How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Analysis
2.3. Summary Statistics
3. Results
3.1. Testing for Multicollinearity
3.2. Unit Roots Test
3.3. Cumulative Sum and Cumulative Sum of Squares Plot
3.4. Cointegration Test
3.5. Short- and Long-Run Impacts of Climate Change on Fruit Crops Yield
4. Discussion
5. Conclusions, Policy Implications, and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, M.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Troncarelli, L.T.; Morsello, C. What evidence exists on conceptual differences in climate change perceptions of smallholders? A systematic map protocol. Environ. Evid. 2022, 11, 31. [Google Scholar] [CrossRef]
- AAfrican Development Bank Group. Climate Change in Africa. 2022. Available online: https://www.afdb.org/en/cop25/climate-change-africa (accessed on 22 December 2022).
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef]
- Alimonti, G.; Mariani, L.; Prodi, F.; Ricci, R.A. A critical assessment of extreme events trends in times of global warming. Eur. Phys. J. Plus 2022, 137, 112. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Change Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Derbile, E.K.; Bonye, S.Z.; Yiridomoh, G.Y. Mapping vulnerability of smallholder agriculture in Africa: Vulnerability assessment of food crop farming and climate change adaptation in Ghana. Environ. Chall. 2022, 8, 100537. [Google Scholar] [CrossRef]
- Mbuli, C.S.; Fonjong, L.N.; Fletcher, A.J. Climate change and small farmers’ vulnerability to food insecurity in Cameroon. Sustainability 2021, 13, 1523. [Google Scholar] [CrossRef]
- Aniah, P.; Kaunza-Nu-Dem, M.K.; Ayembilla, J.A. Smallholder farmers’ livelihood adaptation to climate variability and ecological changes in the savanna agro ecological zone of Ghana. Heliyon 2019, 5, e01492. [Google Scholar] [CrossRef]
- Haider, H. Climate Change in Nigeria: Impacts and Responses; K4D Helpdesk Report 675; Institute of Development Studies: Brighton, UK, 2019. [Google Scholar]
- Ogbuabor, J.E.; Egwuchukwu, E.I. The impact of climate change on the Nigerian economy. Int. J. Energy Econ. Policy 2017, 7, 217–223. [Google Scholar]
- Awiti, A.O. Climate change and gender in Africa: A review of impact and gender-responsive solutions. Front. Clim. 2022, 4, 895950. [Google Scholar] [CrossRef]
- Okon, E.M.; Falana, B.M.; Solaja, S.O.; Yakubu, S.O.; Alabi, O.O.; Okikiola, B.T.; Awe, T.E.; Adesina, B.T.; Tokula, B.E.; Kipchumba, A.K.; et al. Systematic review of climate change impact research in Nigeria: Implication for sustainable development. Heliyon 2021, 7, e07941. [Google Scholar] [CrossRef]
- Onugo, T.N.; Onyeneke, R.U. Farmers, preference and willingness to pay for climate-smart rice varieties in Uzo-Uwani Local Government Area of Enugu State, Nigeria. Ekológia 2022, 41, 262–271. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Amadi, M.U.; Njoku, C.L. Climate change adaptation strategies by rice processors in Ebonyi State, Nigeria. Ekológia 2022, 41, 283–290. [Google Scholar] [CrossRef]
- Cirella, G.T.; Iyalomhe, F.O. Flooding conceptual review: Sustainability-focalized best practices in Nigeria. Appl. Sci. 2018, 8, 1558. [Google Scholar] [CrossRef]
- Cirella, G.T.; Iyalomhe, F.O.; Adekola, P.O. Determinants of flooding and strategies for mitigation: Two-year case study of Benin City. Geosciences 2019, 9, 136. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Akinwumiju, A.S.; Fasinmirin, J.T.; Olasehinde, D.A.; Pham, Q.B.; Linh, N.T.T.; Anh, D.T. Impact of climate change and drought attributes in Nigeria. Atmosphere 2022, 13, 1874. [Google Scholar] [CrossRef]
- Adejuwon, J.O.; Dada, E. Temporal analysis of drought characteristics in the tropical semi-arid zone of Nigeria. Sci. Afr. 2021, 14, e01016. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M.; Morton, J.F.; Muchaba, T. Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa. Sci. Total Environ. 2018, 630, 728–737. [Google Scholar] [CrossRef]
- Dijkxhoorn, Y.; Talabi, J.; Eunice, L. Scoping Study on Fruits and Vegetables: Results from Nigeria; Report 2021-110; Wageningen Economic Research: Wageningen, The Netherlands, 2021; 68p. [Google Scholar]
- Adebiyi, J.A.; Olabisi, L.S.; Richardson, R.; Liverpool-Tasie, L.S.O.; Delate, K. Drivers and constraints to the adoption of organic leafy vegetable production in Nigeria: A Livelihood Approach. Sustainability 2020, 12, 96. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Makinde, A.I.; Oyekale, K.O.; Daramola, D.S. Growth and yield of okra (Abelmoschus esculentus L. Moench) as influenced by fertilizer application under different cropping systems. Agric. Socio-Econ. J. 2022, 22, 29–36. [Google Scholar] [CrossRef]
- Shampazuraini, S.; Ameera, Z.M.M.Z.; Hartini, D.N. The effect combination of organic and inorganic fertilizer on okra (Abelmoschus esculentus) growth. IOP Conf. Ser. Earth Environ. Sci. 2023, 1182, 012053. [Google Scholar] [CrossRef]
- Olawuyi, O.J.; Ezekiel-Adewoyin, D.T.; Odebode, A.C.; Aina, D.A.; Esenbamen, G. Effect of arbuscular mycorrhizal (Glomus clarum) and organomineral fertilizer on growth and yield performance of okra (Abelmoschus esculentus). Afr. J. Plant Sci. 2012, 6, 84–88. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Prasad, B.V.G.; Chakravorty, S. Effects of climate change on vegetable cultivation. A review. Nat. Environ. Pollut. Technol. 2015, 14, 923–929. [Google Scholar]
- Alae-Carew, C.; Nicoleau, S.; Bird, F.A.; Hawkins, P.; Tuomisto, H.L.; Haines, A.; Dangour, A.D.; Scheelbeek, P.F.D. The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: A systematic review. Environ. Res. Lett. 2020, 15, 023002. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Phophi, M.; Mafongoya, P. Constraints to vegetable production resulting from pest and diseases induced by climate change and globalization: A review. J. Agric. Sci. 2017, 9, 11–25. [Google Scholar] [CrossRef]
- Fadairo, O.; Williams, P.A.; Nalwanga, F.S. Perceived livelihood impacts and adaptation of vegetable farmers to climate variability and change in selected sites from Ghana, Uganda and Nigeria. Environ. Dev. Sustain. 2020, 22, 6831–6849. [Google Scholar] [CrossRef]
- Asfew, M.; Bedemo, A. Impact of climate change on cereal crops production in Ethiopia. Adv. Agric. 2022, 2022, 2208694. [Google Scholar] [CrossRef]
- Mariem, S.B.; Soba, D.; Zhou, B.; Loladze, I.; Morales, F.; Aranjuelo, I. Climate change, crop yields, and grain quality of c3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 2020, 10, 1052. [Google Scholar] [CrossRef]
- Rettie, F.M.; Gayler, S.K.D.; Weber, T.; Tesfaye, K.; Streck, T. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. PLoS ONE 2022, 17, e0262951. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of climate change on the yield of cereal crops: A review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Anyaegbu, C.N.; Okpara, K.E.; Taweepreda, W.; Akeju, D.; Techato, K.; Onyeneke, R.U.; Poshyachinda, S.; Pongpiachan, S. Impact of climate change on cassava yield in Nigeria: An autoregressive distributed lag bound approach. Agriculture 2023, 13, 80. [Google Scholar] [CrossRef]
- Boansi, D. Effect of climatic and non-climatic factors on cassava yields in Togo: Agricultural Policy Implications. Climate 2017, 5, 28. [Google Scholar] [CrossRef]
- Eludoyin, A.O.; Nevo, A.O.; Abuloye, P.A.; Eludoyin, O.M.; Awotoye, O.O. Climate events and impact on cropping activities of small-scale farmers in a part of southwest Nigeria. Weather Clim. Soc. 2017, 9, 235–253. [Google Scholar] [CrossRef]
- Tarfa, P.Y.; Ayuba, H.K.; Onyeneke, R.U.; Idris, N.; Nwajiuba, C.A.; Igberi, C.O. Climate change perception and adaptation in Nigeria’s Guinea Savanna: Empirical evidence from farmers in Nasarawa State, Nigeria. Appl. Ecol. Environ. Res. 2019, 17, 7085–7112. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Emenekwe, C.C.; Munonye, J.O.; Nwajiuba, C.A.; Uwazie, U.I.; Amadi, M.U.; Izuogu, C.U.; Njoku, C.L.; Onyeneke, L.U. Progress in climate-agricultural vulnerability assessment in Nigeria. Atmosphere 2020, 11, 190. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Amadi, M.U.; Njoku, C.L.; Osuji, E.E. Climate change perception and uptake of climate smart agriculture in rice production in Ebonyi State, Nigeria. Atmosphere 2021, 12, 1503. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Ejike, R.D.; Osuji, E.E.; Chidiebere-Mark, N. Does climate change affect crops differently? New evidence from Nigeria. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Emenekwe, C.C.; Adeolu, A.I.; Ihebuzor, U.A. Climate change and cattle production in Nigeria: Any role for ecological and carbon footprints? Int. J. Environ. Sci. Technol. 2023, 20, 11121–11134. [Google Scholar] [CrossRef]
- Adejuwon, J. Assessing the Suitability of the Epic Crop model for Use in the Study of Impacts of climate Variability and Climate Change in West Africa. Singap. J. Trop. Geogr. 2005, 26, 44–60. [Google Scholar] [CrossRef]
- Ajetomobi, J.O. Effects of weather extremes on crop yields in Nigeria. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11168–11184. [Google Scholar] [CrossRef]
- Ajetomobi, J.O.; Abiodun, A.; Hassan, R.M. Impacts of climate change on rice agriculture in Nigeria. Trop. Subtrop. Agroecosyst. 2011, 14, 613–622. [Google Scholar]
- Akinbile, C.O.; Akinlade, G.M.; Abolude, A.T. Trend analysis in climatic variables and impacts on rice yield in Nigeria. J. Water Clim. Change 2015, 6, 534–543. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Ogunmola, O.O.; Abolude, A.T.; Akande, S.O. Trends and spatial analysis of temperature and rainfall patterns on rice yields in Nigeria. Atmos. Sci. Lett. 2020, 21, e944. [Google Scholar] [CrossRef]
- Aondoakaa, S.C. Effects of climate change on agricultural productivity in the Federal Capital Territory (FCT), Abuja, Nigeria. Ethiop. J. Environ. Stud. Manag. 2012, 5, 559–566. [Google Scholar] [CrossRef]
- Ayinde, O.E.; Muchie, M.; Olatunji, G.B. Effect of climate change on agricultural productivity in Nigeria: A co-integration model approach. J. Hum. Ecol. 2011, 35, 189–194. [Google Scholar] [CrossRef]
- Ayinde, O.E.; Ojehomon, V.E.T.; Daramola, F.S.; Falaki, A.A. Evaluation of the Effects of Climate Change on Rice Production in Niger State, Nigeria. Ethiop. J. Environ. Stud. Manag. 2013, 6, 763–773. [Google Scholar] [CrossRef]
- Adeagbo, T.A.; Yusuf, S.A.; Amao, S.A. Climatic Impact on Agricultural Outputs in Nigeria. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14994–15006. [Google Scholar] [CrossRef]
- Adedeji, I.A.; Tiku, N.E.; Waziri-Ugwu, P.R.; Sanusi, S.O. The effect of climate change on rice production in Adamawa State, Nigeria. Agroecon. Croat. 2017, 7, 1–13. [Google Scholar]
- Bamiro, O.M.; Adeyonu, G.A.; Babatunde, A.; Solaja, S.O.; Sanni, S.A.; Faronbi, O.A.; Awe, T.E. Effects of climate change on grain productivity in Nigeria (1970–2014). IOP Conf. Ser. Earth Environ. Sci. 2020, 445, 12058. [Google Scholar] [CrossRef]
- Emenekwe, C.C.; Onyeneke, R.U.; Nwajiuba, C.U. Assessing the combined effects of temperature, precipitation, total ecological footprint, and carbon footprint on rice production in Nigeria: A dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2022, 29, 85005–85025. [Google Scholar] [CrossRef] [PubMed]
- Gbenga, O.R.; Ibrahim, O.H.; Ayodele, O.J. Analysis of the Effect of Climate Change on Rice Production in Nigeria. Int. J. Agric. Syst. 2021, 8, 119–129. [Google Scholar]
- Gershon, O.; Mbajekwe, C. Investigating the Nexus of Climate Change and Agricultural Production in Nigeria. Int. J. Energy Econ. Policy 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Matthew, O.J.; Abiodun, B.J.; Salami, A.T. Modelling the impacts of climate variability on crop yields in Nigeria: Performance evaluation of RegCM3-GLAM system. Meteorol. Appl. 2015, 22, 198–212. [Google Scholar] [CrossRef]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef]
- Olufemi, O.S.; Joshua, M.I.; Salamatu, E.A. Assessment of Temperature Variability Effect on Rice Production in Nasarawa State, Nigeria. Int. J. Environ. Clim. Change 2020, 10, 91–100. [Google Scholar] [CrossRef]
- Oriola, E.; Oyeniyi, S.T. Changes in climatic characteristics and crop yield in Kwara State, Nigeria. Geogr. Environ. Sustain. 2017, 10, 74–93. [Google Scholar] [CrossRef]
- Tajudeen, T.T.; Omotayo, A.; Ogundele, F.O.; Rathbun, L.C. The effect of climate change on food crop production in Lagos State, Nigeria. Foods 2022, 11, 3987. [Google Scholar] [CrossRef]
- Agba, D.Z.; Adewara, S.O.; Adama, J.I.; Adzer, K.T.; Atoyebi, G.O. Analysis of the Effects of Climate Change on Crop Output in Nigeria. Am. J. Clim. Change 2017, 6, 554–571. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Statistical Data. 2021. Available online: https://www.fao.org/faostat/en/#data/ (accessed on 11 December 2022).
- World Bank Group. Climate Change Knowledge Portal. 2022. Available online: https://climateknowledgeportal.worldbank.org/download-data. (accessed on 11 December 2022).
- World Bank. World Development Indicators (WDI). 2022. Available online: https://databank.worldbank.org/source/world-development-indicators# (accessed on 11 December 2022).
- Central Bank of Nigeria. 2021 Statistical Bulletin of the Central Bank of Nigeria. 2021. Available online: https://www.cbn.gov.ng/documents/Statbulletin.asp (accessed on 11 December 2022).
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Nasrullah, M.; Rizwanullah, M.; Yu, X.; Jo, H.; Tayyab Sohail, M.T.; Liang, L. Autoregressive distributed lag (ARDL) approach to study the impact of climate change and other factors on rice production in South Korea. J. Water Clim. Change 2021, 12, 2256–2270. [Google Scholar] [CrossRef]
- Duasa, J. Determinants of Malaysian trade balance: An ARDL bound testing approach. Glob. Econ. Rev. 2007, 36, 89–102. [Google Scholar] [CrossRef]
- Ali, D.A.; Dahir, A.M.; Yusuf, S.M. Autoregressive Distributed Lag Modeling of Climate and Non-climatic Determinants Affecting Cereal Production: Empirical Evidence from Somalia. Int. J. Energy Econ. Policy 2023, 13, 577–584. [Google Scholar] [CrossRef]
- Oteng, A.E.F.; Frimpong, M.J. Bound Testing Approach: An Examination of Foreign Direct Investment, Trade and Growth Relationships. Am. J. Appl. Sci. 2006, 3, 2079–2085. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Chidiebere-Mark, N.M.; Ankrah, D.A.; Onyeneke, L.U. Determinants of access to clean fuels and technologies for cooking in Africa: A panel autoregressive distributed lag approach. Environ. Prog. Sustain. Energy 2023, 42, e14147. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Ankrah, D.A.; Atta-Ankomah, R.; Agyarko, F.F.; Onyeneke, C.J.; Nejad, J.G. Information and Communication Technologies and Agricultural Production: New Evidence from Africa. Appl. Sci. 2023, 13, 3918. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Osuji, E.E.; Anugwa, I.Q.; Chidiebere-Mark, N.M. Impacts of biocapacity, climate change, food vulnerability, readiness and adaptive capacity on cereal crops yield: Evidence from Africa. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Chidiebere-Mark, N.M.; Onyeneke, R.U.; Uhuegbulem, I.J.; Ankrah, D.A.; Onyeneke, L.U.; Anukam, B.N.; Chijioke-Okere, M.O. Agricultural production, renewable energy consumption, foreign direct investment, and carbon emissions: New evidence from Africa. Atmosphere 2022, 13, 1981. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An Autoregressive Distributed Lag Modeling Approach to Cointegration Analysis. In Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium, Chapter 11; Econometric Society Monographs; Strøm, S., Ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 371–413. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. Response surface regressions for critical value bounds and approximate p-values in equilibrium correction models. Oxf. Bull. Econ. Stat. 2020, 82, 1456–1481. [Google Scholar] [CrossRef]
- Camejo, D.; Rodríguez, P.; Morales, M.A.; Dell’Amico, J.M.; Torrecillas, A.; Alarcón, J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005, 162, 281–289. [Google Scholar] [CrossRef]
- Hazra, P.; Ansary, S.H.; Dutta, A.K.; Balacheva, E.; Atanassova, B. Breeding tomato tolerant to high temperature stress. Acta Hortic. 2009, 830, 241–248. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Beena, R. Impact of temperature difference on the physicochemical properties and yield of tomato: A review. Chem. Sci. Rev. Lett. 2020, 9, 665–681. [Google Scholar]
- Masuku, M.B.; Raufu, M.O.; Malinga, N.G. The impact of credit on technical efficiency among vegetable farmers in Swaziland. Sustain. Agric. Res. 2014, 4, 114–126. [Google Scholar] [CrossRef]
- Muhammad, M.; Kutawa, A.B.; Adamu, M. Influence of NPK Fertilizer and Poultry Manure on the Growth of Okra (Abelmoschus esculentus L. Moench) in Northern Sudan Savanna Region of Nigeria. Int. J. Hortic. Agric. Food Sci. 2020, 4, 196–204. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Adeyemi, M.A.; Onyeneke, R.U.; Bhattacharyya, S.; Faborode, H.F.B.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Nutrient budgeting—A robust indicator of soil-water-air contamination monitoring and prevention. Environ. Technol. Innov. 2021, 24, 101944. [Google Scholar] [CrossRef]
- Purbajanti, E.D.; Slamet, W.; Fuskhah, E. Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 250, p. 012048. [Google Scholar]
- Onyeneke, R.U. Does climate change adaptation lead to increased productivity of rice production? Lessons from Ebonyi State, Nigeria. Renew. Agric. Food Syst. 2021, 36, 54–68. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Igberi, C.O.; Aligbe, J.O.; Iruo, F.A.; Amadi, M.U.; Iheanacho, S.C.; Osuji, E.E.; Munonye, J.; Uwadoka, C. Climate change adaptation actions by fish farmers: Evidence from the Niger Delta Region of Nigeria. Aust. J. Agric. Resour. Econ. 2020, 64, 347–375. [Google Scholar] [CrossRef]
- Mariyono, J. Profitability and determinants of smallholder commercial vegetable production. Int. J. Veg. Sci. 2018, 24, 274–288. [Google Scholar] [CrossRef]
- Kassaw, H.M.; Berhanie, Z.; Alemayehu, G. Determinants of farm level market supply of tomatoes in Fogera district, South Gondar Zone of the Amhara Region, Ethiopia. Ethiop. J. Sci. Technol. 2021, 14, 155–170. [Google Scholar] [CrossRef]
Variables | Source |
---|---|
Okra yield (hg/ha) | FAOSTAT [67] |
Tomato yield (hg/ha) | FAOSTAT [67] |
Mean temperature (°C) | World Bank Climate Change Knowledge Portal [68] |
Total rainfall (mm) | World Bank Climate Change Knowledge Portal [68] |
Fertilizer consumption (kilograms per hectare of arable land) | World Development Indicators [69] |
Total credit guaranteed to the crop sector (USD) a | Central Bank of Nigeria Statistical Bulletin [70] |
Variables | N | Minimum | Maximum | Mean | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Okra yield (hg/ha) | 40 | 8735.00 | 29,962.00 | 21,630.63 | 5797.07 | −0.86 | −0.27 |
Tomato yield (hg/ha) | 40 | 37,208.00 | 103,455.00 | 76,881.20 | 22,429.92 | −0.35 | −1.28 |
Mean temperature (°C) | 40 | 26.32 | 27.81 | 27.17 | 0.32 | −0.33 | 0.35 |
Total rainfall (mm) | 40 | 872.04 | 1269.15 | 1137.11 | 82.15 | −0.82 | 1.22 |
Fertilizer consumption (kilograms per hectare of arable land) | 40 | 4.15 | 20.97 | 10.04 | 4.76 | 0.71 | −0.31 |
Total credit guaranteed to the crop sector (USD) | 40 | 2201.43 | 60,838.61 | 17,196.85 | 14,694.91 | 1.20 | 0.56 |
Independent Variables | Variance Inflation Factor (VIF) |
---|---|
Mean Temperature (°C) | 1.465 |
Total Rainfall (mm) | 1.086 |
Fertilizer consumption (kilograms per hectare of arable land) | 1.039 |
Total Credit to the Crop Sector (USD) | 1.472 |
H0 = Series Have a Unit Root | ||||||
---|---|---|---|---|---|---|
Augmented Dickey–Fuller Test | ||||||
At Level I(0) | Remark | At First Difference I(1) | Remark | Decision: H0 | Order of Integration | |
Variable | t-Statistic | t-Statistic | ||||
Y1 | −2.279 ** | Stationary | −6.155 *** | Stationary | Reject | I(0) at 5% |
Y2 | −1.560 | Not stationary | −6.617 *** | Stationary | Reject | I(1) at 1% |
X1 | −3.369 *** | Stationary | −8.612 *** | Stationary | Reject | I(0) at 1% |
X2 | −4.596 *** | Stationary | −8.880 *** | Stationary | Reject | I(0) at 1% |
X3 | −1.990 ** | Stationary | −4.438 *** | Stationary | Reject | I(0) at 5% |
X4 | −1.750 ** | Stationary | −4.325 *** | Stationary | Reject | I(0) at 1% |
Phillips–Perron Test | ||||||
At Level I(0) | Remark | At First Difference I(1) | Remark | Decision: H0 | Order of Integration | |
Variable | t-Statistic | t-Statistic | ||||
Y1 | −3.019 | Not stationary | −10.495 *** | Stationary | Reject | I(1) at 1% |
Y2 | −3.940 ** | Not stationary | −6.377 *** | Stationary | Reject | I(0) at 5% |
X1 | −4.884 *** | Stationary | −8.664 *** | Stationary | Reject | I(0) at 1% |
X2 | −5.484 *** | Stationary | −12.347 *** | Stationary | Reject | I(0) at 1% |
X3 | −1.904 | Not stationary | −8.452 *** | Stationary | Reject | I(1) at 1% |
X4 | −1.732 | Not stationary | −6.119 *** | Stationary | Reject | I(1) at 1% |
Tests | Null Hypothesis | Okra Yield | Tomato Yield |
---|---|---|---|
Ramsey RESET test | Model has no omitted variables | 0.24 (0.8701) | 1.18 (0.33) |
White’s test | Homoskedasticity | 20.82 (0.11) | 18.37 (0.19) |
F test | No levels relationship | 5.077 *** | 3.504 * |
Okra Yield | Tomato Yield | |
---|---|---|
Long-run estimates | ||
lnX1 | −28.96 | −35.81 |
(−3.01) *** | (−4.66) *** | |
lnX2 | 1.40 | −0.856 |
(1.24) | (−1.13) | |
lnX3 | −0.48 | −0.04 |
(−3.26) *** | (−0.38) | |
lnX4 | 0.05 | 0.15 |
(0.54) | (1.78) * | |
Short-run estimates | ||
ECM | −0.53 | −0.50 |
(−3.61) *** | (−3.92) *** | |
ΔlnX1 | −6.92 | −6.67 |
(−1.89) * | (−2.09) ** | |
ΔlnX1(-1) | 11.41 | |
(3.71) *** | ||
ΔlnX2 | 0.74 | −0.43 |
(1.46) | (−1.10) | |
ΔlnX3 | 0.08 | −0.02 |
(0.71) | (−0.37) | |
ΔlnX4 | 0.03 | 0.07 |
(0.54) | (1.76) * | |
Constant | 50.93 | 67.07 |
(3.39) *** | (3.75) *** | |
R2 | 0.50 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyeneke, R.U.; Agyarko, F.F.; Onyeneke, C.J.; Osuji, E.E.; Ibeneme, P.A.; Esfahani, I.J. How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria. Plants 2023, 12, 3477. https://doi.org/10.3390/plants12193477
Onyeneke RU, Agyarko FF, Onyeneke CJ, Osuji EE, Ibeneme PA, Esfahani IJ. How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria. Plants. 2023; 12(19):3477. https://doi.org/10.3390/plants12193477
Chicago/Turabian StyleOnyeneke, Robert Ugochukwu, Fred Fosu Agyarko, Chinenye Judith Onyeneke, Emeka Emmanuel Osuji, Patience Afor Ibeneme, and Iman Janghorban Esfahani. 2023. "How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria" Plants 12, no. 19: 3477. https://doi.org/10.3390/plants12193477
APA StyleOnyeneke, R. U., Agyarko, F. F., Onyeneke, C. J., Osuji, E. E., Ibeneme, P. A., & Esfahani, I. J. (2023). How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria. Plants, 12(19), 3477. https://doi.org/10.3390/plants12193477