Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance
Abstract
:1. Introduction
2. The Quest to Focus on Stomatal-Based Resistance in Plants against Pathogen
3. Natural Plant Structure Interacting with Pathogens during Invasion
4. Stomatal Exclusion in Plant–Fungi Interactions
5. Stomatal Response to Bacteria Invasion and Signaling Components
6. Hypersensitivity Reaction (HR), Stomatal Closure, and Pathogenesis
7. Molecular Mechanisms of Stomatal Response to Pathogens
8. ABA Response to Biotic and Abiotic Stresses during Stomatal Regulation
9. Pattern-Triggered Immunity (PTI) and Pathogen–Stomatal Interaction
10. Stomatal Closure: An Immediate Microbial Entry Barrier and Primary Response to an Array of Stress Condition
11. Stomatal Closure Mediated by Hormones and Ions during Stress
12. Relation among Ethylene, ABA, and Stomatal Closure
13. Signaling Mechanism in the Guard Cell during Pathogen Invasion
14. Stomata in Competitive Interactions with Plant Pathogens and Herbivores
15. Stomata Manipulation by Insects
16. Regulation of Temperature and Water Availability upon Herbivory Attack
17. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 2020, 10, 1975. [Google Scholar] [CrossRef]
- Ye, W.; Murata, Y. Microbe associated molecular pattern signaling in guard cells. Front. Plant Sci. 2016, 7, 583. [Google Scholar] [CrossRef] [PubMed]
- Uppalapati, S.R.; Ayoubi, P.; Weng, H.; Palmer, D.A.; Mitchell, R.E.; Jones, W.; Bender, C.L. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 2005, 42, 201–217. [Google Scholar] [CrossRef]
- An, S.Q.; Potnis, N.; Dow, M.; Vorhölter, F.J.; He, Y.Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2020, 44, 1–32. [Google Scholar] [CrossRef]
- Gudesblat, G.E.; Torres, P.S.; Vojnov, A.A. Xanthomonas Campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiol. 2009, 149, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Assmann, S.M.; Albert, R. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 2006, 4, e312. [Google Scholar] [CrossRef]
- Gudesblat, G.E.; Torres, P.S.; Vojno, A.A. Stomata and pathogens: Warfare at the gates. Plant Signal. Behav. 2009, 4, 1114–1116. [Google Scholar] [CrossRef]
- Kashtoh, H.; Baek, K.H. Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure. Plants 2021, 10, 2774. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Zhang, H.; Li, Y.; Niu, L.; Zhang, J.; Wang, W. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int. J. Mol. Sci. 2022, 23, 14824. [Google Scholar] [CrossRef]
- Postiglione, A.E.; Muday, G.K. The role of ROS homeostasis in ABA-induced guard cell signaling. Front. Plant Sci. 2020, 11, 968. [Google Scholar] [CrossRef]
- Takahashi, F.; Hanada, K.; Kondo, T.; Shinozaki, K. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr. Opin. Plant Biol. 2019, 51, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Chakradhar, T.; Reddy, R.A.; Chandrasekhar, T. Protein kinases and phosphatases in stress transduction: Role in crop improvement. In Plant Signaling Molecules; Woodhead Publishing: Sawston, UK, 2019; pp. 533–547. [Google Scholar]
- Patel, J.S.; Selvaraj, V.; Gunupuru, L.R.; Kharwar, R.N.; Sarma, B.K. Plant G-protein signaling cascade and host defense. 3 Biotech 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singla-Rastogi, M.; Charvin, M.; Thiébeauld, O.; Perez-Quintero, A.L.; Ravet, A.; Emidio-Fortunato, A.; Navarro, L. Plant small RNA species direct gene silencing in pathogenic bacteria as well as disease protection. BioRxiv 2019, 863902. [Google Scholar]
- Aoki, S.; Toh, S.; Nakamichi, N.; Hayashi, Y.; Wang, Y.; Suzuki, T.; Kinoshita, T. Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana. Sci. Rep. 2019, 9, 10054. [Google Scholar] [CrossRef]
- Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense against Abiotic and Biotic Stress. Front. Plant Sci. 2021, 12, 615114. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.; Tarkowski, Ł.P.; Van den Ende, W.; Bassham, D.C. Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci. 2019, 24, 413–430. [Google Scholar] [CrossRef]
- Kong, L.; Rodrigues, B.; Kim, J.H.; He, P.; Shan, L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Curr. Opin. Plant Biol. 2021, 63, 102051. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y. Stomata–pathogen interactions: Over a century of research. Trends Plant Sci. 2022, 27, 964–967. [Google Scholar] [CrossRef]
- Emlee, A.M.; Amri, C.N.A.C.; Midin, M.R. Comparative Study on Leaf Anatomy in Selected Garcinia Species in Peninsular Malaysia. Pertanika, J. Trop. Agric. Sci. 2023, 46, 687–705. [Google Scholar] [CrossRef]
- Moldenhauer, J.; Moerschbacher, B.M.; Van der Westhuizen, A.J. Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathol. 2006, 55, 469–474. [Google Scholar] [CrossRef]
- Oguchi, R.; Onoda, Y.; Terashima, I.; Tholen, D. Leaf anatomy and function. In The Leaf: A Platform for Performing Photosynthesis; Springer: Berlin/Heidelberg, Germany, 2018; pp. 97–139. [Google Scholar]
- Naqvi, S.A.H.; Wang, J.; Malik, M.T.; Umar, U.U.D.; Hasnain, A.; Sohail, M.A.; Shakeel, M.T.; Nauman, M.; Hassan, M.Z.; Fatima, M.; et al. Citrus canker—Distribution, taxonomy, epidemiology, disease cycle, pathogen biology, detection, and management: A critical review and future research agenda. Agronomy 2022, 12, 1075. [Google Scholar] [CrossRef]
- Nielsen, K.A.; Nicholson, R.L.; Carver, T.L.; Kunoh, H.; Oliver, R.P. First touch: An immediate response to surface recognition in conidia of Blumeria graminis. Physiol. Mol. Plant Pathol. 2000, 56, 63–70. [Google Scholar] [CrossRef]
- Nonomura, T.; Xu, L.; Wada, M.; Kawamura, S.; Miyajima, T.; Nishitomi, A.; Kakutani, K.; Takikawa, Y.; Matsuda, Y.; Toyoda, H. Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Sci. 2009, 176, 31–37. [Google Scholar] [CrossRef]
- Łaźniewska, J.; Macioszek, V.K.; Kononowicz, A.K. Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 2012, 78, 24–30. [Google Scholar] [CrossRef]
- Meng, Q.; Gupta, R.; Min, C.W.; Kwon, S.W.; Wang, Y.; Je, B.I.; Kim, Y.J.; Jeon, J.S.; Agrawal, G.K.; Rakwal, R.; et al. Proteomics of Rice—Magnaporthe oryzae interaction: What have we learned so far? Front. Plant Sci. 2019, 10, 1383. [Google Scholar] [CrossRef]
- Luo, S.; Coutinho, B.G.; Dadhwal, P.; Oda, Y.; Ren, J.; Schaefer, A.L.; Greenberg, E.P.; Harwood, C.S.; Tong, L. Structural basis for a bacterial Pip system plant effector recognition protein. Proc. Natl. Acad. Sci. USA 2021, 118, e2019462118. [Google Scholar] [CrossRef]
- Niks, R.E.; Rubiales, D. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 2002, 124, 201–216. [Google Scholar] [CrossRef]
- Kochman, J.K.; Brown, J.F. Development of the stem and crown rust fungi on leaves, sheaths, and peduncles of oats. Phytopath 1975, 65, 1404–1408. [Google Scholar] [CrossRef]
- Jacobs, T. Abortion of infection structures of wheat leaf rust in susceptible and partially resistant wheat genotypes. Euphytica 1990, 45, 81–86. [Google Scholar] [CrossRef]
- Meshram, S.; Gogoi, R.; Bashyal, B.M.; Kumar, A.; Mandal, P.K.; Hossain, F. Expression Analysis of Maize Genes during Bipolaris maydis Infection and Assessing Their Role in Disease Resistance and Symptom Development; NISCAIR-CSIR: New Delhi, India, 2020; pp. 82–93. [Google Scholar]
- Schauffler, G.P.; dos Anjos Verzutti Fonseca, J.; Di Piero, R.M. Defense mechanisms involved in the resistance of maize cultivars to Bipolaris maydis. Eur. J. Plant Pathol. 2022, 163, 269–277. [Google Scholar] [CrossRef]
- Meshram, S.; Gogoi, R.; Bashyal, B.M.; Kumar, A.; Mandal, P.K.; Hossain, F. Comparative Transcriptome Analysis of Fungal Pathogen Bipolaris maydis to Understand Pathogenicity Behavior on Resistant and Susceptible Non-CMS Maize Genotypes. Front. Microbiol. 2022, 13, 837056. [Google Scholar] [CrossRef] [PubMed]
- Sillero, J.C.; Rubiales, D. Histological characterization of resistance to Uromyces viciae-fabae in faba bean. Phytopathology 2002, 92, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Sillero, J.C. Uromyces viciae-fabae Haustorium Formation in Susceptible and Resistant Faba Bean Lines. Eur. J. Plant Pathol. 2003, 109, 71–73. [Google Scholar] [CrossRef]
- De Wit, P.J.G.M. A light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Neth. J. Plant Pathol. 1997, 83, 109–122. [Google Scholar] [CrossRef]
- Ye, W.; Munemasa, S.; Shinya, T.; Wu, W.; Ma, T.; Lu, J.; Kinoshita, T.; Kaku, H.; Shibuya, N.; Murata, Y. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proc. Natl. Acad. Sci. USA 2020, 117, 20932–20942. [Google Scholar] [CrossRef]
- Barsoum, M.; Sabelleck, B.D.; Spanu, P.; Panstruga, R. Rumble in the effector jungle: Candidate effector proteins in interactions of plants with powdery mildew and rust fungi. Crit. Rev. Plant Sci. 2019, 38, 255–279. [Google Scholar] [CrossRef]
- Kusch, S.; Qian, J.; Loos, A.; Kümmel, F.; Spanu, P.D.; Panstruga, R. Long-term and rapid evolution in powdery mildew fungi. Mol. Ecol. 2023. Early View. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef]
- Millet, Y.A.; Danna, C.H.; Clay, N.K.; Songnuan, W.; Simon, M.D.; Werck-Reichhart, D.; Ausubel, F.M. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010, 22, 973–990. [Google Scholar] [CrossRef]
- Speth, E.B.; Melotto, M.; Zhang, W.; Assmann, S.M.; He, S.Y. Crosstalk in pathogen and hormonal regulation of guard cell signaling. In Signal Crosstalk in Plant Stress Responses; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 96–112. [Google Scholar]
- Chinchilla, D.; Boller, T.; Robatzek, S. Flagellin Signalling in Plant Immunity. Adv. Exp. Med. Biol. 2007, 598, 358–371. [Google Scholar]
- Lee, B.; Park, Y.S.; Lee, S.; Song, G.C.; Ryu, C.M. Bacterial RNAs activate innate immunity in Arabidopsis. New Phytol. 2016, 209, 785–797. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; He, S.Y. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annu. Rev. Phytopathol. 2008, 46, 101–122. [Google Scholar] [CrossRef]
- Arnaud, D.; Hwang, I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant 2015, 8, 566–581. [Google Scholar] [CrossRef]
- Leon-Kloosterziel, K.M.; Gil, M.A.; Ruijs, G.J.; Jacobsen, S.E.; Olszewski, N.E. Isolation and Characterization of Abscisic Acid-Deficient Arabidopsis Mutants at Two Loci. Plant J. 1996, 10, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Mustilli, A.C.; Merlot, S.; Vavasseur, A.; Fenzi, F.; Giraudat, J. Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. Plant Cell 2002, 12, 3089–3099. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. Plant Signal. Behav. 2021, 16, 1985860. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Requena, N.; Schaefer, P.; Brunner, F.; O’Connell, R.; Parker, J.E. Reprogramming of plant cells by filamentous plant-colonizing microbes. New Phytol. 2014, 204, 803–814. [Google Scholar] [CrossRef]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef]
- Merlot, S.; Mustilli, A.C.; Genty, B.; North, H.; Lefebvre, V.; Sotta, B.; Vavasseur, A.; Giraudat, J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002, 30, 601–609. [Google Scholar] [CrossRef]
- Acharya, B.R.; Jeon, B.W.; Zhang, W.; Assmann, S.M. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 2013, 200, 1049–1063. [Google Scholar] [CrossRef]
- Baranova, E.N.; Kurenina, L.V.; Smirnov, A.N.; Beloshapkina, O.O.; Gulevich, A.A. Formation of the hypersensitivity response due to the expression of FeSOD1 gene in tomato when it is inoculated with Phytophthora infestans. Russ. Agric. Sci. 2017, 43, 15–21. [Google Scholar] [CrossRef]
- Hu, C.H.; Wang, P.Q.; Zhang, P.P.; Nie, X.M.; Li, B.B.; Tai, L.; Chen, K.M. NADPH oxidases: The vital performers and center hubs during plant growth and signaling. Cells 2020, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Elmore, J.M.; Fuglsang, A.T.; Palmgren, M.G.; Staskawicz, B.J.; Coaker, G. RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack. PLoS. Biol. 2009, 7, e1000139. [Google Scholar] [CrossRef] [PubMed]
- Emi, T.; Kinoshita, T.; Shimazaki, K. Specific Binding of Vf14-3-3a Isoform to the Plasma Membrane H+-ATPase in Response to Blue Light and Fusicoccin in Guard Cells of Broad Bean. Plant Physiol. 2001, 125, 1115–1125. [Google Scholar] [CrossRef]
- Torres, P.S.; Malamud, F.; Rigano, L.A.; Russo, D.M.; Marano, M.R.; Castagnaro, A.P.; Zorreguieta, A.; Bouarab, K.; Dow, J.M.; Vojnov, A.A. Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol. 2007, 9, 2101–2109. [Google Scholar] [CrossRef]
- Allègre, M.; Daire, X.; Héloir, M.C.; Trouvelot, S.; Mercier, L.; Adrian, M.; Pugin, A. Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytol. 2007, 173, 832–840. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Zhang, Z. The role of vacuolar processing enzymes in plant immunity. Plant Signal. Behav. 2010, 5, 1565–1567. [Google Scholar] [CrossRef]
- Kakumanu, A.; Ambavaram, M.M.; Klumas, C.; Krishnan, A.; Batlang, U.; Myers, E.; Grene, R.; Pereira, A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012, 160, 846–867. [Google Scholar] [CrossRef]
- Jiang, F.; Hartung, W. Long-Distance Signalling of Abscisic Acid (ABA): The Factors Regulating the Intensity of the ABA Signal. J. Exp. Bot. 2007, 59, 37–43. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Monti, A. Deep Root Growth, ABA Adjustments and Root Water Uptake Response to Soil Water Deficit in Giant Reed. Ann. Bot. 2019, 124, 605–615. [Google Scholar] [CrossRef]
- Haworth, M.; Marino, G.; Cosentino, S.L.; Brunetti, C.; De Carlo, A.; Avola, G. Increased Free Abscisic Acid during Drought Enhances Stomatal Sensitivity and Modifies Stomatal Behaviour in Fast Growing Giant Reed (Arundo donax L.). Environ. Exp. Bot. 2018, 147, 116–124. [Google Scholar] [CrossRef]
- Beattie, G.A. Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopathol. 2011, 49, 533–555. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Bai, Q.; Zhang, H.; Guo, Y.; Peng, Y.; Zhang, P.; Shen, L.; Hong, N.; Xu, W.; Wang, G. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Front. Plant Sci. 2022, 13, 761133. [Google Scholar] [CrossRef] [PubMed]
- Camisón, Á.; Martín, M.Á.; Sánchez-Bel, P.; Flors, V.; Alcaide, F.; Morcuende, D.; Pinto, G.; Solla, A. Hormone and Secondary Metabolite Profiling in Chestnut during Susceptible and Resistant Interactions with Phytophthora cinnamomi. J. Plant Physiol. 2019, 241, 153030. [Google Scholar] [CrossRef]
- Asselbergh, B.; De Vleesschauwer, D.; Höfte, M. Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Mol. Plant-Microbe Interact. MPMI 2008, 21, 709–719. [Google Scholar] [CrossRef]
- Maksimov, I.V. Abscisic Acid in the Plants-Pathogen Interaction. Russ. J. Plant Physiol. 2009, 56, 742–752. [Google Scholar] [CrossRef]
- Tan, Y.-Q.; Yang, Y.; Shen, X.; Zhu, M.; Shen, J.; Zhang, W.; Hu, H.; Wang, Y.-F. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomata closure in Arabidopsis. Plant Cell 2022, 35, 239–259. [Google Scholar] [CrossRef]
- Dou, L.; He, K.; Peng, J.; Wang, X.; Mao, T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat. Commun. 2021, 12, 2181. [Google Scholar] [CrossRef]
- Wang, P.; Qi, S.; Wang, X.; Dou, L.; Jia, M.A.; Mao, T.; Guo, Y.; Wang, X. The OPEN STOMATA1–SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell 2023, 35, 260–278. [Google Scholar] [CrossRef]
- Nguyen, Q.M.; Iswanto, A.; Son, G.H.; Kim, S.H. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. Int. J. Mol. Sci. 2021, 22, 4709. [Google Scholar] [CrossRef]
- Kohli, S.K.; Khanna, K.; Bhardwaj, R.; Allah, E.F.A.; Ahmad, P.; Corpas, F.J. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants 2019, 8, 641. [Google Scholar] [CrossRef] [PubMed]
- Gahir, S.; Bharath, P.; Raghavendra, A.S. The Role of Gasotransmitters in Movement of Stomata: Mechanisms of Action and Importance for Plant Immunity. Biol. Plant. 2020, 64, 623–632. [Google Scholar] [CrossRef]
- Thor, K.; Jiang, S.; Michard, E.; George, J.; Scherzer, S.; Huang, S.; Zipfel, C. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 2020, 585, 569–573. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, D.H.; Kopischke, M.; Robatzek, S. Gate Control: Guard Cell Regulation by Microbial Stress. New Phytol. 2014, 203, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.W.; Baek, W.; Jung, J.; Kim, J.H.; Lee, S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015, 16, 15251–15270. [Google Scholar] [CrossRef]
- Murata, Y.; Mori, I.C.; Munemasa, S. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 2015, 66, 369–392. [Google Scholar] [CrossRef]
- Zhang, L.; Takahashi, Y.; Hsu, P.K.; Kollist, H.; Merilo, E.; Krysan, P.J.; Schroeder, J.I. FRET Kinase Sensor Development Reveals SnRK2/OST1 Activation by ABA but Not by MeJA and High CO2 during Stomatal Closure. eLife 2020, 9, e56351. [Google Scholar] [CrossRef]
- Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Merilo, E.; Laanemets, K.; Waadt, R.; Pater, D.; Kollist, H.; Schroeder, J.I. Abscisic Acid-Independent Stomatal CO2 Signal Transduction Pathway and Convergence of CO2 and ABA Signaling Downstream of OST1 Kinase. Proc. Natl. Acad. Sci. USA 2018, 115, E9971–E9980. [Google Scholar] [CrossRef]
- Zheng, X.; Kang, S.; Jing, Y.; Ren, Z.; Li, L.; Zhou, J.M.; Berkowitz, G. Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells. Plant Cell 2018, 30, 1132–1146. [Google Scholar] [CrossRef]
- Prodhan, M.Y.; Munemasa, S.; Nahar, M.N.; Nakamura, Y.; Murata, Y. Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway. Plant Physiol. 2018, 178, 441–450. [Google Scholar] [CrossRef]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant Defense against Insect Herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, D.; Voigt, C.A. Callose Biosynthesis in Arabidopsis with a Focus on Pathogen Response: What We Have Learned within the Last Decade. Ann. Bot. 2014, 114, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Keyl, A.; Feussner, I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. New Phytol. 2020, 227, 698–713. [Google Scholar] [CrossRef] [PubMed]
- Kaliff, M.; Staal, J.; Myrenås, M.; Dixelius, C. ABA is required for Leptosphaeria maculans resistance via ABI1-and ABI4-dependent signaling. Mol. Plant-Microbe Interact. 2007, 20, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.Y.; Yoshioka, K.; Desveaux, D. The roles of ABA in plant–pathogen interactions. J. Plant Res. 2011, 124, 489–499. [Google Scholar] [CrossRef]
- Yang, C.; Li, W.; Cao, J.; Meng, F.; Yu, Y.; Huang, J.; Jiang, L.; Liu, M.; Zhang, Z.; Chen, X.; et al. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 2017, 89, 338–353. [Google Scholar] [CrossRef]
- Khokon, M.A.; Jahan, M.S.; Rahman, T.; Hossain, M.A.; Muroyama, D.; Minami, I.; Munemasa, S.; Mori, I.C.; Nakamura, Y.; Murata, Y. Allyl Isothiocyanate (AITC) Induces Stomatal Closure in Arabidopsis: AITC Signalling in Arabidopsis. Plant Cell Env. 2011, 34, 1900–1906. [Google Scholar] [CrossRef]
- Hossain, M.A.; Munemasa, S.; Uraji, M.; Nakamura, Y.; Mori, I.C.; Murata, Y. Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis. Plant Physiol. 2011, 156, 430–438. [Google Scholar] [CrossRef]
- Gayatri, G.; Agurla, S.; Kuchitsu, K.; Anil, K.; Podile, A.R.; Raghavendra, A.S. Stomatal Closure and Rise in ROS/NO of Arabidopsis Guard Cells by Tobacco Microbial Elicitors: Cryptogein and Harpin. Front. Plant Sci. 2017, 8, 1096. [Google Scholar] [CrossRef]
- Baccelli, I.; Lombardi, L.; Luti, S.; Bernardi, R.; Picciarelli, P.; Scala, A.; Pazzagli, L. Cerato-Platanin Induces Resistance in Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin Biosynthesis. PLoS ONE 2014, 9, e100959. [Google Scholar] [CrossRef]
- Wu, L.; Wu, H.; Chen, L.; Zhang, H.; Gao, X. Induction of Systemic Disease Resistance in Nicotiana benthamiana by the Cyclodipeptides Cyclo (l-Prol-Pro) and Cyclo (d-Pro-d-Pro). Mol. Plant Pathol. 2017, 18, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Novák, J.; Pavlů, J.; Novák, O.; Nožková-Hlaváčková, V.; Špundová, M.; Hlavinka, J.; Koukalová, Š.; Skalák, J.; Černý, M.; Brzobohatý, B. High Cytokinin Levels Induce a Hypersensitive-like Response in Tobacco. Ann. Bot. 2013, 112, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, G.; Pandharikar, G.; Frendo, P. Salicylic acid in plant symbioses: Beyond plant pathogen interactions. Biology 2022, 11, 861. [Google Scholar] [CrossRef]
- Laxalt, A.M.; García-Mata, C.; Lamattina, L. The dual role of nitric oxide in guard cells: Promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front. Plant Sci. 2016, 7, 476. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, A.S.; Reddy, K.B. Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. Plant Physiol. 1987, 83, 732–734. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Khokon, M.A.R.; Salam, M.A.; Jammes, F.; Ye, W.; Hossain, M.A.; Okuma, E.; Nakamura, Y.; Mori, I.C.; Kwak, J.M.; Murata, Y. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2017, 81, 1394–1400. [Google Scholar] [CrossRef]
- Salam, M.A.; Jammes, F.; Hossain, M.A.; Ye, W.; Nakamura, Y.; Mori, I.C.; Kwak, J.M.; Murata, Y. MAP Kinases, MPK9 and MPK12, Regulate Chitosan-Induced Stomatal Closure. Biosci. Biotechnol. Biochem. 2012, 76, 1785–1787. [Google Scholar] [CrossRef]
- Bright, J.; Desikan, R.; Hancock, J.T.; Weir, I.S.; Neill, S.J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 2006, 45, 113–122. [Google Scholar] [CrossRef]
- Du, Y.L.; Wang, Z.Y.; Fan, J.W.; Turner, N.C.; Wang, T.; Li, F.M. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J. Exp. Bot. 2012, 63, 4849–4860. [Google Scholar] [CrossRef]
- Mekonnen, D.W.; Flügge, U.I.; Ludewig, F. Gamma-Aminobutyric Acid Depletion Affects Stomata Closure and Drought Tolerance of Arabidopsis thaliana. Plant Sci. 2016, 245, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Agurla, S.; Gayatri, G.; Raghavendra, A.S. Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 2014, 43, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Suhita, D.; Raghavendra, A.S.; Kwak, J.M.; Vavasseur, A. Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate- and Abscisic Acid-Induced Stomatal Closure. Plant Physiol. 2004, 134, 1536–1545. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Suh, S.; Doo, I.S.; Oh, K.Y.; Choi, E.J.; Taylor, A.T.S.; Low, P.S.; Lee, Y. Oligogalacturonic Acid and Chitosan Reduce Stomatal Aperture by Inducing the Evolution of Reactive Oxygen Species from Guard Cells of Tomato and Commelina communis. Plant Physiol. 1999, 121, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Nazareno, A.L.; Hernandez, B.S. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants. PLoS ONE 2017, 12, e0171065. [Google Scholar] [CrossRef]
- Chen, H.; Bullock, D.A., Jr.; Alonso, J.M.; Stepanova, A.N. To fight or to grow: The balancing role of ethylene in plant abiotic stress responses. Plants 2022, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Pal, S.; Singh, H.B.; Yadav, R.S.; Rakshit, A. Harnessing biopriming for integrated resource management under changing climate. In Advances in PGPR Research; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; CAB International: Wallingford, UK, 2017; pp. 349–363. [Google Scholar]
- Berrabah, F.; Balliau, T.; Aït-Salem, E.H.; George, J.; Zivy, M.; Ratet, P.; Gourion, B. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. New Phytol. 2018, 219, 310–323. [Google Scholar] [CrossRef]
- LaO, M.; Arencibia, A.D.; Carmona, E.R.; Acevedo, R.; Rodríguez, E.; León, O.; Santana, I. Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Rep. 2008, 27, 1103–1111. [Google Scholar] [CrossRef]
- Mano, J.I.; Biswas, M.S.; Sugimoto, K. Reactive carbonyl species: A missing link in ROS signaling. Plants 2019, 8, 391. [Google Scholar] [CrossRef]
- Xia, X.J.; Zhou, Y.H.; Shi, K.; Zhou, J.; Foyer, C.H.; Yu, J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015, 66, 2839–2856. [Google Scholar] [CrossRef]
- Sewelam, N.; Kazan, K.; Schenk, P.M. Global Plant Stress Signaling: Reactive Oxygen Species at the Crossroad. Front. Plant Sci. 2016, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Bellin, D.; Asai, S.; Delledonne, M.; Yoshioka, H. Nitric Oxide as a Mediator for Defense Responses. Mol. Plant-Microbe Interact. MPMI 2013, 26, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Katano, K. Coordination between ROS Regulatory Systems and Other Pathways under Heat Stress and Pathogen Attack. Front. Plant Sci. 2018, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X. Phospholipase D and phosphatidic acid in plant immunity. Plant Sci. 2019, 279, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.S.; Islam, F.; Ye, Y.; Ashline, M.; Wang, D.; Zhao, B.; Fu, Z.Q.; Chen, J. The interplay between hydrogen sulfide and phytohormone signaling pathways under challenging environments. Int. J. Mol. Sci. 2022, 23, 4272. [Google Scholar] [CrossRef] [PubMed]
- Adie, B.A.; Perez-Perez, J.; Perez-Perez, M.M.; Godoy, M.; Sanchez-Serrano, J.J.; Schmelz, E.A.; Solano, R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 2007, 19, 1665–1681. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Vergara, A.G.; López-Bucio, J. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J. Plant Growth Regul. 2015, 34, 425–432. [Google Scholar] [CrossRef]
- Lee, S.; Rojas, C.M.; Ishiga, Y.; Pandey, S.; Mysore, K.S. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE 2013, 8, e82445. [Google Scholar] [CrossRef]
- Su, J.; Zhang, M.; Zhang, L.; Sun, T.; Liu, Y.; Lukowitz, W.; Xu, J.; Zhang, S. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 2017, 29, 526–542. [Google Scholar] [CrossRef]
- Guzel Deger, A.; Scherzer, S.; Nuhkat, M.; Kedzierska, J.; Kollist, H.; Brosché, M.; Unyayar, S.; Boudsocq, M.; Hedrich, R.; Roelfsema, M.R.G. Guard cell SLAC 1-type anion channels mediate flagellin-induced stomatal closure. New Phytol. 2015, 208, 162–173. [Google Scholar] [CrossRef]
- Jalakas, P.; Huang, Y.C.; Yeh, Y.H.; Zimmerli, L.; Merilo, E.; Kollist, H.; Brosché, M. The role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling. Plant Physiol. 2017, 174, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Montillet, J.L.; Leonhardt, N.; Mondy, S.; Tranchimand, S.; Rumeau, D.; Boudsocq, M.; Garcia, A.V. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biol. 2013, 11, e1001513. [Google Scholar] [CrossRef]
- Peng, P.; Li, R.; Chen, Z.H.; Wang, Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. Front. Plant Sci. 2022, 13, 1031891. [Google Scholar] [CrossRef]
- Lin, P.A.; Chen, Y.; Chaverra-Rodriguez, D.; Heu, C.C.; Zainuddin, N.B.; Sidhu, J.S.; Peiffer, M. Silencing the Alarm: An Insect Salivary Enzyme Closes Plant Stomata and Inhibits Volatile Release. New Phytol. 2021, 230, 793–803. [Google Scholar] [CrossRef]
- Mouttet, R.; Bearez, P.; Thomas, C.; Desneux, N. Phytophagous Arthropods and a Pathogen Sharing a Host Plant: Evidence for Indirect Plant-Mediated Interactions. PLoS ONE 2011, 6, e18840. [Google Scholar] [CrossRef]
- Lin, P.A.; Chen, Y.; Ponce, G.; Acevedo, F.E.; Lynch, J.P.; Anderson, C.T.; Ali, J.G.; Felton, G.W. Stomata-mediated interactions between plants, herbivores, and the environment. Trends Plant Sci. 2022, 27, 287–300. [Google Scholar] [CrossRef]
- Nabity, P.D. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann. Bot. 2009, 103, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Manzar, N.; Kashyap, A.S.; Maurya, A.; Rajawat, M.V.S.; Sharma, P.K.; Srivastava, A.K.; Roy, M.; Saxena, A.K.; Singh, H.V. Multi-Gene Phylogenetic Approach for Identification and Diversity Analysis of Bipolaris maydis and Curvularia lunata Isolates Causing Foliar Blight of Zea mays. J. Fungus 2022, 8, 802. [Google Scholar] [CrossRef] [PubMed]
- Meshram, S.; Patel, J.S.; Yadav, S.K.; Kumar, G.; Singh, D.P.; Singh, H.B.; Sarma, B.K. Trichoderma Mediate Early and Enhanced Lignifications in Chickpea during Fusarium oxysporum f. sp. ciceris Infection. J. Basic. Microbiol. 2019, 59, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.S.; Manzar, N.; Rajawat, M.V.S.; Kesharwani, A.K.; Singh, R.P.; Dubey, S.C.; Pattanayak, D.; Dhar, S.; Lal, S.K.; Singh, D. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. Plants 2021, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Rakshit, A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol. Ecol. 2020, 96, fiaa221. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.A.; Nabity, P.D.; DeLucia, E.H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 2013, 58, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. Plant stomatal closure improves aphid feeding under elevated CO2. Glob. Chang. Biol. 2015, 21, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- Havko, N.E.; Kapali, G.; Das, M.R.; Howe, G.A. Stimulation of insect herbivory by elevated temperature outweighs protection by the jasmonate pathway. Plants 2020, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C.; Richardson, J.L. The evolution of foraging rate across local and geographic gradients in predation risk and competition. Am. Nat. 2015, 186, E16–E32. [Google Scholar] [CrossRef] [PubMed]
Signaling Components and Pathways | Description | References |
---|---|---|
Calcium signaling | Involves novel calcium-permeable channels and sensors in guard cells, mediating stomatal closure. | [8] |
Reactive oxygen species (ROS) signaling | Specific ROS species act as secondary messengers, regulating ion channels and enzymes for stomatal closure. | [9,10] |
Small peptides and hormones | Newly discovered stomagen and SCF peptides modulate stomatal movement during pathogen attacks. | [11] |
Protein kinases and phosphatases | Recently identified kinases and phosphatases regulate stomatal closure and downstream events. | [12] |
G-protein coupled receptors (GPCRs) | Novel GPCRs serve as receptors for pathogen molecules, activating downstream stomatal responses. | [13] |
RNA-based regulation | Small RNAs (microRNAs, lncRNAs) fine-tune stomatal responses through post-transcriptional control. | [14] |
Epigenetic regulation | DNA methylation and histone modifications influence gene expression in stomatal defense. | [15] |
Crosstalk between phytohormones | Interactions between ABA, JA, and SA coordinate stomatal responses during pathogen challenges. | [16] |
Nutrient sensing pathways | The TOR signaling pathway has been linked to stomatal closure, suggesting nutrient influence. | [17] |
Post-translational modifications | Ubiquitylation, phosphorylation, and SUMOylation regulate key proteins involved in stomatal closure and plant immunity. | [18] |
Morphological and Anatomical Features | |||
---|---|---|---|
Natural Structure | Function | Host-Pathogen Example | References |
Raised Stomata | Positioned on the upper surface of leaves, these stomata might offer some protection against direct pathogen contact due to their elevated position. | Beet-Cercospora beticola | [19,20] |
Submerged Stomata | Common in aquatic plants, submerged stomata might face fewer pathogens due to the water layer that acts as a barrier. | Wheat-Puccinia striiformis f. sp. tritici | [21,22] |
Specialized Stomata | Found in desert plants, these stomata could be adapted to minimize water loss, potentially impacting the invasion of waterborne pathogens. | Citrus-Xanthomonas citri subsp. citri | [23] |
Chemical–Physiological Defenses | |||
Epidermal Waxes | These waxes create a physical barrier that prevents pathogens from directly reaching plant cells, reducing the risk of invasion. | Barley-Blumeria graminis | [24] |
Exudates | Chemical compounds released from waxes can hinder pathogen growth. These compounds might have antimicrobial properties that directly deter pathogens. | Tomato-powdery mildew-Oidium neolycopersici | [25,26] |
Physical Characteristics | |||
Physical Characteristics | Moist cell walls in the aerenchyma support gas exchange and overall plant health. Cuticles provide structural integration. This environment might be less favorable for certain pathogens, reducing their ability to colonize and invade. | Rice-Magnaporthe oryzae | [27] |
Internal Cavity Water Vapor | Water vapor within the internal cavity maintains humidity levels, creating conditions that support defense mechanisms. It might also affect pathogen survival by influencing moisture-dependent processes. | Pseudomonas syringae pv. tomato in tomato | [28] |
Molecule | Reaction to a Pathogen | References |
---|---|---|
ABA | Induces stomatal closure during pathogen invasion, e.g., Leptosphaeria maculans and Pseudomonas syringae. | [88,89] |
Ethylene | To enhance resistance against Magnaporthe oryzae, production of ROS and phytoalexin. | [90] |
Chitin and Chitosan | Chitin and chitosan not only independently but together also capable of inducing stomatal immunity against fungal pathogen. | [38] |
Allyl isothiocyanate (AITC) and methyl jasmonate | Induces stomatal closure leading decreases in water loss and pathogen invasion as reported in Arabidopsis plant. | [91,92] |
Cryptogein and harpin | Elicitors of tobacco pathogen were capable of causing stomatal closure. | [93] |
Cerato-platanin | Induces hormone signaling, which triggers PAMP leads to reduction in fungal infection. | [94] |
Cyclodipeptides | ROS, cytosolic Ca2+, and NO production for stomatal closure; activation of PR-1a gene and protein and increment in cellular SA levels for reducing Phytophthora nicotianae and Tobacco mosaic virus infections in tobacco. | [95] |
Cytokinin | In response to Agrobacterium tumefaciens, an HR-like response, cell death, and PR gene activation were all induced. | [96] |
Compound | The Impact on the Stomata | Name of the Plant | References |
---|---|---|---|
β-aminobutyric acid (BABA) | Drought causes ABA to accumulate. | Triticum aestivum | [104] |
Salicylic acid (SA) | Well-established messenger and inducer of disease resistance, endogenously or exogenously. | Wide range of crops for local and systemic pathogen | [97] |
γ-Aminobutyric acid (GABA) | Reduces the invasion of anions into the vacuole and represses 14-3-3 proteins | Arabidopsis thaliana | [105] |
Lipopolysaccharide (LPS) | Nitric oxide synthase (NOS) is activated and NO is produced in guard cells. | Arabidopsis thaliana | [106] |
Methyl Jasmonate (MJ) | H2O2 production and cytoplasmic alkalinization are aided by this compound. | Arabidopsis thaliana | [107] |
Oligogalacturonic acid (OGA) | Expands the amounts of cytosolic Ca2+ and ROS. | Lycopersicon esculentum; Commelina communis | [108] |
Harpin | Elicitor | Arabidopsis thaliana | [93] |
Altered Plant Compounds and ABA Production | Pathogen-Induced Responses | References |
---|---|---|
aba2-12 and aao3-2 hamper ABA biosynthesis | Pythium irregulare susceptible | [121] |
aba3-1 is essential for the biosynthesis of ABA | flg22 and LPS failed to seal the wound | [41] |
ABA insensitive (abi1, abi2) | Did not close the stomata in response to Trichoderma species | [122] |
Subunits of G-proteins (Gα, Gβ and Gγ) | Open stomata extremely vulnerable to Pseudomonas syringe pathogens | [123] |
MAPKs (mpk3, mpk6) | In response to PAMP or Pst, not effective | [124] |
Open stomata 1 (ost1) reduces K+ efflux | Flg22 induced rapid stomatal closure | [125] |
Enhanced response to ABA1 (era1) is associated with the farnesyl transferase subunit | ABA hypersensitivity as well as pathogenic microbes | [126] |
Lipoxygenase (lox1) | The ability of stomata to seal in response to bacteria and LPS is impaired | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meddya, S.; Meshram, S.; Sarkar, D.; S, R.; Datta, R.; Singh, S.; Avinash, G.; Kumar Kondeti, A.; Savani, A.K.; Thulasinathan, T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. Plants 2023, 12, 3380. https://doi.org/10.3390/plants12193380
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. Plants. 2023; 12(19):3380. https://doi.org/10.3390/plants12193380
Chicago/Turabian StyleMeddya, Sandipan, Shweta Meshram, Deepranjan Sarkar, Rakesh S, Rahul Datta, Sachidanand Singh, Gosangi Avinash, Arun Kumar Kondeti, Ajit Kumar Savani, and Thiyagarajan Thulasinathan. 2023. "Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance" Plants 12, no. 19: 3380. https://doi.org/10.3390/plants12193380
APA StyleMeddya, S., Meshram, S., Sarkar, D., S, R., Datta, R., Singh, S., Avinash, G., Kumar Kondeti, A., Savani, A. K., & Thulasinathan, T. (2023). Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. Plants, 12(19), 3380. https://doi.org/10.3390/plants12193380