari, P.; Lee, Y.-H.; Park, Y.-S.; Hong, S.-H. Assessment of the spatial invasion risk of intentionally introduced alien plant species (IIAPS) under environmental change in South Korea. Biology 2021, 10, 1169. [Google Scholar] [CrossRef]
- López-Tirado, J.; Gonzalez-Andújar, J.L. Spatial weed distribution models under climate change: A short review. PeerJ 2023, 11, e15220. [Google Scholar] [CrossRef]
- Nazarenko, L.S.; Tausnev, N.; Russell, G.L.; Rind, D.; Miller, R.L.; Schmidt, G.A.; Bauer, S.E.; Kelley, M.; Ruedy, R.; Ackerman, A.S. Future climate change under SSP emission scenarios with GISS-E2. 1. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002871. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Midgley, G.F. 12 Will Climate Change Promote Alien Plant Invasions? Ecol. Stud. 2007, 193, 197. [Google Scholar]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Adhikari, P.; Jeon, J.-Y.; Kim, H.W.; Oh, H.-S.; Adhikari, P.; Seo, C. Northward range expansion of southern butterflies according to climate change in South Korea. J. Clim. Change 2020, 11, 643–656. [Google Scholar] [CrossRef]
- Kim, H.W.; Adhikari, P.; Chang, M.H.; Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals 2021, 11, 2185. [Google Scholar] [CrossRef]
- Hong, S.H.; Lee, Y.H.; Lee, G.; Lee, D.-H.; Adhikari, P. Predicting impacts of climate change on northward range expansion of invasive weeds in South Korea. Plants 2021, 10, 1604. [Google Scholar] [CrossRef]
- Adhikari, P.; Lee, Y.-H.; Poudel, A.; Lee, G.; Hong, S.-H.; Park, Y.-S. Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology 2023, 12, 84. [Google Scholar] [CrossRef]
- Adhikari, P.; Kim, B.-J.; Hong, S.-H.; Lee, D.-H. Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea. Sci. Rep. 2022, 12, 3300. [Google Scholar] [CrossRef]
- Vale, C.G.; Tarroso, P.; Brito, J.C. Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Divers. Distrib. 2014, 20, 20–33. [Google Scholar] [CrossRef]
- Adhikari, P.; Lee, Y.H.; Poudel, A.; Hong, S.H.; Park, Y.-S. Global spatial distribution of Chromolaena odorata habitat under climate change: Random forest modeling of one of the 100 worst invasive alien species. Sci. Rep. 2023, 13, 9745. [Google Scholar] [CrossRef]
- Steen, V.; Sofaer, H.R.; Skagen, S.K.; Ray, A.J.; Noon, B.R. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? Ecol. Evol. 2017, 7, 8841–8851. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lin, H.; Feng, Q.; Jin, C.; Cao, A.; He, L. A new strategy for the prevention and control of Eupatorium adenophorum under climate change in China. Sustainability 2017, 9, 2037. [Google Scholar] [CrossRef]
- CABI. Oxalis latifolia (Sorrel); CABI International: Wallingford, UK, 2022. [Google Scholar]
- Royo, A. Study of the Biology and Ecology of Oxalis latifolia Kunth: Effect of Environmental and Cultural Factors on Its Etiology. Ph. D. Thesis, University of Navarra, Pamplona, Spain, 2004. [Google Scholar]
- Telenius, A.; Jonsson, C. Molluscs of the Gothenburg Natural History Museum (GNM); GBIF: Stockholm, Sweden, 2017. [Google Scholar]
- Batima, P.; Natsagdorj, L.; Gombluudev, P.; Erdenetsetseg, B. Observed climate change in Mongolia. Assess. Imp. Adapt. Clim. Change Work. Pap. 2005, 12, 1–26. [Google Scholar]
- Qin, J.; Su, B.; Tao, H.; Wang, Y.; Huang, J.; Jiang, T. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Front. Earth Sci. 2021, 15, 23–37. [Google Scholar] [CrossRef]
- Peng, S.; Wang, C.; Li, Z.; Mihara, K.; Kuramochi, K.; Toma, Y.; Hatano, R. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Sci. Rep. 2023, 13, 230. [Google Scholar] [CrossRef]
- Yu, I.; Jung, H.; Lee, D.-K.; Lee, S.-H.; Hong, S.-I. Multi-risk assessment due to global warming under the SSP climate scenario in the Republic of Korea. No. EGU23–5301. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. IPCC Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Iintergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Adhikari, P.; Park, S.-M.; Kim, T.-W.; Lee, J.-W.; Kim, G.-R.; Han, S.-H.; Oh, H.-S. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J. Asia Pac. Biodivers 2016, 9, 422–428. [Google Scholar] [CrossRef]
- Urban, M.C.; Bocedi, G.; Hendry, A.P.; Mihoub, J.-B.; Pe’er, G.; Singer, A.; Bridle, J.; Crozier, L.; De Meester, L.; Godsoe, W. Improving the forecast for biodiversity under climate change. Science 2016, 353, aad8466. [Google Scholar] [CrossRef] [PubMed]
- McDougall, K.L.; Lembrechts, J.; Rew, L.J.; Haider, S.; Cavieres, L.A.; Kueffer, C.; Milbau, A.; Naylor, B.J.; Nuñez, M.A.; Pauchard, A. Running off the road: Roadside non-native plants invading mountain vegetation. Biol. Invasions 2018, 20, 3461–3473. [Google Scholar] [CrossRef]
- Veloz, S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 2009, 36, 2290–2299. [Google Scholar] [CrossRef]
- Yi, Y.-j.; Zhou, Y.; Cai, Y.-p.; Yang, W.; Li, Z.-w.; Zhao, X. The influence of climate change on an endangered riparian plant species: The root of riparian Homonoia. Ecol. Indic. 2018, 92, 40–50. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hejazi, M.; Santos Da Silva, S.R.; Miralles-Wilhelm, F.; Kim, S.; Kyle, P.; Liu, Y.; Vernon, C.; Delgado, A.; Edmonds, J.; Clarke, L. Impacts of water scarcity on agricultural production and electricity generation in the Middle East and North Africa. Front. Environ. Sci. 2023, 11, 157. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.; Park, C.; Kim, S. Comparison of the results of climate change impact assessment between RCP8. 5 and SSP2 scenarios. In Proceedings of the American Geophysical Union (AGU) Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C. Future Global Climate: Scenario-Based Projections and Near-Term Information; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B.; Singh, I.H. Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (Sangai) using MaxEnt model. Environ. Monit. Assess 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Bosso, L.; Smeraldo, S.; Russo, D.; Chiusano, M.L.; Bertorelle, G.; Johannesson, K.; Butlin, R.K.; Danovaro, R.; Raffini, F. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 2022, 24, 3169–3187. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Shin, M.-S.; Seo, C.; Lee, M.; Kim, J.-Y.; Jeon, J.-Y.; Adhikari, P.; Hong, S.-B. Prediction of potential species richness of plants adaptable to climate change in the Korean Peninsula. J. Environ. Impact Assess. 2018, 27, 562–581. [Google Scholar]
- Adhikari, P.; Shin, M.-S.; Jeon, J.-Y.; Kim, H.W.; Hong, S.; Seo, C. Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. J. Ecol. Environ. 2018, 42, 36. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 24 October 2022).
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.; Aragón, P.; Lobo, J.M. Use of niche models in invasive species risk assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods. Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 2005, 14, 347–357. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
Variable | Variable Description | Units | Model Contribution (%) * |
---|---|---|---|
Bio1 | Annual mean temperature | °C | 35.23 |
Bio2 | Mean diurnal temperature range | °C | 1.46 |
Bio3 | Isothermality (BIO2/BIO7) (×100) | % | 30.08 |
Bio12 | Mean annual precipitation | mm | 24.24 |
Bio13 | Precipitation of wettest month | mm | 0.18 |
Bio14 | Precipitation of driest month | mm | 8.8 |
Countries | Total | SSP2-4.5 (%) | SSP5-8.5 (%) | |||
---|---|---|---|---|---|---|
Cell Number | 1970–2000 | 2041–2060 | 2081–2100 | 2041–2060 | 2081–2100 | |
China | 547,295 | 9.78 | 11.73 | 27.24 | 13.89 | 31.62 |
Chinese Taipei | 1832 | 95.09 | 88.05 | 99.45 | 90.28 | 100 |
Japan | 21,281 | 0.24 | 5.4 | 35.75 | 6.95 | 41.73 |
South Korea | 5589 | 0 | 9.82 | 77.29 | 15.89 | 80.73 |
North Korea | 7454 | 0 | 0 | 7.24 | 0 | 10.25 |
Mongolia | 106,265 | 0 | 0 | 0 | 0 | 0 |
Total a | 689,716 | 8.02 | 9.79 | 23.68 | 11.60 | 27.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, A.; Adhikari, P.; Na, C.S.; Wee, J.; Lee, D.-H.; Lee, Y.H.; Hong, S.H. Assessing the Potential Distribution of Oxalis latifolia, a Rapidly Spreading Weed, in East Asia under Global Climate Change. Plants 2023, 12, 3254. https://doi.org/10.3390/plants12183254
Poudel A, Adhikari P, Na CS, Wee J, Lee D-H, Lee YH, Hong SH. Assessing the Potential Distribution of Oxalis latifolia, a Rapidly Spreading Weed, in East Asia under Global Climate Change. Plants. 2023; 12(18):3254. https://doi.org/10.3390/plants12183254
Chicago/Turabian StylePoudel, Anil, Pradeep Adhikari, Chae Sun Na, June Wee, Do-Hun Lee, Yong Ho Lee, and Sun Hee Hong. 2023. "Assessing the Potential Distribution of Oxalis latifolia, a Rapidly Spreading Weed, in East Asia under Global Climate Change" Plants 12, no. 18: 3254. https://doi.org/10.3390/plants12183254
APA StylePoudel, A., Adhikari, P., Na, C. S., Wee, J., Lee, D.-H., Lee, Y. H., & Hong, S. H. (2023). Assessing the Potential Distribution of Oxalis latifolia, a Rapidly Spreading Weed, in East Asia under Global Climate Change. Plants, 12(18), 3254. https://doi.org/10.3390/plants12183254