Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Temporal Patterns in the Publication and Citation Landscape
2.2. Related Journals
2.3. Most Productive and Cited Authors
2.4. Productive Organizations and Nations
2.5. Temporal Evolution of Popular Keywords
2.5.1. Keywords with the Highest Popularity
2.5.2. Temporal Evolution of Keyword Frequencies
3. Materials and Methods
3.1. Data Collection and Preparation
3.2. Statistical Analysis
3.2.1. General Statistical Analysis
3.2.2. Most-Used Keyword Analysis
3.2.3. Cooperation Networks Analysis
3.2.4. Temporal Trend Analysis of Keywords
4. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, R.C.; Bradford, K.J. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Abiem, I.; Kenfack, D. Assessing the impact of abiotic and biotic factors on seedling survival in an African montane forest. Front. For. Glob. Change 2023, 6, 1108257. [Google Scholar] [CrossRef]
- Diantina, S.; McGill, C. Seed viability and fatty acid profiles of five orchid species before and after ageing. Plant Biol. 2022, 24, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Lerin, J.; Sousa, K.R. Physiological and proteomic insights related to the loss of seed viability in Cariniana legalis (Lecythidaceae). Theor. Exp. Plant Phys. 2021, 33, 173–186. [Google Scholar] [CrossRef]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Paparella, S.; Araujo, S. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar] [CrossRef]
- Evenari, M. Seed physiology-its history from antiquity to the beginning of the 20th century. Botanical Review 1984, 50, 119–142. [Google Scholar] [CrossRef]
- Wang, W.; Peng, S. Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants 2016, 8, plw074. [Google Scholar] [CrossRef]
- Mehboob, N.; Minhas, W.A. Surface Drying after Seed Priming Improves the Stand Establishment and Productivity of Maize than Seed Re-Drying. Int. J. Agric. Biol. 2018, 20, 1283–1288. [Google Scholar] [CrossRef]
- Blunk, S.; de Heer, M.I. Seed priming enhances early growth and improves area of soil exploration by roots. Environ. Exp. Bot. 2019, 158, 1–11. [Google Scholar] [CrossRef]
- Salleh, M.S.; Nordin, M.S. Germination performance and biochemical changes under drought stress of primed rice seeds. Seed Sci. Technol. 2020, 48, 333–343. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Imran, S. Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants 2021, 10, 37. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Louis, N.; Dhankher, O.P. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. Physiol. Plant. 2023, 175, e13881. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F. Effect of seed priming on horticultural crops. Sci. Hortic. 2021, 286, 110197. [Google Scholar] [CrossRef]
- Thakur, M.; Tiwari, S. Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Sci. Hortic. 2022, 305, 111355. [Google Scholar] [CrossRef]
- Amritha, M.S.; Sridharan, K. Priming with Nanoscale Materials for Boosting Abiotic Stress Tolerance in Crop Plants. J. Agric. Food Chem. 2021, 69, 10017–10035. [Google Scholar] [CrossRef]
- Farooq, M.; Usman, M. Seed priming in field crops: Potential benefits, adoption and challenges. Crop Pasture Sci. 2019, 70, 731–771. [Google Scholar] [CrossRef]
- Carrillo-Reche, J.; Vallejo-Marin, M. Quantifying the potential of “on-farm” seed priming to increase crop performance in developing countries. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 64. [Google Scholar] [CrossRef]
- Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 2023, 42, 657–688. [Google Scholar] [CrossRef] [PubMed]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Zupic, I.; Cater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- He, Z.; Gong, K. What is the past, present, and future of scientific research on the Yellow River Basin?—A bibliometric analysis. Agric. Water Manag. 2022, 262, 107404. [Google Scholar] [CrossRef]
- Huang, L.; Xia, Z.; Cao, Y. A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020. Forests 2022, 13, 93. [Google Scholar] [CrossRef]
- Castaneda, K.; Sanchez, O. Highway Planning Trends: A Bibliometric Analysis. Sustainability 2022, 14, 5544. [Google Scholar] [CrossRef]
- Cui, Y.; Ouyang, S. Plant responses to high temperature and drought: A bibliometrics analysis. Front. Plant Sci. 2022, 13, 1052660. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yu, G.; Zhang, T.; Yang, M. A bibliometric analysis of carbon exchange in global drylands. J. Arid Land 2021, 13, 1089–1102. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Harris, D. Development and testing of “on-farm” seed priming. Adv. Agron. 2006, 90, 129–178. [Google Scholar] [CrossRef]
- Tian, Y.; Guan, B. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.). Sci. World J. 2014, 834630, 1–8. [Google Scholar] [CrossRef]
- Pallaoro, D.S.; Camili, E.C. Methods for priming maize seeds. J. Seed Sci. 2016, 38, 148–154. [Google Scholar] [CrossRef]
- Hussain, S.; Zheng, M. Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci. Rep. 2015, 5, 8101. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Hussain, S. Improving the Performance of Direct Seeded System of Rice Intensification by Seed Priming. Inter. J. Agric. Biol. 2013, 15, 791–794. [Google Scholar]
- Rehman, A.; Farooq, M. Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and biofortification of bread wheat (Triticum aestivum). Crop Pasture Sci. 2022, 73, 449–460. [Google Scholar] [CrossRef]
- Hussian, I.; Ahmad, R. Seed Priming Improves the Performance of Poor Quality Wheat Seed. Inter. J. Agric. Biol. 2013, 15, 1343–1348. [Google Scholar]
- Kong, H.; Meng, X. Seed Priming with Fullerol Improves Seed Germination, Seedling Growth and Antioxidant Enzyme System of Two Winter Wheat Cultivars under Drought Stress. Plants 2023, 12, 1417. [Google Scholar] [CrossRef]
- Baltazar, M.; Oppolzer, D. Hydropriming and Nutripriming of Bread Wheat Seeds Improved the Flour’s Nutritional Value of the First Unprimed Offspring. Plants 2023, 12, 240. [Google Scholar] [CrossRef]
- Al-Farsi, S.M.; Nawaz, A. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop Pasture Sci. 2020, 71, 411–428. [Google Scholar] [CrossRef]
- Haider, M.U.; Hussain, M. Optimizing zinc seed priming for improving the growth, yield and grain biofortification of mungbean (Vigna radiata (L.) wilczek). J. Plant Nutr. 2020, 43, 1438–1446. [Google Scholar] [CrossRef]
- Lee, N.; Park, J.; Kim, K.; Choi, G. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis. Plant Cell 2015, 27, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cao, S. Linking seed germination and plant height: A case study of a wetland community on the eastern Tibet Plateau. Plant Biol. 2018, 20, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y. Seed priming stimulates germination and early seedling establishment of Corethrodendron multijugum under drought stress. Seed Sci. Technol. 2023, 51, 51–63. [Google Scholar] [CrossRef]
- Tu, K.; Cheng, Y. Effects of Seed Priming on Vitality and Preservation of Pepper Seeds. Agriculture 2022, 12, 603. [Google Scholar] [CrossRef]
- Ling, Y.; Zhao, Y. Seed Priming with Chitosan Improves Germination Characteristics Associated with Alterations in Antioxidant Defense and Dehydration-Responsive Pathway in White Clover under Water Stress. Plants 2022, 11, 2015. [Google Scholar] [CrossRef]
- Mir-Mahmoodi, T.; Ghassemi-Golezani, K. Effects of priming techniques on seed germination and seedling emergence of maize (Zea mays L.). J. Food Agric. Environ. 2011, 9, 200–202. [Google Scholar]
- Farooq, M.; Basra, S.M.A. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 2008, 194, 55–60. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M. Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci. Technol. 2015, 43, 262–268. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M. Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2018, 24, 239–249. [Google Scholar] [CrossRef]
- Sharavdorj, K.; Yeongmi, J. Understanding seed germination of forage crops under various salinity and temperature stress. J. Crop Sci. Biotechnol. 2021, 24, 545–554. [Google Scholar] [CrossRef]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef]
- Malarkodi, K.; Vedhapriya, T. Automation of Seed Priming Technology for Enhanced Seed Vigour of Blackgram Seeds. Legume Res. 2022, 45, 1178–1184. [Google Scholar] [CrossRef]
- Khan, M.O.; Irfan, M. A practical and economical strategy to mitigate salinity stress through seed priming. Front. Environ. Sci. 2022, 10, 991977. [Google Scholar] [CrossRef]
- Ben Youssef, R.; Jelali, R. The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. Plants 2021, 10, 2264. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, W.J.; Boucher, J.F. Priming improves high-temperrature germination of pansy seed. HortScience 1991, 26, 541–544. [Google Scholar] [CrossRef]
- Halpiningham, B.; Sundstrom, F.J. Pepper seed water-content, germination, germination response and respriration following priming treatments. Seed Sci. Technol 1992, 20, 589–596. [Google Scholar]
- Owen, P.L.; Pill, W.G. Germination of osmotically primed asparagus and tomato seeds after storage up to 3 months. J. Am. Soc. Hortic. Sci. 1994, 119, 636–641. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Bino, R.J. Effects of osmotic priming on dormancy and storability of tomato (Lycopersicon esculentum Mill) seeds. Seed Sci. Res. 1996, 6, 49–55. [Google Scholar] [CrossRef]
- Nascimento, W.M.; West, S.H. Drying during muskmelon (Cucumis melo L.) seed priming and its effects on seed germination and deterioration. Seed Sci. Technol. 2000, 28, 211–215. [Google Scholar]
- Parveen, A.; Liu, W. Silicon Priming Regulates Morpho-Physiological Growth and Oxidative Metabolism in Maize under Drought Stress. Plants 2019, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A.; Banerjee, R. Drought resistance in rice seedlings conferred by seed priming. Protoplasma 2013, 250, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Khan, F. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. Fron. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Jayamohan, N.S.; Patil, S.V. Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biologia 2018, 73, 1073–1082. [Google Scholar] [CrossRef]
- Bose, B.; Mondal, S. Climate Change and Sustainable Agriculture in Context to Seed Priming and Role of Nitrate. Vegetos 2013, 26, 192–204. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Dong, Q. Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul. 2017, 83, 27–41. [Google Scholar] [CrossRef]
- Hussain, A.; Rizwan, M. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ. Sci. Pollut. R. 2019, 26, 7579–7588. [Google Scholar] [CrossRef]
Journal | Publications | H- Index | Journal | Total Citations |
---|---|---|---|---|
Seed Science And Technology | 145 | 24 | Plant Physiology | 4115 |
Pakistan Journal of Botany | 66 | 14 | Seed Science and Technology | 2888 |
International Journal of Agriculture and Biology | 51 | 14 | Journal of experimental botany | 2764 |
Horticulture | 49 | 16 | Frontiers in Plant Science | 1818 |
Seed science research | 48 | 27 | Plant and Soil | 1481 |
Journal of Plant Nutrition | 45 | 12 | Physiologia plantarum | 1465 |
Plant Physiology and Biochemistry | 43 | 23 | Annals of Botany | 1437 |
Frontiers in Plant Science | 42 | 24 | Plant physiology and biotechnology | 1404 |
Acta Physiologiae Plantarum | 39 | 22 | Seed science research | 1384 |
Legume Research | 36 | 5 | PNAS | 1380 |
Agronomy-Basel | 35 | 12 | Journal of Plant Physiology | 1347 |
Scientia Horticulturae | 35 | 16 | Plant science | 1269 |
Scientific Reports | 34 | 21 | Crop science | 1252 |
PLOS One | 32 | 16 | Environmental and Experimental Botany | 1210 |
Environmental and Experimental Botany | 30 | 16 | Plant growth regulation | 1208 |
Plants-Basel | 30 | 13 | Horticulture | 1180 |
Indian Journal of Agricultural Sciences | 29 | 4 | Nature | 1147 |
Journal of Agronomy and Crop Science | 28 | 19 | Scintia Horticulturae | 1056 |
Journal of Plant Growth Regulation | 28 | 14 | Acta Physiologiae Plantarum | 1015 |
Plant growth regulation | 24 | 16 | PLOS One | 1011 |
Institution | Publications |
---|---|
University of Agriculture Faisalabad | 532 |
Government College University | 135 |
Islamic Azad University | 107 |
Bahauddin Zakariya University | 103 |
University of Western Australia | 102 |
King Saud University | 86 |
Zhejiang University | 75 |
Indian Agriculture Research Institute | 66 |
Huazhong agriculture university | 65 |
Descriptions | Results |
---|---|
Timespan | 1991–2021 |
Number of sources (journals, books, etc.) | 983 |
Number of documents | 3095 |
Total number of keywords | 7071 |
Total number of authors | 9441 |
Annual years from publication | 9.13 |
Average citations per documents | 23.86 |
Number of author appearances | 13560 |
Number of single authored documents | 119 |
Number of multi authored documents | 9322 |
Number of documents per author | 0.328 |
Number of authors per document | 3.05 |
Number of co-authors per documents | 4.38 |
Collaboration Index | 3.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Gama-Arachchige, N.S.; Zhao, M. Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis. Plants 2023, 12, 3483. https://doi.org/10.3390/plants12193483
Tian Y, Gama-Arachchige NS, Zhao M. Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis. Plants. 2023; 12(19):3483. https://doi.org/10.3390/plants12193483
Chicago/Turabian StyleTian, Yu, Nalin Suranjith Gama-Arachchige, and Ming Zhao. 2023. "Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis" Plants 12, no. 19: 3483. https://doi.org/10.3390/plants12193483
APA StyleTian, Y., Gama-Arachchige, N. S., & Zhao, M. (2023). Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis. Plants, 12(19), 3483. https://doi.org/10.3390/plants12193483