The Genetic Diversity of Pleurozium schreberi: A Preliminary Study Based on the atpB-rbcL
Abstract
:1. Introduction
2. Results and Discussion
Limitations of the Study
3. Materials and Methods
3.1. Specimen Sampling
3.2. DNA Isolation
3.3. DNA Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afonina, O.M.; Czernyadjeva, I.V. Mosses of the Russian Arctic: Check-List and Bibliography. Arctoa 1995, 5, 99–142. [Google Scholar] [CrossRef]
- Popov, S.Y. On the Distribution of Pleurozium schreberi (Bryophyta, Hylocomiaceae) in the East European Plain and Eastern Fennoscandia. Mosc. Univ. Biol. Sci. Bull. 2018, 73, 178–184. [Google Scholar] [CrossRef]
- Greene, D.M. A Conspectus of the Mosses of Antarctica, South Georgia, the Falkland Islands and Southern South America; British Antarctic Survey: Cambridge, UK, 1986. [Google Scholar]
- Ochyra, R.; Bednarek-Ochyra, H. Pleurozium schreberi (Musci, Hylocomiaceae) Recorded for Tropical Africa and a Review of Its World Distribution. Cryptogam. Bryol. 2002, 23, 355–360. [Google Scholar]
- Stebel, A.; Ochyra, R.; Godzik, B.; Bednarek-Ochyra, H. Bryophytes of the Olkusz Ore-Bearing Region (Southern Poland); W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2015; ISBN 9788362975273. [Google Scholar]
- Matuszkiewicz, J.M. Zespoły Leśne Polski; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2001; ISBN 9788301134013. [Google Scholar]
- Matuszkiewicz, W.; Sikorski, P.; Szwed, W.; Wierzba, M.; Danielewicz, W.; Kiciński, P.; Wysocki, C. Plant Communities of Poland: An Illustrated Guide: Forests and Thickets; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2021; ISBN 9788301215521. (In Polish) [Google Scholar]
- Rice, S.K.; Neal, N.; Mango, J.; Black, K. Relationships among Shoot Tissue, Canopy and Photosynthetic Characteristics in the Feathermoss Pleurozium schreberi. Bryologist 2011, 114, 367–378. [Google Scholar] [CrossRef]
- Kosior, G.; Klánová, J.; Vaňková, L.; Kukučka, P.; Chropeňová, M.; Brudzińska-Kosior, A.; Samecka-Cymerman, A.; Kolon, K.; Kempers, A.J. Pleurozium schreberi as an Ecological Indicator of Polybrominated Diphenyl Ethers (PBDEs) in a Heavily Industrialized Urban Area. Ecol. Indic. 2015, 48, 492–497. [Google Scholar] [CrossRef]
- Konopka, Z.; Świsłowski, P.; Rajfur, M. Biomonitoring of Atmospheric Aerosol with the Use of Apis mellifera and Pleurozium schreberi. Chem.-Didact.-Ecol.-Metrol. 2019, 24, 107–116. [Google Scholar] [CrossRef]
- Kuta, E.; Przywara, L.; Ilnicki, T. Heterochromatin in Pleurozium schreberi (Brid.) Mitt. Acta Biol. Cracoviensia Ser. Bot. 2000, 42, 55–59. [Google Scholar]
- Longton, R.E.; Greene, S.W. The Growth and Reproductive Cycle of Pleurozium schreberi (Brid.) Mitt. Ann. Bot. 1969, 33, 83–105. [Google Scholar] [CrossRef]
- Longton, R.E.; Greene, S.W. Experimental Studies of Growth and Reproduction in the Moss Pleurozium schreberi (Brid.) Mitt. J. Bryol. 1979, 10, 321–338. [Google Scholar] [CrossRef]
- Lappalainen, N.M.; Huttunen, S.; Suokanerva, H. Acclimation of a Pleurocarpous Moss Pleurozium schreberi (Britt.) Mitt. to Enhanced Ultraviolet Radiation in Situ. Glob. Change Biol. 2008, 14, 321–333. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Alatalo, J.M.; Kudo, G. Variation in Responses to Temperature Treatments Ex Situ of the Moss Pleurozium schreberi (Willd. Ex Brid.) Mitt. Originating from Eight Altitude Sites in Hokkaido, Japan. J. Bryol. 2014, 36, 209–216. [Google Scholar] [CrossRef]
- Tobias, M.; Niinemets, Ü. Acclimation of Photosynthetic Characteristics of the Moss Pleurozium schreberi to Among-Habitat and within-Canopy Light Gradients. Plant Biol. 2010, 12, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Rajfur, M.; Świsłowski, P.; Nowainski, F.; Śmiechowicz, B. Mosses as Biomonitor of Air Pollution with Analytes Originating from Tobacco Smoke. Chem.-Didact.-Ecol.-Metrol. 2018, 23, 127–136. [Google Scholar] [CrossRef]
- Aleksiayenak, Y.; Frontasyeva, M. A Ten-Year Biomonitoring Study of Atmospheric Deposition of Trace Elements at the Territory of the Republic of Belarus. Ecol. Chem. Eng. S 2019, 26, 455–464. [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Gabov, D.N.; Kondratenok, B.M.; Dubrovskiy, Y.A. Two-Year Monitoring of PAH in the Soils and Pleurozium schreberi under the Impact of Coal Mining. Polycycl. Aromat. Compd. 2021, 41, 2055–2070. [Google Scholar] [CrossRef]
- Madadzada, A.I.; Nuhuyeva, S.S.; Mammadov, E.A.; Ibrahimov, Z.A.; Jabbarov, N.S.; Strelkova, L.P.; Frontasyeva, M.V. Heavy Metal Atmospheric Deposition Study in Azerbaijan Based on Moss Technique and Neutron Activation Analysis. Ecol. Chem. Eng. S 2022, 29, 143–153. [Google Scholar] [CrossRef]
- Shaposhnikova, L.M.; Rachkova, N.G.; Shubina, T.P. Bioaccumulation and Retention of Po-210 and Pb-210 in Two Species of Mosses from the Zone of Influence of the Former Radium-Extracting Plants. Environ. Sci. Pollut. Res. 2023, 30, 34966–34977. [Google Scholar] [CrossRef]
- Drobnik, J.; Stebel, A. Four Centuries of Medicinal Mosses and Liverworts in European Ethnopharmacy and Scientific Pharmacy: A Review. Plants 2021, 10, 1296. [Google Scholar] [CrossRef]
- Korpelainen, H.; Jägerbrand, A.; von Cräutlein, M. Genetic Structure of Mosses Pleurozium schreberi (Willd. Ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. along Altitude Gradients in Hokkaido, Japan. J. Bryol. 2012, 34, 309–312. [Google Scholar] [CrossRef]
- Pederson, E.R.A.; Warshan, D.; Rasmussen, U. Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss. G3 Genes Genomes Genet. 2019, 9, 2791–2797. [Google Scholar] [CrossRef]
- McDaniel, S.F.; Shaw, A.J. Phylogeographic Structure and Cryptic Speciation in the Trans-Antarctic Moss Pyrrhobryum Mnioides. Evolution 2003, 57, 205–215. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, S.F.; Shaw, A.J. Selective Sweeps and Intercontinental Migration in the Cosmopolitan Moss Ceratodon Purpureus (Hedw.) Brid. Mol. Ecol. 2005, 14, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Patiño, J.; Werner, O.; González-Mancebo, J.M. The Impact of Forest Disturbance on the Genetic Diversity and Population Structure of a Late-Successional Moss. J. Bryol. 2010, 32, 220–231. [Google Scholar] [CrossRef]
- Spagnuolo, V.; Muscariello, L.; Terracciano, S.; Giordano, S. Molecular Biodiversity in the Moss Leptodon smithii (Neckeraceae) in Relation to Habitat Disturbance and Fragmentation. J. Plant Res. 2007, 120, 595–604. [Google Scholar] [CrossRef]
- Wilson, P.J.; Provan, J. Effect of Habitat Fragmentation on Levels and Patterns of Genetic Diversity in Natural Populations of the Peat Moss Polytrichum commune. Proc. R. Soc. B Biol. Sci. 2003, 270, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Pohjamo, M.; Korpelainen, H.; Kalinauskaite, N. Restricted Gene Flow in the Clonal Hepatic Trichocolea tomentella in Fragmented Landscapes. Biol. Conserv. 2008, 141, 1204–1217. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Schaal, B.A. Molecular Evolution and Phylogeny of the AtpB-RbcL Spacer of Chloroplast DNA in the True Mosses. Genome 2000, 43, 417–426. [Google Scholar] [CrossRef]
- Węgrzyn, M.H.; Fałowska, P.; Alzayany, K.; Waszkiewicz, K.; Dziurowicz, P.; Wietrzyk-Pełka, P. Seasonal Changes in the Photosynthetic Activity of Terrestrial Lichens and Mosses in the Lichen Scots Pine Forest Habitat. Diversity 2021, 13, 642. [Google Scholar] [CrossRef]
- Atherton, I.; Bosanquet, S.; Lawley, M. Mosses and Liverworts of Britain and Ireland: A Field Guide; British Bryological Society: Plymouth, UK, 2010; ISBN 9780956131010. [Google Scholar]
- Minister of Environment. Regulation of the Minister of Environment of October 9, 2014 on the Protection of Plant Species; 2014. (Journal of Laws, 2014, item 1409). Available online: https://dziennikustaw.gov.pl/DU/rok/2014/pozycja/1409 (accessed on 4 November 2022).
- ICP Vegetation. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey; UK Centre For Ecology & Hydrology: Lancaster, UK, 2020. [Google Scholar]
- Chiang, T.Y.; Schaal, B.A.; Peng, C.I. Universal Primers for Amplification and Sequencing a Noncoding Spacer between the AtpB and RbcL Genes of Chloroplast DNA. Bot. Bull. Acad. Sin. 1998, 39, 245–250. [Google Scholar]
- Stech, M.; Quandt, D. 20,000 Species and Five Key Markers: The Status of Molecular Bryophyte Phylogenetics. Phytotaxa 2010, 9, 196–228. [Google Scholar] [CrossRef]
- Pleurozium Schreberi Voucher H3 AtpB-RbcL Intergenic Spacer, Complete Sequence; Chloroplast. Available online: https://www.ncbi.nlm.nih.gov/nuccore/OP860515 (accessed on 4 December 2022).
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-Joining Networks for Inferring Intraspecific Phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
Haplotype/Sequence | Position in the Alignment | |
---|---|---|
79 | 475 | |
Hap_1 | G | G |
Hap_2 | G | A |
Hap_3 | A | A |
Hap_4 | A | G |
MK313952.1 | G | G |
Haplotype/ Sequence | Hap_1 | Hap_2 | Hap_3 | Hap_4 | MK313952.1 |
---|---|---|---|---|---|
Hap_1 | |||||
Hap_2 | 1 | ||||
Hap_3 | 2 | 1 | |||
Hap_4 | 1 | 2 | 1 | ||
MK313952.1 | 0 | 1 | 2 | 1 |
No. | Locality | GPS | Haplotype |
---|---|---|---|
1. | Stobrawa Landscape Park (Opole Voivodeship) | N 50°53′01″ E 17°50′38″ | Hap_1 |
2. | N 50°53′19″ E 17°52′46″ | Hap_1 | |
3. | N 50°53′32″ E 17°51′41″ | Hap_1 | |
4. | N 50°53′25″ E 17°52′14″ | Hap_1 | |
5. | N 50°53′22″ E 17°52′02″ | Hap_1 | |
6. | N 50°53′22″ E 17°51′43″ | Hap_1 | |
7. | Bialowieza Forest; Grudki near Białowieża (Podlaskie Voivodeship) | N 52°40′37″ E 23°49′44″ | Hap_2 |
8. | Knyszyńska Forest: Międzyrzecze (Podlaskie Voivodeship) | N 53°15′53″ E 23°28′10″ | Hap_1 |
9. | Paczyn near Kamienna Góra (Lower Silesian Voivodeship) | N 50°44′24″ E 15°54′10″ | Hap_1 |
10. | Madeje near Żywiec (Silesian Voivodeship) | N 49°40′26″ E 19°20′38″ | Hap_1 |
11. | Ladzka Forest (NW part of Białowieża Forest) (Podlaskie Voivodeship) | N 52°52′47″ E 23°37′29″ | Hap_2 |
12. | Knyszyńska Forest (Podlaskie Voivodeship) | N 53°04′23″ E 23°29′30″ | Hap_1 |
13. | Hel (Pomeranian Voivodeship) | N 54°39′05″ E 18°45′19″ | Hap_3 |
14. | Jurata (Pomeranian Voivodeship) | N 54°40′29″ E 18°43′32″ | Hap_1 |
15. | Hel (Pomeranian Voivodeship) | N 54°37′09″ E 18°48′01″ | Hap_1 |
16. | Piła (env.) (Greater Poland Voivodeship) | N 53°10′27″ E 16°46′55″ | Hap_4 |
17. | Piła (env.) Greater Poland Voivodeship | N 53°10′28″ E 16°46′48″ | Hap_1 |
18. | Darłowo (env.) (West Pomeranian Voivodeship) | N 54°24′58″ E 16°27′52″ | Hap_1 |
19. | N 54°24′57″ E 16°27′54″ | Hap_1 | |
20. | N 54°24′59″ E 16°27′56″ | Hap_1 | |
21. | N 54°25′02″ E 16°28′03″ | Hap_4 | |
22. | Lubliniec (env.) (Silesian Voivodeship) | N 50°37′27″ E 18°40′57″ | Hap_4 |
23. | N 50°37′27″ E 18°40′55″ | Hap_1 | |
24. | N 50°37′27″ E 18°40′55″ | Hap_1 | |
25. | Stary Janów near Stąporków (Świętokrzyskie Voivodeship) | N 51°08′10″ E 20°29′11′′ | Hap_4 |
26. | Stary Janów near Stąporków (Świętokrzyskie Voivodeship) | N 51°08′15″ E 20°29′52″ | Hap_1 |
27. | Wąsosz (Świętokrzyskie Voivodeship) | N 51°08′23″ E 20°28′22″ | Hap_4 |
28. | Końskie (Świętokrzyskie Voivodeship) | N 51°10′17″ E 20°25′43″ | Hap_3 |
29. | Forest between Dęba and Nowy Kazanów (Świętokrzyskie Voivodeship) | N 51°10′31″ E 20°18′11″ | Hap_4 |
30. | Wieżyca (Pomeranian Voivodeship) | N 54°13.56″ E 18°07′43″ | Hap_1 |
31. | Zielonka near Radomsko (Łódź Voivodeship) | N 50°58′39″ E 19°24′54′′ | Hap_1 |
32. | Radomsko (Łódź Voivodeship) | N 51°02′09″ E 19°26′30′′ | Hap_1 |
33. | Przedbórz (Łódź Voivodeship) | N 51°05′18″ E 19°53′54′′ | Hap_1 |
34. | Stąporków (Świętokrzyskie Voivodeship) | N 51°07′37″ E 20°33′24′′ | Hap_1 |
35. | Prószków (Opole Voivodeship) | N 50°35′09″ E 17°48′49′′ | Hap_1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świsłowski, P.; Domagała, P.J.; Rajfur, M. The Genetic Diversity of Pleurozium schreberi: A Preliminary Study Based on the atpB-rbcL. Plants 2023, 12, 3487. https://doi.org/10.3390/plants12193487
Świsłowski P, Domagała PJ, Rajfur M. The Genetic Diversity of Pleurozium schreberi: A Preliminary Study Based on the atpB-rbcL. Plants. 2023; 12(19):3487. https://doi.org/10.3390/plants12193487
Chicago/Turabian StyleŚwisłowski, Paweł, Paweł J. Domagała, and Małgorzata Rajfur. 2023. "The Genetic Diversity of Pleurozium schreberi: A Preliminary Study Based on the atpB-rbcL" Plants 12, no. 19: 3487. https://doi.org/10.3390/plants12193487
APA StyleŚwisłowski, P., Domagała, P. J., & Rajfur, M. (2023). The Genetic Diversity of Pleurozium schreberi: A Preliminary Study Based on the atpB-rbcL. Plants, 12(19), 3487. https://doi.org/10.3390/plants12193487