Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea
Abstract
:1. Introduction
2. Essential Oils Industry in South Korea
3. Investigating the Selected Pinaceae and Cupressaceae for Essential Oils
3.1. Pinaceae Essential Oils
3.1.1. L. kaempferi
3.1.2. P. densiflora
Scientific Names | Plant Parts | Major Chemical Profile | Biological Activities | Application | Ref. |
---|---|---|---|---|---|
P. densiflora | leaves | α-pinene (21.6%) limonene (13.1%) caryophellene (11.4%) [30] | antioxidant and anti-ageing activities | cosmetic industry | [30] |
anti-cancer | pharmaceutical industry | [31] | |||
antibacterial | food industry | [32] | |||
wood | α-pinene (47.2%) longifolene (14.3%) β-phellandrene (11.8%) | anti-inflammatory effect | pharmaceutical industry | [24] | |
twigs | β-pinene (22.4%) α-pinene (17.3%) limonene (15%) [30] | antioxidant and anti-ageing activities | cosmetic industry | [30] |
3.1.3. P. koraiensis
Scientific Names | Plant Parts | Major Chemical Profile | Biological Activities | Application | Ref. |
---|---|---|---|---|---|
P. koraiensis | seed and cone | α-pinene (29.9%) D-limonene (19.3%) Β-pinene (11.2%) [14] | anti-microbial activity (acne) | cosmetic industry | [14] |
wood | α-pinene (27.0%) Β-pinene (11.2%) α-terpineol (7.1%) | anti-inflammatory effect | pharmaceutical industry | [34] | |
cones | D-limonene (28.0%), α-pinene (23.9%), Β-pinene (12.1%) [41] | anti-cancer | pharmaceutical industry | [35] | |
anti-microbial activity | sanitary industry (disinfectant) | [36] | |||
leaves | α-pinene (10.5%) myrcene (7.3%) bornyl acetate (7.2%) [41] | anti-cancer (colorectal cancer) | pharmaceutical industry | [37] | |
anti-diabetic effect | pharmaceutical and | [38] | |||
antifungal effect | food industry | [41] | |||
anti-oral microbial activity and deodorisation effect | sanitary industry (dental) | [42] |
3.2. Cupressaceae Essential Oils
3.2.1. C. obtusa Oil
Scientific Names | Plant Parts | Major Chemical Profile | Biological Activities | Application | Ref. |
---|---|---|---|---|---|
C. obtusa | leaves | α-terpinyl acetate (13.7%) sabinene (11.0%) isobornyl acetate (8.9%) [61] | antibacterial and antimicrobial effect | household cleaning industry (disinfectant and deodorant) | [46,48,62] |
anti-ageing effect | cosmetic industry | [49] | |||
relieving the allergy (atopic dermatitis) | [50] | ||||
anti-inflammatory effect | pharmaceutical industry | [51] | |||
anti-nociceptive and anti-inflammatory effects | [52] | ||||
insecticidal activities | agriculture and food industry | [54,55] | |||
hair growth | functional cosmetic industry | [56] | |||
leaves and twig | α-terpinene (40.6%) bornyl acetate (12.5%) α-pinene (11.4%) [57] | anti-cariogenic effect | pharmaceutical industry | [57] | |
saw-dust | juniper camphor (12.5%) fonenol (12.4%) d-9-capnellene-3-b-ol-8-one (10.1%) | antioxidant activity | food industry | [59] | |
fruit | B-caryophyllene (23.7%) myrcene (8.1%) p-cymene (7.6%) [60] | - | - | - |
3.2.2. C. pisifera Oil
4. Utilising the Forest Waste after Forest Management for Essential Oils
5. Safety of Essential Oils
6. Limitations and Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorenz, A.; Wietschel, L.; Stindt, D.; Tuma, A. Assessment of agroforestry residue potentials for the bioeconomy in the European Union. J. Clean. Prod. 2018, 176, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Park, C.; Woo, H. Development of Native Essential Oils from Forestry Resources in South Korea. Life 2022, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Mediavilla, I.; Guillamón, E.; Ruiz, A.; Esteban, L.S. Essential oils from residual foliage of forest tree and shrub species: Yield and antioxidant capacity. Molecules 2021, 26, 3257. [Google Scholar] [CrossRef] [PubMed]
- Djilani, A.; Dicko, A. The therapeutic benefits of essential oils. In Nutrition, Well-Being and Health; Intech: Houston, TX, USA, 2012; Volume 7, pp. 155–179. [Google Scholar]
- Lawrence, B.M. A preliminary report on the world production of some selected essential oils and countries. Perfum. Flavorist 2009, 34, 38–44. [Google Scholar]
- Korea Customs Service. Trade Statistics. Available online: https://unipass.customs.go.kr/ets/index_eng.do (accessed on 19 April 2023).
- Kim, M.; Sowndhararajan, K.; Kim, S. The chemical composition and biological activities of essential oil from Korean native thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules 2022, 27, 4251. [Google Scholar] [CrossRef]
- Lee, H.J. Development of New Aromatic Materials Using Native Korean Aromatic Plants Targeting at Export. Available online: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201400023981&dbt=TRKO&rn= (accessed on 19 April 2023).
- Kang, D.G.; Keun Yun, C.; Lee, H.S. Screening and comparison of antioxidant activity of solvent extracts of herbal medicines used in Korea. J. Ethnopharmacol. 2003, 87, 231–236. [Google Scholar] [CrossRef]
- Kim, M.; Moon, J.C.; Kim, S.; Sowndhararajan, K. Morphological, chemical, and genetic characteristics of Korean native thyme Bak-ri-hyang (Thymus quinquecostatus Celak.). Antibiotics 2020, 9, 289. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, B.K.; Kim, J.H.; Lee, S.H.; Hong, S.K. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, R. Antimicrobial Activity of Essential Oil of Pinus koraiensis Seed Against Pathogens Related to Acne. KSBB J. 2014, 29, 179–182. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, N.; Farooqi, A.; Shabih, F.; Sangwan, R. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Kang, T.; Son, Y.; Yim, J.; Jeon, J. Estimation of carbon stock and uptake for Larix kaempferi Lamb. J. Clim. Chang. 2016, 7, 499–506. [Google Scholar] [CrossRef]
- Lee, S.; Doyog, N.D.; Lee, Y.J. Comparative analysis of simple volume models for Japanese Larch (Larix kaempferi) species in the Central Region of South Korea. J. Agric. Life Sci. 2017, 51, 55–64. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.K.; Kim, Y.S.; Lim, C.H.; Song, C.; Park, T.; Son, Y.; Son, Y.M. Impact of thinning intensity on the diameter and height growth of Larix kaempferi stands in central Korea. For. Sci. Technol. 2016, 12, 77–87. [Google Scholar] [CrossRef]
- Seo, K.S.; Lee, B.; Yun, K.W. Chemical Composition and Antibacterial Activity of Essential Oils Extracted from Wild and Planted Thuja orientalis Leaves in Korea. J. Essent. Oil-Bear. Plants 2019, 22, 1407–1415. [Google Scholar] [CrossRef]
- Moon, M.Y.; Kim, S.S.; Lee, D.S.; Yang, H.M.; Park, C.W.; Kim, H.S.; Park, Y.S. Effects of forest management practices on moth communities in a Japanese larch (Larix kaempferi (Lamb.) Carrière) plantation. Forests 2018, 9, 574. [Google Scholar] [CrossRef]
- Yun, M.S.; Cho, H.M.; Yeon, B.R.; Choi, J.S.; Kim, S. Herbicidal activities of essential oils from pine, nut pine, larch and khingan fir in Korea. Weed Turfgrass Sci. 2013, 2, 30–37. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Hong, C.; Jang, S.; Lee, S.; Park, M.; Choi, I. Evaluation on anti-dermatophyte effect of Larix (kaempferi) essential oil on the morphological changes of eermatophyte fungal Hyphae. J. Korean Wood Sci. Technol. 2013, 41, 247–257. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.S.; Kim, J.W.; Lee, S.S.; Park, M.J. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. J. Korean Wood Sci. Technol. 2019, 47, 674–691. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, C.G.; Kwag, J.J.; Buglass, A.J.; Lee, G.H. Determination of optimum conditions for the analysis of volatile components in pine needles by double-shot pyrolysis–gas chromatography–mass spectrometry. J. Chromatogr. A 2005, 1089, 227–234. [Google Scholar] [CrossRef]
- Kwak, C.S.; Moon, S.C.; Lee, M.S. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr. Cancer 2006, 56, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Lee, E. Effects of powdered pine needle (Pinus densiflora seib et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat. J. Korean Soc. Food Sci. Nutr. 2003, 32, 926–930. [Google Scholar]
- Kang, Y.; Park, Y.; Ha, T.; Moon, K. Effects of pine needle extracts on serum and liver lipid contents in rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 1996, 25, 367–373. [Google Scholar]
- Kim, K.Y.; Chung, H.J. Flavor compounds of pine sprout tea and pine needle tea. J. Agric. Food Chem. 2000, 48, 1269–1272. [Google Scholar] [CrossRef]
- Kim, Y.J.; Cho, B.J.; Ko, M.S.; Jung, J.M.; Kim, H.R.; Song, H.S.; Lee, J.Y.; Sim, S.S.; Kim, C.J. Anti-oxidant and anti-aging activities of essential oils of Pinus densiflora needles and twigs. Yakhak Hoeji 2010, 54, 215–225. [Google Scholar]
- Jo, J.R.; Park, J.S.; Park, Y.K.; Chae, Y.Z.; Lee, G.H.; Park, G.Y.; Jang, B.C. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int. J. Oncol. 2012, 40, 1238–1245. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, G.H. Volatile compounds and antimicrobial and antioxidant activities of the essential oils of the needles of Pinus densiflora and Pinus thunbergii. J. Sci. Food Agric. 2011, 91, 703–709. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.S.; Jeung, E.B.; Kim, K.J.; Park, M.J. Anti-inflammatory effect of essential oil extracted from Pinus densiflora (Sieb. et Zucc.) wood on RBL-2H3 cells. J. Wood Sci. 2021, 67, 52. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.S.; Kim, K.J.; Eom, C.D.; Park, M.J. Investigation of active anti-inflammatory constituents of essential oil from Pinus koraiensis (Sieb. et Zucc.) wood in LPS-stimulated RBL-2H3 cells. Biomolecules 2021, 11, 817. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, K.; Lee, D.H.; Shin, S.Y.; Yong, Y.; Lee, Y.H. Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 563–569. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, H.Y.; Lee, H.S.; Hong, S.K. Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis. J. Microbiol. Biotechnol. 2008, 18, 497–502. [Google Scholar]
- Cho, S.M.; Lee, E.O.; Kim, S.H.; Lee, H.J. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells. BMC Complement. Altern. Med. 2014, 14, 275. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.E.; Lee, H.J.; Sohn, E.J.; Lee, M.H.; Ko, H.S.; Jeong, S.J.; Lee, H.J.; Kim, S.H. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells. Biosci. Biotechnol. Biochem. 2013, 77, 1997–2001. [Google Scholar] [CrossRef]
- Boukhris, M.; Bouaziz, M.; Feki, I.; Jemai, H.; El Feki, A.; Sayadi, S. Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. in alloxan induced diabetic rats. Lipids Health Dis. 2012, 11, 81. [Google Scholar] [CrossRef]
- Sriramavaratharajan, V.; Murugan, R. Chemical profile of leaf essential oil of Cinnamomum walaiwarense and comparison of its antioxidant and hypoglycemic activities with the major constituent benzyl benzoate. Nat. Prod. Commun. 2018, 13, 779–782. [Google Scholar] [CrossRef]
- Hong, E.J.; Na, K.J.; Choi, I.G.; Choi, K.C.; Jeung, E.B. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef]
- Hwang, H.J.; Yu, J.S.; Lee, H.Y.; Kwon, D.J.; Han, W.; Heo, S.I.; Kim, S.Y. Evaluations on deodorization effect and anti-oral microbial activity of essential oil from Pinus koraiensis. Korean J. Plant Res. 2014, 27, 1–10. [Google Scholar] [CrossRef]
- Joung, Y.W.; Kim, Y.m.; Jang, Y.A. Studies on the antioxidant and whitening effects of Chamaecyparis obtusa extract. J. Korean Appl. Sci. Technol. 2020, 37, 1496–1506. [Google Scholar]
- Ahn, J.Y.; Lee, S.S.; Kang, H.Y. Biological activities of essential oil from Chamaecyparis obtusa. J. Soc. Cosmet. Sci. Korea 2004, 30, 503–507. [Google Scholar]
- Bae, D.; Seol, H.; Yoon, H.G.; Na, J.R.; Oh, K.; Choi, C.Y.; Lee, D.w.; Jun, W.; Youl Lee, K.; Lee, J. Inhaled essential oil from Chamaecyparis obtuse ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats. Pharm. Biol. 2012, 50, 900–910. [Google Scholar] [CrossRef]
- Song, S.Y.; Park, D.H.; Lee, S.H.; Choi, C.Y.; Shim, J.H.; Yoon, G.; Park, J.W.; Bae, M.S.; Cho, S.S. Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil. Processes 2023, 11, 1446. [Google Scholar] [CrossRef]
- Musee, N.; Ngwenya, P.; Motaung, L.K.; Moshuhla, K.; Nomngongo, P. Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. Environ. Chem. Ecotoxicol. 2023, 5, 62–78. [Google Scholar] [CrossRef]
- Kim, H.; Han, S.; Mang, J. Evaluations on the deodorization effect and antibacterial activity of Chamaecyparis obtusa essential oil. Korean J. Odor Res. Eng. 2009, 8, 111–117. [Google Scholar]
- Kang, E.J.; Jang, Y.A.; Lee, J.T.; Kim, S.H.; Kim, S.; Bak, J.; Choi, Y.S. The effects of Chamaecyparis obtusa oil on anti-wrinkle, skin-barrier and moisturizing. J. Korean Appl. Sci. Technol. 2023, 40, 309–321. [Google Scholar] [CrossRef]
- Lim, G.S.; Kim, R.; Cho, H.; Moon, Y.S.; Choi, C.N. Comparison of volatile compounds of Chamaecyparis obtusa essential oil and its application on the improvement of atopic dermatitis. Korean Soc. Biotehcnol. Bioeng. J. 2013, 28, 115–122. [Google Scholar] [CrossRef]
- An, B.S.; Kang, J.H.; Yang, H.; Jung, E.M.; Kang, H.S.; Choi, I.G.; Park, M.-J.; Jeung, E.B. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats. Mol. Med. Rep. 2013, 8, 255–259. [Google Scholar] [CrossRef]
- Park, Y.; Jung, S.M.; Yoo, S.A.; Kim, W.U.; Cho, C.S.; Park, B.J.; Woo, J.M.; Yoon, C.H. Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice. Int. Immunopharmacol. 2015, 29, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, K.; Huang, Q.; Lei, C. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind. Crops Prod. 2014, 53, 163–166. [Google Scholar] [CrossRef]
- Park, I.K.; Lee, S.G.; Choi, D.H.; Park, J.D.; Ahn, Y.J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stored Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Lee, S.H.; Do, H.S.; Min, K.J. Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Hong, E.J.; Gwak, K.S.; Park, M.J.; Choi, K.C.; Choi, I.G.; Jang, J.W.; Jeung, E.B. The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia 2010, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kang, S.Y.; Park, B.I.; Kim, Y.H.; Lee, Y.R.; Hoe, J.H.; Choi, N.Y.; Ra, J.Y.; An, S.Y.; You, Y.O. Chamaecyparis obtusa suppresses virulence genes in Streptococcus mutans. Evid.-Based Complement. Altern. Med. 2016, 2016, 2396404. [Google Scholar] [CrossRef]
- Takao, Y.; Kuriyama, I.; Yamada, T.; Mizoguchi, H.; Yoshida, H.; Mizushina, Y. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol. Med. Rep. 2012, 5, 1163–1168. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Baek, K.H. Phenolic content and antioxidant capacity of essential oil obtained from sawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation. Food Technol. Biotechnol. 2013, 51, 360–369. [Google Scholar]
- Hong, C.U.; Kim, C.S.; Kim, N.G.; Kim, Y.H. Composition of essential oils from the leaves and the fruits of Chamaecyparis obtusa and Chamaecyparis pisifera. J. Korean Soc. Biotechnol. 2001, 44, 116–121. [Google Scholar]
- Yang, J.K.; Choi, M.S.; Seo, W.T.; Rinker, D.L.; Han, S.W.; Cheong, G.W. Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia 2007, 78, 149–152. [Google Scholar] [CrossRef]
- Bae, M.S.; Park, D.H.; Choi, C.Y.; Kim, G.Y.; Yoo, J.C.; Cho, S.S. Essential oils and non-volatile compounds derived from Chamaecyparis obtusa: Broad spectrum antimicrobial activity against infectious bacteria and MDR (multidrug resistant) strains. Nat. Prod. Commun. 2016, 11, 693–694. [Google Scholar] [CrossRef]
- Kim, M.G.; Lee, H.S. Volatile Constituents of Essential Oils Extracted from Two Varieties of Chamaecyparis pisifera in Korea. J. Essent. Oil-Bear. Plants 2012, 15, 364–367. [Google Scholar] [CrossRef]
- Song, H.J.; Yong, S.H.; Kim, H.G.; Kim, D.H.; Park, K.B.; Shin, K.C.; Choi, M.S. Insecticidal activity against Myzus persicae of terpinyl acetate and bornyl acetate in Thuja occidentalis essential oil. Horticulturae 2022, 8, 969. [Google Scholar] [CrossRef]
- Korea Forest Service. National Forest Inventory Data. Available online: https://kfss.forest.go.kr/stat/ptl/article/articleDtl.do (accessed on 23 May 2023).
- Cambero, C.; Sowlati, T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives—A review of literature. Renew. Sustain. Energy Rev. 2014, 36, 62–73. [Google Scholar] [CrossRef]
- Wood, S.M.; Layzell, D.B. A Canadian Biomass Inventory: Feedstocks for a Bio-Based Economy-Final Report; BIOCAP CAnada Foundation: Kingston, ON, Canada, 2003. [Google Scholar]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Lier, M.; Köhl, M.; Korhonen, K.T.; Linser, S.; Prins, K. Forest relevant targets in EU policy instruments-can progress be measured by the pan-European criteria and indicators for sustainable forest management? For. Policy Econ. 2021, 128, 102481. [Google Scholar] [CrossRef]
- Williams, L.R.; Lusunzi, I. Essential oil from Melaleuca dissitiflora: A potential source of high quality tea tree oil. Ind. Crops Prod. 1994, 2, 211–217. [Google Scholar] [CrossRef]
- Posadzki, P.; Alotaibi, A.; Ernst, E. Adverse effects of aromatherapy: A systematic review of case reports and case series. Int. J. Risk Saf. Med. 2012, 24, 147–161. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- The European Communities. Labelling of Ingredients in Cosmetics Directive 76/768/EEC Update February 2008. Available online: https://single-market-economy.ec.europa.eu/sectors/cosmetics_en (accessed on 13 September 2023).
- Matura, M.; Sköld, M.; Börje, A.; Andersen, K.E.; Bruze, M.; Frosch, P.; Goossens, A.; Johansen, J.D.; Svedman, C.; White, I.R. Not only oxidized R-(+)-but also S-(−)-limonene is a common cause of contact allergy in dermatitis patients in Europe. Contact Dermat. 2006, 55, 274–279. [Google Scholar] [CrossRef]
- Matura, M.; Goossens, A.; Bordalo, O.; Garcia-Bravo, B.; Magnusson, K.; Wrangsjö, K.; Karlberg, A.T. Patch testing with oxidized R-(+)-limonene and its hydroperoxide fraction. Contact Derm. 2003, 49, 15–21. [Google Scholar] [CrossRef]
- Topham, E.; Wakelin, S. D-limonene contact dermatitis from hand cleansers. Contact Derm. 2003, 49, 108–109. [Google Scholar] [CrossRef]
- Karlberg, A.T.; Magnusson, K.; Nilsson, U. Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Derm. 1992, 26, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Audicana, M.; Barnaola, G. Occupational contact dermatitis from citrus fruits: Lemon essential oils. Contact Derm. 1994, 31, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Rudbäck, J.; Bergström, M.A.; Börje, A.; Nilsson, U.; Karlberg, A.T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem. Res. Toxicol. 2012, 25, 713–721. [Google Scholar] [CrossRef]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef]
- Kelkar, V.M.; Geils, B.W.; Becker, D.R.; Overby, S.T.; Neary, D.G. How to recover more value from small pine trees: Essential oils and resins. Biomass Bioenergy 2006, 30, 316–320. [Google Scholar] [CrossRef]
- Johansson, J. Collaborative governance for sustainable forestry in the emerging bio-based economy in Europe. Curr. Opin. Environ. Sustain. 2018, 32, 9–16. [Google Scholar] [CrossRef]
- ISO 4730:2004; Oil of Melaleuca, Terpinen-4-ol Type (Tea Tree Oil). International Organisation for Standardisation: Geneva, Switzerland, 2004.
- Shojaee-Aliabadi, S.; Hosseini, S.M.; Mirmoghtadaie, L. Antimicrobial Activity of Essential Oil. In Essential Oils in Food Processing: Chemistry, Safety and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 191–229. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
Essential Oils | Production Metric Tons | Main Production Countries |
---|---|---|
Orange oils | 51,000 | United States, Brazil, Argentina |
Cornmint oil | 32,000 | India, China, Argentina |
Lemon oils | 9200 | Argentina, Italy, Spain |
Eucalyptus oils | 4000 | China, India, Australia, South Africa |
Peppermint oil | 3300 | India, United States, China |
Clove leaf oil | 1800 | Indonesia, Madagascar |
Citronella oil | 1800 | China, Sri Lanka |
Spearmint oils | 1800 | United States, China |
Cedarwood oils | 1650 | United States, China |
Litsea cubeba oil | 1200 | China |
Patchouli oil | 1200 | Indonesia, India |
Lavandin oil Grosso | 1100 | France |
Period | Export Weight | Export Value | Import Weight | Import Value | Balance of Trade |
---|---|---|---|---|---|
2020 | 51.1 | 1809.6 | 3075 | 57,892 | −54,817 |
2021 | 61.6 | 1831.9 | 2145 | 62,710 | −60,565 |
2022 | 43.6 | 1650.0 | 1876 | 64,510 | −62,634 |
Scientific Names | Plant Parts | Major Chemical Profile | Biological Activities | Application | Ref. |
---|---|---|---|---|---|
L. kaempferi | leaves | α-pinene (19.9%), β-pinene (17.4%), L-bornyl acetate (6.1%) [22] | herbicidal effect | agriculture industry | [22] |
anti-dermatophyte effect | pharmaceutical industry | [23] | |||
wood | α-pinene (18.6%), α-cadinol (6.2%), cembrene (6.1%) | anti-inflammatory effect (relieving the allergy) | pharmaceutical industry | [24] |
Scientific Names | Plant Parts | Major Chemical Profile | Biological Activities | Application | Ref. |
---|---|---|---|---|---|
C. pisifera | leaves | 3-carene (35.0%) (−)-bornyl acetate (19.8%) α-pinene (13.0%) [63] | insecticidal activity | agriculture | [64] |
fruit | (−)3-carene (30.3%) α-pinene (29.4%) myrcene (15.1%) [60] | - | - | - |
Species | The Forest Area (ha) | |
---|---|---|
1 | Larix kaempferi (Lamb.) Carriere | 259,257 |
2 | Pinus densiflora Siebold & Zucc. | 1,321,878 |
3 | Chamaecyparis obtusa (Siebold & Zucc.) | 69,538 |
Scientific Names | Plant Parts | Major Chemical Profile | Allergenic Chemical Components in Accordance with EU Directive |
---|---|---|---|
P. densiflora | leaves | α-pinene (21.6%) limonene (13.1%) caryophellene (11.4%) [30] | limonene |
twigs | β-pinene (22.4%) α-pinene (17.3%) limonene (15%) [30] | limonene | |
P. koraiensis | seed | α-pinene (29.9%) D-limonene (19.3%) Β-pinene (11.2%) [14] | D-limonene |
cones | D-limonene (28.0%), α-pinene (23.9%), Β-pinene (12.1%) [42] | D-limonene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Woo, H.; Park, M.-J. Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea. Plants 2023, 12, 3409. https://doi.org/10.3390/plants12193409
Park C, Woo H, Park M-J. Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea. Plants. 2023; 12(19):3409. https://doi.org/10.3390/plants12193409
Chicago/Turabian StylePark, Chanjoo, Heesung Woo, and Mi-Jin Park. 2023. "Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea" Plants 12, no. 19: 3409. https://doi.org/10.3390/plants12193409
APA StylePark, C., Woo, H., & Park, M. -J. (2023). Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea. Plants, 12(19), 3409. https://doi.org/10.3390/plants12193409