Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice (Oryza sativa) KDML105 Seedlings under Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Effect of ST-PGPR Inoculation on KDML105 Rice Seedlings
2.2. Growth Parameters
2.3. Chlorophyll Content of KDML105 Rice Seedlings
2.4. Antioxidant Activity and Proline in KDML105 Rice Seedlings
2.5. Nutrient Uptake
2.6. Relationships between the Study Variables by Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Rice Rhizobacterial Isolates
4.2. Effect of ST-PGPR Inoculation on Rice Seedling Growth under Salt Stress
Preparation of ST-PGPR Pellets and Rice Seedlings
4.3. Chemical Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunin, S.; Pongwichian, P. Salt-affected soils and management in Thailand. Bull. Soc. Sea Water Sci. Jpn. 2015, 69, 319–325. [Google Scholar] [CrossRef]
- Chen, S.; Gollop, N.; Heuer, H. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: Effect of genotype and exogenous application of glycinebetaine. J. Exp. Bot. 2009, 60, 2005–2019. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Bassil, E.; Hamilton, J.S.; Inupakutika, M.A.; Zandalinas, S.I.; Tripathy, D.; Luo, Y.; Dion, E.; Fukui, G.; Kumazaki, A.; et al. ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 2016, 11, e0147625. [Google Scholar] [CrossRef] [PubMed]
- Grattan, S.R.; Zeng, L.; Shannon, M.C.; Roberts, S.R. Rice is more sensitive to salinity than previously thought. Calif. Agric. 2002, 56, 189–195. [Google Scholar] [CrossRef]
- Rad, H.E.; Aref, F.; Rezaei, M. Evaluation of salinity stress affects rice growth and yield components in northern Iran. Am. J. Sci. Res. 2012, 54, 40–51. [Google Scholar]
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef] [PubMed]
- Chinachanta, K.; Shutsrirung, A. Screening for P- and K- Solubilizing, and Siderophore Producing Capacity of Rhizobacteria from Khao Dawk Mali 105 Aromatic Rice. IOP Conf. Ser. Earth Environ. Sci. 2021, 858, 012004. [Google Scholar] [CrossRef]
- Rajput, L.; Imran, A.; Mubeen, F.; Hafeez, F.Y. Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak. J. Bot. 2013, 45, 1955–1962. [Google Scholar]
- Sarkar, A.; Ghosh, P.K.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; Mondale, M.H.; KantiMaiti, T. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 2018, 169, 20–32. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alamri, S.A.; Ali, H.M.; Alayafi, A.A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol. Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, C.; Wang, Y.; Xia, Y.; Xiao, W.; Cui, X. Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil. Can. J. Microbiol. 2018, 64, 968–978. [Google Scholar] [CrossRef]
- Sharma, A.; Shankhdhar, D.; Sharma, A.; Shankhdhar, S.C. Growth promotion of the rice genotypes by pgprs isolated from rice rhizosphere. J. Soil Sci. Plant Nutr. 2014, 14, 505–517. [Google Scholar] [CrossRef]
- Deshmukh, Y.; Khare, P.; Patra, D. Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety. Rhizosphere 2016, 1, 53–57. [Google Scholar] [CrossRef]
- Jha, B.; Gontia, I.; Hartmann, A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 2012, 356, 265–277. [Google Scholar] [CrossRef]
- Viscardi, S.; Ventorino, V.; Duran, P.; Maggio, A.; De Pascale, S.; Mora, M.L.; Pepe, O. Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J. Soil Sci. Plant Nutr. 2016, 16, 848–863. [Google Scholar] [CrossRef]
- Chinachanta, K.; Shutsrirung, A.; Herrmann, L.; Lesueur, D.; Pathom-aree, W. Enhancement of the aroma compound 2-acetyl-1-pyrroline in thai jasmine rice (Oryza sativa) by rhizobacteria under salt stress. Biology 2021, 10, 1065. [Google Scholar] [CrossRef]
- Chinachanta, K.; Shutsrirung, A.; Herrmann, L.; Lesueur, D. Isolation and characterization of KDML105 aromatic rice rhizobacteria producing indole-3-acetic acid: Impact of organic and conventional paddy rice practices. Lett. Appl. Microbiol. 2021, 74, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Yoshihashi, T.; Nguyen, T.T.H.; Kabaki, N. Area dependency of 2-acetyl-1-pyrroline content in an aromatic rice variety, Khao Dawk Mali 105. Jpn. Agric. Res. Q. 2004, 38, 105–109. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.N.; Tiwari, R.K.; Sahu, P.K.; Yadav, J.; Srivastava, A.K.; Kumar, S. Salinity Alleviation and reduction in oxidative dtress by Endophytic and Rhizospheric Microbes in two rice cultivars. Plants 2023, 12, 976. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lim, J.H.; Park, M.R.; Kim, Y.J.; Park, T.I.; Se, Y.W.; Choi, K.G.; Yun, S.J. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J. Biochem. Mol. Biol. 2005, 38, 218–224. [Google Scholar] [CrossRef]
- Diby, P.; Sarma, Y.R.; Srinivasan, V.; Anandaraj, M. Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under greenhouse cultivation. Ann. Microbiol. 2005, 55, 171–174. [Google Scholar] [CrossRef]
- Paul, D.; Sarma, Y.R. Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch. Phytopathol. Plant Prot. 2006, 39, 311–314. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Boughattas, S.; Hu, S.; Oh, S.-H.; Sa, T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 2014, 24, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Peng, F.; Xue, X.; You, Q.; Zhang, W.; Wang, T.; Huang, C. The growth promotion of two salt- tolerant plant groups with PGPR inoculation: A meta-analysis. Sustainability 2019, 11, 378. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Jabborova, D.; Räsänen, L.A.; Liao, H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Interact. 2017, 12, 100–107. [Google Scholar] [CrossRef]
- Ghazanfar, B.; Cheng, Z.; Cuinan, W.U.; Liu, H.; Hezi, L.I.; Rehman, R.N.U.; Ahmad, I.; Khan, A.R. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced NaCl tolerance by regulation of NaCl & LeNHXL gene expression and improved photosynthetic performance in tomato seedlings. Pak. J. Bot. 2016, 48, 1209–12117. [Google Scholar]
- Niu, S.; Gao, Y.; Zi, H.; Liu, Y.; Liu, X.; Xiong, X.; Yao, Q.; Qin, Z.; Chen, N.; Guo, L.; et al. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. Crop J. 2022, 10, 375–386. [Google Scholar] [CrossRef]
- Kruasuwan, W.; Lohmaneeratana, K.; Munnoch, J.T.; Vongsangnak, W.; Jantrasuriyarat, C.; Hoskisson, P.A.; Thamchaipenet, A. Transcriptome landscapes of salt-susceptible rice cultivar IR29 associated with a plant growth promoting endophytic Streptomyces. Rice 2023, 16, 1–14. [Google Scholar] [CrossRef]
- Egamberdieva, D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 2009, 31, 861–864. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Waqas, M.; Kang, S.-M.; Lee, I.-J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ. Exp. Bot. 2017, 136, 68–77. [Google Scholar] [CrossRef]
- Kang, S.; Shahzad, R.; Bilal, S.; Khan, A.L.; Park, Y.G.; Lee, K.E.; Asaf, S.; Khan, M.A.; Lee, I.-J. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Rangseekaew, P.; Barros-Rodriguez, A.; Pathom-aree, W.; Manzanera, M. Deep-sea actinobacteria mitigate salinity stress in tomato seedlings and their biosafety testing. Plants 2021, 10, 1687. [Google Scholar] [CrossRef] [PubMed]
- Rangseekaew, P.; Barros-Rodriguez, A.; Pathom-aree, W.; Manzanera, M. Plant beneficial deep-sea actinobacterium, Dermacoccus abyssi MT1.1T promote growth of tomato (Solanum lycopersicum) under salinity stress. Biology 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of Salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- El-Rahman, S.S.A.; Mazen, M.M.; Mohamed, H.I.; Mahmoud, N.M. Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur. J. Plant Pathol. 2012, 134, 105–116. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Parihar, P.; Mishra, R.K.; Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M. Reactive oxygen species (ROS): Beneficial companions of plants developmental processes. Front. Plant Sci. 2016, 7, 1299. [Google Scholar] [CrossRef]
- Peng, Y.L.; Gao, Z.W.; Gao, Y.; Liu, G.F.; Sheng, L.X.; Wang, D.L. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J. Integr. Plant Biol. 2008, 50, 29–39. [Google Scholar] [CrossRef]
- Heuer, B. Role of Proline in Plant Response to Drought and Salinity. In Handbook of Plant and Crop Stress, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 213–238. [Google Scholar] [CrossRef]
- Matysik, J.; Alia, A.; Bhalu, B.; Mohanty, P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Hoque, M.A.; Banu, M.N.A.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol. 2008, 165, 813–824. [Google Scholar] [CrossRef]
- Ben Ahmed, C.; Ben Rouina, B.; Sensoy, S.; Boukhriss, M.; Ben Abdullah, F. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J. Agric Food Chem. 2010, 58, 4216–4222. [Google Scholar] [CrossRef] [PubMed]
- Deivanai, S.; Xavier, R.; Vinod, V.; Timalata, K.; Lim, O.F. Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J. Stress Physiol. Biochem. 2011, 7, 157–174. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Heijden, M.G.A.V.D.; Bardgett, R.D.; Straalen, N.M.V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Yoshihashi, T.; Huong, N.T.T.; Inatomi, H. Precursors of 2-acetyl-1 pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 2002, 50, 2001–2004. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, T.; Zheng, A.; He, L.; Lai, R.; Liu, J.; Xing, P.; Tang, X. Exogenous proline induces regulation in 2-acetyl-1-pyrroline (2-AP) biosynthesis and quality characters in fragrant rice (Oryza sativa L.). Sci. Rep. 2020, 2020, 13971. [Google Scholar] [CrossRef]
- Sansenya, S.; Hua, Y.; Chumanee, S.; Sricheewin, C. The combination effect of gamma irradiation and salt concentration on 2-acetyl-1-pyrroline content, proline content and growth of Thai fragrant rice (KDML 105). Orient. J. Chem. 2019, 35, 938–946. [Google Scholar] [CrossRef]
- Poonlaphdecha, J.; Maraval, I.; Roques, S.; Audebert, A.; Boulanger, R.; Bry, X.; Gunata, Z. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. J. Agric Food Chem. 2012, 60, 3824–3830. [Google Scholar] [CrossRef]
- Kongpun, A.; Jaisiri, P.; Rerkasem, B.; Prom-u-thai, C. Impact of soil salinity on grain yield and aromatic compound in Thai Hom Mali rice cv. Khao Dawk Mali 105. Agric. Nat. Resour. 2020, 54, 74–78. [Google Scholar] [CrossRef]
- Kongpun, A.; Pusadee, T.; Jaksomsak, P.; Chinachanta, K.; Tuiwong, P.; Chan-in, P.; Konsaeng, S.; Pathom-aree, W.; Utasee, S.; Wangkaew, B.; et al. Abiotic and Biotic Factors Controlling Aromatic Flavor Along the Value Chain of Fragrant Rice: A Review. Rice Sci. 2023, in press.
- Flowers, T.J. Improving crop salt tolerance. J. Exp Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Hamdia, M.B.E.; Shaddad, M.A.K.; Doaa, M.M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul. 2004, 44, 165–174. [Google Scholar] [CrossRef]
- Armada, E.; Roldán, A.; Azcon, R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb. Ecol. 2014, 67, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Garciadeblás, B.; Senn, M.E.; Bañuelos, M.A.; Rodríguez-Navarro, A. Sodium transport and HKT transporters: The rice model. Plant J. 2003, 34, 788–801. [Google Scholar] [CrossRef]
- Gao, J.P.; Chao, D.Y.; Lin, H.X. Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice. J. Integr. Plant Biol. 2007, 49, 742–750. [Google Scholar] [CrossRef]
- Folli-Pereira, M.D.S.; Meira-Haddad, L.S.A.; Kasuya, M.C.M. Plant-microorganism interactions: Effects on the tolerance of plants to biotic and abiotic stresses. In Crop Improvement: New Approaches and Modern Techniques; Springer: Berlin, Germany, 2013; pp. 209–239. [Google Scholar]
- Vogelsang, K.M.; Reynolds, H.L.; Bever, J.D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 2006, 172, 554–562. [Google Scholar] [CrossRef]
- Dodd, I.C.; Perez-Alfocea, F. Microbial amelioration of crop salinity stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef]
- Ash, C. Fungi help trees hunt for food. Science 2016, 353, 661. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Zhang, Z.; Peijnenburg, W.; Liu, W.; Lu, T.; Hu, B.; Chen, J.; Chen, J.; Lin, Z.; Qian, H. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 2020, 68, 5024–5038. [Google Scholar] [CrossRef] [PubMed]
- Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [PubMed]
- Jofre, E.; Fischer, S.; Rivarola, V.; Balegno, H.; Mori, G. Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can. J. Microbiol. 1998, 44, 416–422. [Google Scholar] [CrossRef]
- Chinachanta, K.; Herrmann, L.; Lesueur, D.; Jongkaewwattana, S.; Santasup, C.; Shutsrirung, A. Influences of farming practices on soil properties and the 2-acetyl-1-pyrroline content of Khao Dawk Mali 105 rice grains. Appl. Environ. Soil Sci. 2020, 2020, 8818922. [Google Scholar] [CrossRef]
- Iwai, R.; Uchida, S.; Yamaguchi, S.; Sonoda, F.; Tsunoda, K.; Nagata, H.; Nagata, D.; Koga, A.; Goto, M.; Maki, T.-A.; et al. Effects of Seed Bio-Priming by Purple Non-Sulfur Bacteria (PNSB) on the Root Development of Rice. Microorganisms 2022, 10, 2197. [Google Scholar] [CrossRef]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Cataldo, D.A.; Schrader, L.E.; Youngs, V.L. Analysis by digestion and colorimetric assay of total nitrogen in plant tissues high in nitrate. Crop Sci. 1974, 14, 854–856. [Google Scholar] [CrossRef]
- Fageria, N.K. Critical P, K, Ca, and Mg contents in the tops of rice and peanut plants. Plant Soil 1976, 45, 421–431. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course, 2nd ed.; University of Wisconsin-Madison Libraries, Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics. In Abiometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
ST-PGPR Strains | Shoot Length (cm) | Root Length (cm) | Dry Weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NaCl Concentrations (mM) | NaCl Concentrations (mM) | NaCl Concentrations (mM) | ||||||||||
0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | |
Controls 1 | 21.72 d | 20.23 d | 10.60 d | 5.43 d | 9.59 cd | 10.18 c | 5.33 b | 3.12 c | 0.30 b | 0.27 b | 0.24 ab | 0.16 c |
Organic rice farming | ||||||||||||
ORF4-13 | 24.41 bc | 23.74 cd | 18.25 ab | 12.84 a | 19.30 a | 12.66 bc | 5.67 b | 3.43 c | 0.32 b | 0.38 b | 0.29 ab | 0.25 bc |
ORF10-12 | 25.17 bc | 29.51 abc | 17.44 abc | 14.96 a | 10.01 cd | 15.26 b | 11.11 a | 9.10 a | 0.32 b | 0.4 b | 0.28 ab | 0.28 ab |
ORF15-19 | 23.48 cd | 28.96 abc | 9.69 d | 7.59 b | 9.83 cd | 12.78 bc | 4.89 b | 3.77 c | 0.31 b | 0.34 b | 0.34 a | 0.29 ab |
ORF15-20 | 27.42 ab | 30.78 ab | 15.80 bc | 13.24 a | 22.03 a | 12.80 bc | 6.36 b | 5.14 bc | 0.42 ab | 0.39 ab | 0.36 a | 0.35 a |
ORF15-23 | 29.42 a | 32.50 a | 18.81 a | 15.40 a | 19.34 a | 20.77 a | 11.48 a | 6.88 ab | 0.54 a | 0.58 a | 0.32 a | 0.27 ab |
Conventional rice farming | ||||||||||||
CRF 5-8 | 20.84 d | 13.43 e | 9.18 d | 8.23 b | 7.78 d | 6.83 c | 4.89 b | 3.87 c | 0.35 b | 0.26 b | 0.27 ab | 0.25 bc |
CRF14-15 | 23.84 cd | 24.50 cd | 15.84 bc | 6.84 b | 11.36 bc | 12.83 bc | 10.55 a | 4.09 c | 0.32 b | 0.27 b | 0.30 ab | 0.28 ab |
CRF16-3 | 26.65 abc | 22.37 d | 19.14 a | 7.35 b | 10.69 cd | 11.36 c | 11.44 a | 3.65 | 0.36 b | 0.28 b | 0.22 b | 0.20 bc |
CRF17-18 | 25.04 bc | 25.00 bcd | 15.00 c | 7.35 b | 14.38 b | 13.24 bc | 11.62 a | 5.25 bc | 0.36 b | 0.31 b | 0.27 ab | 0.25 bc |
Mean | 25.10 | 25.102 | 14.98 | 9.92 | 13.43 | 12.87 | 8.33 | 4.82 | 0.36 | 0.37 | 0.29 | 0.26 |
F-test | * | * | * | * | * | * | * | * | * | * | * | * |
% CV | 5.76 | 10.00 | 8.31 | 14.34 | 10.39 | 11.10 | 15.48 | 8.04 | 7.64 | 6.90 | 8.25 | 5.11 |
Rhizobacterial isolates (A) | ** | ** | ** | |||||||||
NaCl concentration (B) | ** | ** | ** | |||||||||
A × B | ** | ** | ** | |||||||||
LSD(0.01) (A × B) | 2.61 | 2.08 | 0.08 | |||||||||
% CV | 8.56 | 13.15 | 17.15 |
ST-PGPR Strains | Chlorophyll (SPAD Unit) | Proline | DPPH Radical Scavenging Activity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(μmolg−1 FW min−1) | (mg Trolox g mL−1) | |||||||||||
NaCl concentrations (mM) | NaCl Concentrations (mM) | NaCl Concentrations (mM) | ||||||||||
0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | |
Controls1 | 37.33 c | 36.23 d | 34.87 bc | 30.84 c | 14.84 d | 17.84 f | 30.43 d | 15.94 d | 43.94 f | 57.47 cd | 61.92 e | 60.92 d |
Organic rice farming | ||||||||||||
ORF4-13 | 39.84 bc | 36.24 d | 34.95 bc | 30.36 c | 25.04 b | 29.93 cd | 38.03 c | 21.93 c | 48.95 df | 56.04 de | 68.93 cd | 70.32 c |
ORF10-12 | 40.32 bc | 39.84 abc | 38.74 a | 37.72 a | 29.05 a | 35.29 b | 42.93 b | 29.84 b | 62.04 b | 71.52 b | 76.34 b | 80.43 b |
ORF15-19 | 41.52 ab | 40.95 ab | 39.95 a | 38.87 a | 26.94 b | 31.94 c | 45.92 b | 28.92 b | 70.32 a | 74.06 ab | 83.94 a | 89.32 a |
ORF15-20 | 39.42 bc | 39.42 abcd | 35.39 b | 33.28 b | 24.95 bc | 32.94 bc | 45.23 b | 30.94 b | 69.94 a | 74.95 a | 82.95 a | 89.42 a |
ORF15-23 | 44.23 a | 42.19 a | 40.19 a | 39.32 a | 30.84 a | 46.92 a | 54.83 a | 35.34 a | 72.94 a | 76.04 a | 85.03 a | 93.43 a |
Conventional rice farming | ||||||||||||
CRF5-8 | 37.93 c | 36.92 cd | 31.94 cd | 30.48 c | 16.94 c | 24.92 e | 23.02 e | 20.94 c | 45.43 ef | 49.54 f | 54.03 f | 60.32 d |
CRF14-15 | 40.32 bc | 38.84 bcd | 34.96 bc | 32.05 bc | 23.94 bc | 27.94 d | 34.29 cd | 20.94 c | 56.93 c | 60.30 c | 69.83 c | 73.95 bc |
CRF16-3 | 37.83 c | 36.93 cd | 33.64 bcd | 30.59 c | 15.94 d | 28.94 cd | 27.43 de | 16.92 d | 52.43 d | 56.03 de | 65.47 de | 69.34 c |
CRF17-18 | 39.82 bc | 38.85 bcd | 30.50 d | 31.93 bc | 17.94 c | 18.42 f | 20.58 f | 15.93 d | 49.95 d | 53.05 e | 62.05 e | 70.93 c |
Mean | 39.86 | 38.64 | 35.51 | 33.54 | 32.52 | 36.51 | 39.78 | 30.22 | 57.29 | 62.90 | 71.05 | 75.84 |
F-test | * | * | * | * | * | * | * | * | * | * | * | * |
% CV | 3.37 | 3.62 | 3.86 | 2.94 | 4.31 | 5.47 | 4.42 | 3.72 | 2.95 | 2.13 | 2.18 | 3.86 |
Rhizobacterial isolates (A) | ** | ** | ** | |||||||||
NaCl concentration (B) | ** | ** | ** | |||||||||
A × B | ** | ** | ** | |||||||||
LSD(0.01) for (A × B) | 1.99 | 3.16 | 1.80 | |||||||||
%CV | 3.33 | 2.91 | 3.34 |
ST-PGPR Strains | N | P | K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg N plant−1) | (mg P plant−1) | (mg K plant−1) | ||||||||||
NaCl Concentrations (mM) | NaCl Concentrations (mM) | NaCl Concentrations (mM) | ||||||||||
0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | |
Controls 1 | 10.86 d (0.00) | 10.26 de (0.00) | 6.264 d (0.00) | 3.74 d (0.00) | 3.63 b (0.00) | 3.21 bc (0.00) | 2.69 bc (0.00) | 1.34 c (0.00) | 16.41 c (0.00) | 10.26 f (0.00) | 8.04 e (0.00) | 3.92 c (0.00) |
Organic rice farming | ||||||||||||
ORF4-13 | 11.26 d (3.72) | 10.03 def (−2.22) | 9.19 bc (46.76) | 8.48 a (126.36) | 3.90 ab (7.55) | 4.52 bc (40.74) | 3.36 abc (25.15) | 2.73 ab (102.75) | 17.09 c (4.13) | 18.09 b (76.30) | 11.11 cd (38.15) | 9.58 b (144.26) |
ORF10-12 | 11.58 d (6.67) | 15.48 b (50.88) | 9.58 bc (52.87) | 6.80 abc (81.73) | 3.87 ab (6.67) | 4.76 b (48.15) | 2.66 bc (−1.04) | 2.44 abc (81.25) | 17.34 c (5.67) | 14.76 bcd (43.86) | 9.52 de (18.41) | 10.84 b (176.43) |
ORF15-19 | 10.63 d (−2.09) | 11.22 cd (9.36) | 11.66 a (86.17) | 7.92 ab (111.46) | 3.75 b (3.33) | 3.91 bc (21.69) | 3.67 ab (36.61) | 2.96 ab (120.09) | 16.83 c (2.58) | 18.22 b (77.62) | 16.63 a (106.79) | 15.75 a (301.71) |
ORF15-20 | 19.45 a (79.06) | 13.77 bc (34.18) | 9.32 bc (48.85) | 6.27 abc (67.33) | 5.17 ab (42.31) | 4.68 bc (45.66) | 4.07 a (51.34) | 3.47 a (157.81) | 17.93 c (9.29) | 16.30 bc (58.89) | 14.80 ab (84.03) | 9.03 b (130.36) |
ORF15-23 | 17.17 ab (58.12) | 25.16 a (145.19) | 10.02 ab (59.90) | 6.94 abc (85.34) | 6.59 a (81.49) | 9.20 a (186.21) | 3.65 ab (35.71) | 2.97 ab (116.96) | 28.24 a (72.10) | 38.23 a (272.59) | 12.90 bc (60.40) | 9.48 b (127.30) |
Conventional rice farming | ||||||||||||
CRF5-8 | 11.83 d (8.93) | 8.58 def (−16.37) | 8.15 c (30.17) | 5.30 cd (41.56) | 3.57 b (−1.65) | 2.96 c (−7.75) | 3.35 abc (24.55) | 2.63 ab (95.31) | 18.06 bc (10.05) | 12.45 def (21.38) | 12.39 c (54.14) | 8.91 b (141.71) |
CRF14-15 | 10.72 d (−1.29) | 8.15 ef (−20.53) | 10.41 ab (66.19) | 8.12 a (116.88) | 3.94 ab (8.43) | 3.24 bc (0.84) | 3.36 abc (25.00) | 3.19 ab (131.25) | 18.53 bc (12.91) | 13.85 cde (35.00) | 12.69 bc (57.84) | 11.12 ab (183.67) |
CRF16-3 | 15.08 bc (38.90) | 8.85 def (−13.76) | 5.85 d (−6.58) | 5.78 bcd (54.38) | 4.36 ab (20.00) | 3.36 bc (4.58) | 2.38 c (−11.61) | 2.28 bc (69.64) | .2010 b (28.56) | 10.59 ef (3.16) | 8.56 e (6.44) | 4.36 c (11.22) |
CRF17-18 | 12.96 cd (19.34) | 7.29 f (-29.00) | 6.13 d (−2.16) | 5.80 bcd (54.91) | 4.32 ab (19.01) | 3.63 bc (12.89) | 3.02 abc (12.50) | 3.03 ab (125.07) | 17.10 c (4.20) | 14.42 cd (40.50) | 9.26 de (15.19) | 8.68 bc (121.30) |
Mean | 13.16 | 11.88 | 8.66 | 6.51 | 4.31 | 4.34 | 3.22 | 2.69 | 18.86 | 16.71 | 11.59 | 9.84 |
F-test | * | * | * | * | * | * | * | * | * | * | * | * |
% CV | 8.15 | 10.43 | 8.41 | 5.03 | 7.25 | 7.78 | 6.42 | 7.69 | 8.45 | 9.13 | 8.24 | 2.09 |
Rhizobacterial isolates (A) | ** | ** | ** | |||||||||
NaCl concentration (B) | ** | ** | ** | |||||||||
A × B | ** | ** | ** | |||||||||
LSD(0.01) for (A × B) | 1.5283 | 1.2928 | 2.1961 | |||||||||
% CV | 9.35 | 21.84 | 30.21 |
ST-PGPR Strains | Ca | Mg | Na | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg Ca plant−1) | (mg Mg plant−1) | (mg Na plant−1) | ||||||||||
NaCl Concentrations (mM) | NaCl Concentrations (mM) | NaCl Concentrations (mM) | ||||||||||
0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | 0 | 50 | 100 | 150 | |
Controls 1 | 0.66 b (0.00) | 0.49 bcd (0.00) | 0.29 (0.00) | 0.16 b (0.00) | 1.68 b (0.00) | 1.30 b (0.00) | 0.79 cde (0.00) | 0.48 c (0.00) | 9.96 d (0.00) | 10.45 cd (0.00) | 9.38 de (0.00) | 6.37 d (0.00) |
Organic rice farming | ||||||||||||
ORF4-13 | 0.67 b (1.82) | 0.61 bcd (25.10) | 0.44 (51.04) | 0.30 ab (87.50) | 1.38 b (−18.10) | 1.82 b (40.74) | 1.07 b (35.48) | 0.73 abc (51.04) | 10.21 cd (2.51) | 13.45 b (28.72) | 10.79 bcd (15.03) | 9.45 b (48.35) |
ORF10-12 | 0.93 b (40.61) | 0.76 bc (56.38) | 0.34 (16.67) | 0.20 b (22.50) | 1.57 b (−6.67) | 1.72 b (32.71) | 0.76 de (−4.55) | 0.70 abc (45.83) | 10.08 d (1.20) | 14.24 b (36.28) | 10.052 cd (7.16) | 10.11 b (58.71) |
ORF15-19 | 0.71 b (8.03) | 0.54 bcd (11.93) | 0.31 (6.25) | 0.26 ab (63.13) | 1.64 b (−2.20) | 1.19 b (−8.18) | 1.05 b (33.08) | 1.01 ab (111.46) | 9.95 d (−0.10) | 12.04 bc (15.23) | 12.27 ab (30.81) | 10.88 b (70.80) |
ORF15-20 | 0.84 b (27.27) | 0.82 b (68.52) | 0.58 (100.00) | 0.46 a (184.38) | 2.02 ab (20.00) | 1.64 b (26.39) | 1.55 a (95.45) | 1.05 a (118.75) | 13.48 b (35.34) | 13.88 b (32.84) | 13.54 a (44.35) | 13.20 a (107.22) |
ORF15-23 | 1.62 a (145.45) | 1.98 a (306.58) | 0.48 (66.67) | 0.32 ab (102.50) | 3.13 a (86.43) | 3.95 a (204.94) | 1.09 b (37.37) | 1.05 a (119.38) | 17.01 a (70.78) | 16.30 a (56.00) | 11.30 bc (20.47) | 9.75 b (53.06) |
Conventional rice farming | ||||||||||||
CRF5-8 | 0.70 b (6.06) | 0.42 d (−14.40) | 0.30 (3.13) | 0.26 b (40.63) | 2.03 ab (20.83) | 1.22 b (−5.71) | 0.97 bc (22.73) | 0.75 abc (56.25) | 11.24 cd (12.85) | 9.07 d (−13.20) | 9.50 cde (1.28) | 8.95 bc (40.50) |
CRF14-15 | 1.02 ab (55.15) | 0.46 cd (−5.56) | 0.42 (45.83) | 0.17 b (5.00) | 1.73 b (2.86) | 1.03 b (−20.83) | 0.90 bcd (13.64) | 1.01 ab (110.00) | 10.56 cd (6.02) | 9.50 cd (−9.08) | 10.83 bcd (15.46) | 10.42 b (63.58) |
CRF16-3 | 0.79 b (20.00) | 0.50 bcd (3.70) | 0.22 (−23.61) | 0.22 b (37.50) | 1.69 b (0.71) | 1.15 b (−11.42) | 0.70 e (−11.11) | 0.60 bc (25.00) | 11.70 c (17.47) | 10.22 cd (−2.19) | 8.14 e (−13.22) | 7.36 cd (15.54) |
CRF17-18 | 0.83 b (25.45) | 0.43 cd (−10.70) | 0.22 (−25.00) | 0.23 b (40.63) | 1.73 b (2.86) | 1.30 b (0.46) | 1.05 b (32.95) | 0.88 abc (82.29) | 11.52 cd (15.66) | 10.76 cd (2.98) | 9.50 cde (1.28) | 9.03 bc (41.76) |
Mean | 0.88 | 0.70 | 0.36 | 0.25 | 1.86 | 1.63 | 0.99 | 0.83 | 11.57 | 12.99 | 10.53 | 9.55 |
F-test | * | * | ns | * | * | * | * | * | * | * | * | * |
% CV | 3.34 | 2.94 | 5.23 | 3.84 | 8.53 | 3.85 | 8.33 | 2.18 | 5.88 | 8.48 | 7.77 | 9.08 |
Rhizobacterial isolates (A) | ** | ** | ** | |||||||||
NaCl concentration (B) | ** | ** | ** | |||||||||
A × B | ** | ** | ** | |||||||||
LSD(0.01) for (A × B) | 0.2823 | 0.5456 | 1.3728 | |||||||||
% CV | 31.73 | 25.28 | 7.57 |
ST-PGPR Strains | K+/Na+ Ratio | |||
---|---|---|---|---|
NaCl Concentrations (mM) | ||||
0 | 50 | 100 | 150 | |
Controls 1 | 1.65 ab | 0.99 c | 0.86 b | 0.62 ef |
Organic rice farming | ||||
ORF4-13 | 1.67 ab | 1.34 ab | 1.03 ab | 1.01 cd |
ORF10-12 | 1.72 ab | 1.04 c | 0.95 b | 1.07 c |
ORF15-19 | 1.69 ab | 1.51 a | 1.35 a | 1.45 b |
ORF15-20 | 1.33 b | 1.17 bc | 1.09 ab | 0.69 def |
ORF15-23 | 1.66 ab | 2.34 a | 1.49 ab | 0.91 cde |
Conventional rice farming | ||||
CRF5-8 | 1.61 ab | 1.37 ab | 1.30 a | 1.06 a |
CRF14-15 | 1.75 a | 1.45 a | 1.17 ab | 1.06 c |
CRF16-3 | 1.80 a | 1.04 c | 1.05 ab | 0.59 f |
CRF17-18 | 1.48 ab | 1.34 ab | 0.98 b | 0.96 cd |
Mean | 1.64 | 1.27 | 1.10 | 0.94 |
F-test | * | * | * | * |
% CV | 10.60 | 10.32 | 13.366 | 13.75 |
Rhizobacterial isolates (A) | ** | |||
NaCl concentration (B) | ** | |||
A × B | ** | |||
LSD(0.01) for (A × B) | 4.81 | |||
% CV | 11.84 |
Strain | Genus | IAA Production (µg IAA mL−1) | 2AP Level of KDML105 Rice Seedlings (μg·kg−1) | Rhizobacterial Population (CFU mL−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NaCl (% w/v) | NaCl (% w/v) | |||||||||
0 | 50 | 100 | 150 | 0 | 1 | 2 | 3 | |||
Organic farming 2 | ||||||||||
ORF4-13 | Sinomonas sp. | 155.1 | 11.01 | 13.23 | 7.55 | 4.87 | 8.7 × 108 | 2.3 × 108 | 8.3 × 107 | 6.7 × 107 |
ORF10-12 | Enterobacter sp. | 47.7 | 14.31 | 18.7 | 12.87 | 7.14 | 2.2 × 109 | 2.7 × 108 | 1.0 × 108 | 1.7 × 107 |
ORF15-19 | Micrococcus sp. | 147.2 | 14.64 | 18.71 | 8.54 | 6.53 | 2.3 × 109 | 1.1 × 109 | 8.3 × 108 | 1.5 × 108 |
ORF15-20 | Micrococcus sp. | 127.8 | 15.39 | 18.24 | 6.62 | 5.88 | 7.2 × 108 | 1.5 × 108 | 1.3 × 107 | 1.2 × 107 |
ORF15-23 | Sinomonas sp. | 155.6 | 15.64 | 19.61 | 10.13 | 6.22 | 2.1 × 109 | 1.3 × 109 | 8.3 × 108 | 2.1 × 108 |
Conventional farming 2 | ||||||||||
CRF5-8 | unidentified | ND 1 | 12.44 | 13.64 | 8.21 | 4.65 | 1.2 × 109 | 2.5 × 108 | 6.2 × 107 | 3.5 × 107 |
CRF14-15 | Sinomonas sp. | 84.5 | 10.65 | 11.58 | 6.92 | 4.41 | 9.7 × 108 | 3.3 × 108 | 2.7 × 108 | 6.7 × 107 |
CRF16-3 | Burkholderia sp. | 7.3 | 14.06 | 17.43 | 10.12 | 9.43 | 3.8 × 106 | 6.7 × 105 | 3.3 × 105 | 1.7 × 105 |
CRF17-18 | Bacillus sp. | 55.1 | 11.03 | 12.01 | 6.43 | 5.75 | 1.1 × 109 | 2.5 × 108 | 7.8 × 107 | 3.5 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinachanta, K.; Shutsrirung, A.; Santasup, C.; Pathom-Aree, W.; Luu, D.T.; Herrmann, L.; Lesueur, D.; Prom-u-thai, C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice (Oryza sativa) KDML105 Seedlings under Salt Stress. Plants 2023, 12, 3441. https://doi.org/10.3390/plants12193441
Chinachanta K, Shutsrirung A, Santasup C, Pathom-Aree W, Luu DT, Herrmann L, Lesueur D, Prom-u-thai C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice (Oryza sativa) KDML105 Seedlings under Salt Stress. Plants. 2023; 12(19):3441. https://doi.org/10.3390/plants12193441
Chicago/Turabian StyleChinachanta, Kawiporn, Arawan Shutsrirung, Choochad Santasup, Wasu Pathom-Aree, Doan Trung Luu, Laetitia Herrmann, Didier Lesueur, and Chanakan Prom-u-thai. 2023. "Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice (Oryza sativa) KDML105 Seedlings under Salt Stress" Plants 12, no. 19: 3441. https://doi.org/10.3390/plants12193441