Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus
Abstract
:1. Introduction
2. Results
2.1. Effect of Droplet-Vitrification Procedure on Shoot Tips Regeneration and Organic Acid Content
2.1.1. Regeneration
2.1.2. Analysis of OAs in the Droplet-Vitrification Procedure
2.2. Effect of Additional Stress Imposed by Non-Optimum Conditions in the Droplet-Vitrification Procedure
2.2.1. Regeneration
2.2.2. Analysis of OAs under Non-Optimum Cryopreservation (Additional Stress) Conditions
2.3. Effect of Plant Vitrification Solution
2.3.1. Regeneration
2.3.2. Analysis of OAs in Different Plant Vitrification Solution Treatments
2.4. Effect of Regrowth Conditions
2.4.1. Regeneration
2.4.2. Analysis of OAs under Different Regrowth Conditions
3. Discussion
3.1. Regeneration in Droplet-Vitrification Procedure and Oxidative Stress
3.2. Metabolomics Profiling of OAs in Cryopreservation
4. Materials and Methods
4.1. Plant Material, In Vitro Propagation and Preparation of Mother Plants
4.2. Experimental Design of Treatments in the Droplet-Vitrification Procedure
4.2.1. Standard Droplet-Vitrification Procedure
4.2.2. Sets of Experimental Conditions
4.3. Analysis of OAs
4.3.1. Chemicals and Reagents
4.3.2. Sample Preparation for Profiling Analysis of OAs by GC-MS/MS
4.3.3. Analytical Conditions of GC-MS/MS Analysis
4.3.4. Normalized Pattern Analysis
4.4. Recovery Assessment and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rev. ed.; Food and Agricultural Organization: Rome, Italy, 2014; Available online: http://www.fao.org/documents/card/en/c/7b79ee93-0f3c-5f58-9adc-5d4ef063f9c7 (accessed on 12 January 2023).
- Mazur, P.; Leibo, S.P.; Chu, E.H.Y. A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue culture cells. Exp. Cell Res. 1972, 71, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.M.; MacFarlane, D.R.; Angell, C.A.; Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.K.; Fleming, S.D.; Aiken, R.J.; De Iuliis, G.N.; Zieschang, J.A.; Clark, A.M. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Human Reprod. 2009, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Reed, B. Antioxidants and cryopreservation, the new normal? Acta Hortic. 2014, 1039, 41–48. [Google Scholar] [CrossRef]
- Funnekotter, B.; Colville, L.; Kaczmarczyk, A.; Turner, S.R.; Bunn, E.; Mancera, R.L. Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. Plant Cell Rep. 2017, 36, 1903–1916. [Google Scholar] [CrossRef] [PubMed]
- Whelehan, L.M.; Funnekotter, B.; Bunn, E.; Mancera, R.L. Review: The case for studying mitochondrial function during plant cryopreservation. Plant Sci. 2022, 315, 111134. [Google Scholar] [CrossRef] [PubMed]
- WFO: World Flora Online. Published on the Internet. 2023. Available online: http://www.worldfloraonline.org (accessed on 4 May 2023).
- Suh, Y.B.; Kim, Y.J. Korean Red List of Threatened Species, 2nd ed.; National Institute of Biological Resources: Incheon, Republic of Korea, 2014. [Google Scholar]
- Lee, H.; Park, H.; Popova, E.; Lee, Y.Y.; Park, S.U.; Kim, H.H. Ammonium-free medium is critical for regeneration of shoot tips of the endangered species Pogostemon yatabeanus cryopreserved using droplet-vitrification. CryoLetters 2021, 45, 290–299. [Google Scholar]
- Lee, H.E.; Popova, E.; Park, H.N.; Park, S.U.; Kim, H.H. Optimization of a cryopreservation method for the endangered Korean species Pogostemon yatabeanus using a systematic approach: The key role of ammonium and growth regulators. Plants 2021, 10, 2018. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H. Vigorous growing of donor plantlets by liquid overlay in subcultures is the key to cryopreservation of endangered species Pogostemon yatabeanus. Plants 2022, 11, 3127. [Google Scholar] [CrossRef]
- Paventi, G.; Di Iorio, M.; Rusco, G.; Sobolev, A.P.; Cerolini, S.; Antenucci, E.; Spano, M.; Mannina, L.; Iaffaldano, N. The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. Biology 2022, 11, 642. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics–The link between genotypes and phenotypes. Plant Mol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Dunn, W.B.; Bailey, N.J.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst 2005, 130, 606–625. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Kataoka, R. Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol. Res. 2020, 234, 126421. [Google Scholar] [CrossRef] [PubMed]
- Whelehan, L.M.; Dalziell, E.L.; Bunn, E.; Mancera, R.L.; Funnekotter, B. How does metabolic rate in plant shoot tips change after cryopreservation? Cryobiology 2022, 109, 1–9. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Khan, N.; Ali, S.; Zandi, P.; Mehmood, A.; Ullah, S.; Ikram, M.; Ismail, I.; Shahid, M.A.; Babar, A. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak. J. Bot. 2020, 52, 355–363. [Google Scholar] [CrossRef]
- Kim, H.H.; Popova, E. Unifying principles of cryopreservation protocols for new plant materials based on alternative cryoprotective agents (CPAs) and a systematic approach. CryoLetters 2023, 44, 1–12. [Google Scholar] [CrossRef]
- Johnston, J.W.; Harding, K.; Benson, E.E. Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci. 2007, 172, 524–534. [Google Scholar] [CrossRef]
- Ren, L.; Wang, M.; Wang, Q. ROS-induced oxidative stress in plant cryopreservation: Occurrence and alleviation. Planta 2021, 254, 124. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wang, C.K.; Zhao, Y.W.; Sun, C.H.; Hu, D.G. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hao, D.; Jin, M.; Li, Y.; Liu, Z.; Huang, Y.; Chen, T.; Su, Y. Internal ammonium excess induces ROS-mediated reactions and causes carbon scarcity in rice. BMC Plant Biol. 2020, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M.; Henk, A.; Basu, C. Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips. Acta Hortic. 2011, 908, 55–66. [Google Scholar] [CrossRef]
- Gross, B.L.; Henk, A.D.; Bonnart, R.; Volk, G.M. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips. Plant Cell Rep. 2017, 36, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Le, K.C.; Kim, H.H.; Park, S.Y. Modification of the droplet-vitrification method of cryopreservation to enhance survival rates of adventitious roots of Panax ginseng. Hort. Environ. Biotechnol. 2019, 60, 501–510. [Google Scholar] [CrossRef]
- Ahmadi, E.; Shirazi, A.; Shams-Esfandabadi, N.; Nazari, H. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes. Reprod. Domest. Anim. 2019, 54, 595–603. [Google Scholar] [CrossRef]
- Kuriyama, A.; Watanabe, K.; Kawata, K.; Kawai, F.; Kanamori, M. Sensitivity of cryopreserved Lavandula vera cells to ammonium ion. J. Plant Physiol. 1996, 148, 693–695. [Google Scholar] [CrossRef]
- Ryynänen, L.; Häggman, H. Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula. J. Plant Physiol. 1999, 154, 735–742. [Google Scholar] [CrossRef]
- Pennycooke, J.C.; Towill, L.E. Medium alterations improve regrowth of sweet potato (Ipomea batatas L. Lam.) shoot cryopreserved by vitrification and encapsulation-dehydration. CryoLetters 2001, 22, 381–389. [Google Scholar]
- Ryynänen, L.A.; Häggman, H. Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Rep. 2001, 20, 354–360. [Google Scholar] [CrossRef]
- Alkan, N.; Fluhr, R.; Prusky, D. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol. Plant Microbe Interact. 2012, 25, 85–96. [Google Scholar] [CrossRef]
- Savchenko, T.; Tikhonov, K. Oxidative stress-induced alteration of plant central metabolism. Life 2021, 11, 304. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Woods, L.C. Effects of dimethyl sulfoxide and glycine on cryopreservation induced damage of plasma membranes and mitochondria to striped bass (Morone saxatilis) sperm. Cryobiology 2004, 48, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Köpnick, C.; Grübe, M.; Stock, J.; Senula, A.; Mock, H.P.; Nagel, M. Changes of soluble sugars and ATP content during DMSO droplet freezing and PVS3 droplet vitrification of potato shoot tips. Cryobiology 2018, 85, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramirez-Rodriguez, V.V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- An, Y.; Zhou, P.; Xiao, Q.; Shi, D. Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. J. Plant Nutr. Soil Sci. 2014, 177, 421–430. [Google Scholar] [CrossRef]
- Igamberdiev, A.; Eprintsev, A.T. Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 2016, 7, 1042. [Google Scholar] [CrossRef]
- Jiang, X.R.; Ren, R.F.; Di, W.; Jia, M.X.; Li, Z.D.; Liu, Y.; Gao, R.F. Hydrogen peroxide and nitric oxide are involved in programmed cell death induced by cryopreservation in Dendrobium protocorm-like bodies. Plant Cell Tiss. Organ Cult. 2019, 137, 553–563. [Google Scholar] [CrossRef]
- Rwubuzizi, R.; Kim, H.; Holzapfel, W.H.; Todorov, S.D. Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon 2023, 9, e15610. [Google Scholar] [CrossRef]
- Shi, D.; Yan, R.; Lv, L.; Jiang, H.; Lu, Y.; Sheng, J.; Xie, J.; Wu, W.; Xia, J.; Xu, K.; et al. The serum metabolome of COVID-19 patients is distinctive and predictive. Metabolism 2021, 118, 154739. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Thapa, R.; Hariani, H.N.; Volyanyuk, M.; Ogle, S.D.; Orloff, K.A.; Ankireddy, S.; Lai, K.; Žiniauskaitė, A.; Stubbs, E.B., Jr.; et al. Poly(lactic-co-glycolic acid) nanoparticles encapsulating the prenylated flavonoid, xanthohumol, protect corneal epithelial cells from dry eye disease-associated oxidative stress. Pharmaceutics 2021, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Qi, M.; Lai, H.; Zeng, F.; Liang, F.; Wen, Q.; Ma, X.; Zhang, C.; Xie, K. Metabolomic analysis-identified 2-hydroxybutyric acid might be a key metabolite of severe preeclampsia. Open Life Sci. 2023, 18, 20220572. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Yuan, J.; He, Y.; Guo, Q.; Vollmer, C.; Vivanco, J.M. Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. PLoS ONE 2020, 15, e0234216. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Paik, M.J.; Kim, K.R. Sequential ethoxycarbonylation, methoximation and tert-butyldimethylsilylation for simultaneous determination of amino acids and carboxylic acids by dual-column gas chromatography. J. Chromatogr. A 2004, 1034, 13–23. [Google Scholar] [CrossRef]
- Paik, M.J.; Lee, H.J.; Kim, K.R. Simultaneous retention index analysis of urinary amino acids and carboxylic acids for graphic recognition of abnormal state. J. Chromatogr. B 2005, 821, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Hwang, Y.H.; Kim, Y.; Joo, B.S.; Yee, S.T.; Kim, C.M.; Paik, M.J. Metabolomic study of aging in mouse plasma by gas chromatography–mass spectrometry. J. Chromatogr. B 2016, 1025, 1–6. [Google Scholar] [CrossRef]
- Seo, C.; Kim, S.H.; Lee, H.S.; Ji, M.; Min, J.; Son, Y.J.; Kim, I.H.; Lee, K.; Paik, M.J. Metabolomic study on bleomycin and polyhexamethylene guanidine phosphate-induced pulmonary fibrosis mice models. Metabolomics 2019, 15, 111. [Google Scholar] [CrossRef]
No. | Organic Acid | Amount (ng·2 mg−1 FW Sample) | ||||||
---|---|---|---|---|---|---|---|---|
Fresh * | PC | OP | LNC | LN | LN-RM1 | |||
1 | Group 1 | Lactic acid | 459.3 | 3761.4 | 13,322.7 | 14,250.9 | 17,204.5 | 1788.5 |
2 | Glycolic acid | 1437.6 | 5629.3 | 8784.0 | 12,258.2 | 14,584.5 | 2069.7 | |
3 | 2-Hydroxybutyric acid | 1.2 | 26.9 | 144.0 | 221.2 | 256.9 | 9.0 | |
4 | 3-Hydroxypropionic acid | 35.6 | 337.8 | 585.6 | 1135.3 | 1497.7 | 84.0 | |
5 | Group 2 | Pyruvic acid | 30.9 | 43.9 | 96.2 | 89.3 | 105.4 | 37.4 |
6 | 2-Hydroxyglutaric acid | 152.7 | 434.3 | 822.6 | 1075.2 | 764.4 | 149.0 | |
7 | Group 3 | Malonic acid | 864.2 | 695.0 | 864.3 | 513.0 | 715.5 | 128.3 |
8 | Succinic acid | 293.6 | 555.5 | 388.2 | 461.7 | 394.8 | 184.6 | |
9 | Fumaric acid | 77.6 | 151.6 | 257.6 | 216.4 | 187.2 | 46.3 | |
10 | α-Ketoglutaric acid | 136.1 | 117.7 | 130.9 | 96.0 | 76.6 | 77.7 | |
11 | Malic acid | 1229.1 | 2613.8 | 791.0 | 1406.1 | 1436.9 | 356.2 | |
12 | cis-Aconitic acid | 105.1 | 161.9 | 80.3 | 83.9 | 91.2 | 47.3 | |
13 | Citric acid | 1194.4 | 2516.8 | 623.5 | 1329.4 | 1673.5 | 395.1 | |
14 | Isocitric acid | 133.4 | 370.2 | 122.8 | 187.7 | 223.1 | 70.8 | |
Total OAs | 6150.6 | 17,416.1 | 27,013.6 | 33,324.3 | 39,212.3 | 5443.9 |
No. | Organic Acid | Normalized Value * | ||||||
---|---|---|---|---|---|---|---|---|
Fresh ** | PC | OP | LNC | LN | LN-RM1 | |||
1 | Group 1 | Lactic acid | 1 | 8.19 | 29.01 | 31.03 | 37.46 | 3.89 |
2 | Glycolic acid | 1 | 3.92 | 6.11 | 8.53 | 10.15 | 1.44 | |
3 | 2-Hydroxybutyric acid | 1 | 21.92 | 117.3 | 180.22 | 209.27 | 7.32 | |
4 | 3-Hydroxypropionic acid | 1 | 9.5 | 16.47 | 31.93 | 42.13 | 2.36 | |
5 | Group 2 | Pyruvic acid | 1 | 1.42 | 3.11 | 2.89 | 3.41 | 1.21 |
6 | 2-Hydroxyglutaric acid | 1 | 2.84 | 5.39 | 7.04 | 5 | 0.98 | |
7 | Group 3 | Malonic acid | 1 | 0.8 | 1 | 0.59 | 0.83 | 0.15 |
8 | Succinic acid | 1 | 1.89 | 1.32 | 1.57 | 1.34 | 0.63 | |
9 | Fumaric acid | 1 | 1.95 | 3.32 | 2.79 | 2.41 | 0.6 | |
10 | α-Ketoglutaric acid | 1 | 0.86 | 0.96 | 0.71 | 0.56 | 0.57 | |
11 | Malic acid | 1 | 2.13 | 0.64 | 1.14 | 1.17 | 0.29 | |
12 | cis-Aconitic acid | 1 | 1.54 | 0.76 | 0.8 | 0.87 | 0.45 | |
13 | Citric acid | 1 | 2.11 | 0.52 | 1.11 | 1.4 | 0.33 | |
14 | Isocitric acid | 1 | 2.78 | 0.92 | 1.41 | 1.67 | 0.53 | |
Total OAs | 1.00 | 2.83 | 4.39 | 5.42 | 6.38 | 0.89 |
No. | Organic Acid | Amount (ng·2 mg−1 FW Sample) * | |||||||
---|---|---|---|---|---|---|---|---|---|
Standard ** | noPC | S-25% | noOP | Vial | NoPC-RM1 | NoPC-RM2 | |||
1 | Group 1 | Lactic acid | 14,952.6 | 20,397.4 | 9209.1 | 23,347.7 | 18,538.6 | 2295.1 | 2823.4 |
2 | Glycolic acid | 14,150.5 | 13,035.3 | 11,541.5 | 13,038.8 | 10,130.9 | 4131.8 | 3688.8 | |
3 | 2-Hydroxybutyric acid | 309.1 | 457.6 | 160.2 | 500.2 | 314.0 | 16.8 | 15.7 | |
4 | 3-Hydroxypropionic acid | 2051.3 | 1762.7 | 1469.9 | 1797.6 | 1025.3 | 254.1 | 199.4 | |
5 | Group 2 | Pyruvic acid | 112.2 | 143.4 | 83.2 | 150.4 | 93.6 | 56.5 | 47.5 |
6 | 2-Hydroxyglutaric acid | 586.3 | 1031.3 | 477.7 | 1116.6 | 793.3 | 317.7 | 272.3 | |
7 | Group 3 | Malonic acid | 337.3 | 81.4 | 450.4 | 69.6 | 480.2 | 201.3 | 94.2 |
8 | Succinic acid | 279.7 | 211.9 | 265.5 | 200.8 | 335.8 | 104.1 | 42.8 | |
9 | Fumaric acid | 101.3 | 41.5 | 45.4 | 43.0 | 124.0 | 30.2 | 24.8 | |
10 | α-Ketoglutaric acid | 68.1 | 68.3 | 66.0 | 65.2 | 85.4 | 61.6 | 54.7 | |
11 | Malic acid | 1700.7 | 399.9 | 1961.0 | 492.4 | 473.0 | 1060.5 | 467.4 | |
12 | cis-Aconitic acid | 75.4 | 35.9 | 40.6 | 29.5 | 42.0 | 27.2 | 19.2 | |
13 | Citric acid | 1884.8 | 650.0 | 2296.8 | 559.1 | 315.7 | 957.1 | 304.2 | |
14 | Isocitric acid | 189.9 | 109.1 | 241.2 | 107.9 | 73.9 | 338.8 | 49.0 | |
Total OAs | 36,799.2 | 38,425.6 | 28,308.3 | 41,518.8 | 32,825.8 | 9852.8 | 8103.5 |
No. | Organic Acid | Normalized Value * | |||||||
---|---|---|---|---|---|---|---|---|---|
Standard | noPC | NoPC-RM1 | NoPC RM2 | S-25% | noOP | Vial | |||
1 | Group 1 | Lactic acid | 1.0 | 1.36 | 0.15 | 0.19 | 0.62 | 1.56 | 1.24 |
2 | Glycolic acid | 1.0 | 0.92 | 0.29 | 0.26 | 0.82 | 0.92 | 0.72 | |
3 | 2-Hydroxybutyric acid | 1.0 | 1.48 | 0.05 | 0.05 | 0.52 | 1.62 | 1.02 | |
4 | 3-Hydroxypropionic acid | 1.0 | 0.86 | 0.12 | 0.10 | 0.72 | 0.88 | 0.50 | |
5 | Group 2 | Pyruvic acid | 1.0 | 1.28 | 0.50 | 0.42 | 0.74 | 1.34 | 0.83 |
6 | 2-Hydroxyglutaric acid | 1.0 | 1.76 | 0.54 | 0.46 | 0.81 | 1.90 | 1.35 | |
7 | Group 3 | Malonic acid | 1.0 | 0.24 | 0.60 | 0.28 | 1.34 | 0.21 | 1.42 |
8 | Succinic acid | 1.0 | 0.76 | 0.37 | 0.15 | 0.95 | 0.72 | 1.20 | |
9 | Fumaric acid | 1.0 | 0.41 | 0.30 | 0.25 | 0.45 | 0.42 | 1.22 | |
10 | α-Ketoglutaric acid | 1.0 | 1.00 | 0.91 | 0.80 | 0.97 | 0.96 | 1.25 | |
11 | Malic acid | 1.0 | 0.24 | 0.62 | 0.27 | 1.15 | 0.29 | 0.28 | |
12 | cis-Aconitic acid | 1.0 | 0.48 | 0.36 | 0.25 | 0.54 | 0.39 | 0.56 | |
13 | Citric acid | 1.0 | 0.34 | 0.51 | 0.16 | 1.22 | 0.30 | 0.17 | |
14 | Isocitric acid | 1.0 | 0.57 | 1.78 | 0.26 | 1.27 | 0.57 | 0.39 | |
Total OAs | 1.0 | 1.04 | 0.27 | 0.22 | 0.77 | 1.13 | 0.89 |
No. | Organic Acid | Amount (ng·2 mg−1 FW Sample) | ||||
---|---|---|---|---|---|---|
A3-80% * (Standard) | PVS2 | A3-90% | B5-85% | |||
1 | Group 1 | Lactic acid | 14,952.6 | 16,140.0 | 17,992.4 | 17,154.3 |
2 | Glycolic acid | 14,150.5 | 14,255.9 | 13,459.0 | 12,180.4 | |
3 | 2-Hydroxybutyric acid | 309.1 | 454.8 | 388.6 | 335.6 | |
4 | 3-Hydroxypropionic acid | 2051.3 | 2147.4 | 1944.3 | 1477.2 | |
5 | Group 2 | Pyruvic acid | 112.2 | 114.0 | 138.7 | 121.7 |
6 | 2-Hydroxyglutaric acid | 586.3 | 886.5 | 901.5 | 1065.8 | |
7 | Group 3 | Malonic acid | 337.3 | 288.4 | 316.0 | 363.9 |
8 | Succinic acid | 279.7 | 302.3 | 340.9 | 438.1 | |
9 | Fumaric acid | 101.3 | 39.2 | 45.4 | 46.3 | |
10 | α-Ketoglutaric acid | 68.1 | 70.2 | 74.7 | 79.8 | |
11 | Malic acid | 1700.7 | 1505.9 | 2336.4 | 2832.3 | |
12 | cis-Aconitic acid | 75.4 | 43.5 | 49.7 | 39.2 | |
13 | Citric acid | 1884.8 | 1415.5 | 1856.8 | 2875.3 | |
14 | Isocitric acid | 189.9 | 167.9 | 245.4 | 328.4 | |
Total | 36,799.2 | 36,916.4 | 39,708.6 | 39,234.7 |
No. | Organic Acid | Normalized Value * | ||||
---|---|---|---|---|---|---|
A3-80% ** (Standard) | PVS2 | A3-90% | B5-85% | |||
1 | Group 1 | Lactic acid | 1.00 | 1.08 | 1.20 | 1.15 |
2 | Glycolic acid | 1.00 | 0.92 | 1.01 | 0.95 | |
3 | 2-Hydroxybutyric acid | 1.00 | 1.10 | 1.47 | 1.26 | |
4 | 3-Hydroxypropionic acid | 1.00 | 0.84 | 1.05 | 0.95 | |
5 | Group 2 | Pyruvic acid | 1.00 | 1.02 | 1.24 | 1.08 |
6 | 2-Hydroxyglutaric acid | 1.00 | 1.38 | 1.51 | 1.54 | |
7 | Group 3 | Malonic acid | 1.00 | 0.64 | 0.86 | 0.94 |
8 | Succinic acid | 1.00 | 1.32 | 1.08 | 1.22 | |
9 | Fumaric acid | 1.00 | 0.49 | 0.39 | 0.45 | |
10 | α-Ketoglutaric acid | 1.00 | 1.11 | 1.03 | 1.10 | |
11 | Malic acid | 1.00 | 1.14 | 0.89 | 1.37 | |
12 | cis-Aconitic acid | 1.00 | 0.56 | 0.58 | 0.66 | |
13 | Citric acid | 1.00 | 1.02 | 0.75 | 0.99 | |
14 | Isocitric acid | 1.00 | 1.12 | 0.88 | 1.29 | |
Total | 1.00 | 1.00 | 1.08 | 1.07 |
No. | Organic Acid | Amount (ng·2 mg−1 FW Sample) | |||||||
---|---|---|---|---|---|---|---|---|---|
Fresh | RM1 (2d) | RM1 (5d) | RM1(5d)- RM2(9d) | RM1HF(5d)- MSF(9d) | RM2 (5d) | RM2(5d)- RM2(9d) | |||
1 | Group 1 | Lactic acid | 459.3 | 3461.8 | 1788.5 | 1134.8 | 2725.4 | 2811.8 | 956.1 |
2 | Glycolic acid | 1437.6 | 5522.2 | 2069.7 | 2736.0 | 4739.7 | 3417.7 | 2159.3 | |
3 | 2-Hydroxybutyric acid | 1.2 | 16.8 | 9.0 | 10.7 | 21.4 | 13.0 | 7.2 | |
4 | 3-Hydroxypropionic acid | 35.6 | 257.1 | 84.0 | 173.0 | 218.2 | 149.1 | 88.8 | |
5 | Group 2 | Pyruvic acid | 30.9 | 38.0 | 37.4 | 39.4 | 44.8 | 47.3 | 47.9 |
6 | 2-Hydroxyglutaric acid | 152.7 | 216.5 | 149.0 | 185.8 | 324.7 | 309.4 | 193.9 | |
7 | Group 3 | Malonic acid | 864.2 | 231.4 | 128.3 | 772.7 | 444.2 | 143.1 | 327.2 |
8 | Succinic acid | 293.6 | 100.2 | 184.6 | 122.4 | 65.8 | 76.2 | 103.1 | |
9 | Fumaric acid | 77.6 | 38.2 | 46.3 | 45.8 | 34.0 | 32.4 | 33.7 | |
10 | α-Ketoglutaric acid | 136.1 | 60.3 | 77.7 | 72.1 | 56.7 | 60.7 | 70.2 | |
11 | Malic acid | 1229.1 | 558.6 | 356.2 | 1229.7 | 482.2 | 477.0 | 1198.7 | |
12 | cis-Aconitic acid | 105.1 | 41.8 | 47.3 | 47.8 | 28.9 | 29.6 | 41.9 | |
13 | Citric acid | 1194.4 | 628.9 | 395.1 | 1747.9 | 613.1 | 479.0 | 1409.9 | |
14 | Isocitric acid | 133.4 | 88.8 | 70.8 | 221.3 | 66.6 | 76.3 | 189.0 | |
Total | 6150.6 | 11,260.6 | 5443.9 | 8539.4 | 9865.8 | 8122.6 | 6826.9 |
No. | Organic Acid | Fresh | Normalized Value * | ||||||
---|---|---|---|---|---|---|---|---|---|
RM1 (2d) | RM1 (5d) | RM1(5d)- RM2(9d) | RM1HF(5d)- MSF(9d) | RM2 (5d) | RM2(5d)- RM2(9d) | ||||
1 | Group 1 | Lactic acid | 1 | 7.54 | 3.89 | 3.89 | 5.93 | 6.12 | 2.08 |
2 | Glycolic acid | 1 | 3.84 | 1.44 | 1.44 | 3.30 | 2.38 | 1.50 | |
3 | 2-Hydroxybutyric acid | 1 | 13.69 | 7.33 | 7.33 | 17.43 | 10.59 | 5.87 | |
4 | 3-Hydroxypropionic acid | 1 | 7.23 | 2.36 | 2.36 | 6.14 | 4.19 | 2.50 | |
5 | Group 2 | Pyruvic acid | 1 | 1.23 | 1.21 | 1.21 | 1.45 | 1.53 | 1.55 |
6 | 2-Hydroxyglutaric acid | 1 | 1.42 | 0.98 | 0.98 | 2.13 | 2.03 | 1.27 | |
7 | Group 3 | Malonic acid | 1 | 0.27 | 0.15 | 0.15 | 0.51 | 0.17 | 0.38 |
8 | Succinic acid | 1 | 0.34 | 0.63 | 0.63 | 0.22 | 0.26 | 0.35 | |
9 | Fumaric acid | 1 | 0.49 | 0.60 | 0.60 | 0.44 | 0.42 | 0.43 | |
10 | α-Ketoglutaric acid | 1 | 0.44 | 0.57 | 0.57 | 0.42 | 0.45 | 0.52 | |
11 | Malic acid | 1 | 0.45 | 0.29 | 0.29 | 0.39 | 0.39 | 0.98 | |
12 | cis-Aconitic acid | 1 | 0.40 | 0.45 | 0.45 | 0.28 | 0.28 | 0.40 | |
13 | Citric acid | 1 | 0.53 | 0.33 | 0.33 | 0.51 | 0.40 | 1.18 | |
14 | Isocitric acid | 1 | 0.67 | 0.53 | 0.53 | 0.50 | 0.57 | 1.42 | |
Total | 1 | 1.83 | 0.89 | 1.13 | 1.60 | 1.32 | 1.25 |
Factor Investigated | No. | Treatment Conditions | Code |
---|---|---|---|
Procedure stages | 1 | Fresh (untreated) control | fresh |
2 | PC only | PC | |
3 | PC-OP only | PC-OP | |
4 | PC-OP-CP-UL | LNC | |
5 | PC-OP-CP-LN-UL | LN | |
6 | PC-OP-CP-LN-UL-RM1(5d) | LN-RM1(5d) | |
Additional stress (non-optimum protocol) | 1 | No preculure-OP-CP-LN-UL | NoPC |
2 | No preculure-OP-CP-LN-UL-RM1(5d) | NoPC-RM1 | |
3 | No preculure-OP-CP-LN-UL-RM2(5d) | NoPC-RM2 | |
4 | PC-OP-CP-LN-UL | Standard * | |
5 | PC(S-10%, 31 h→S-25%, 17 h)-CP-LN-UL | S-25% | |
6 | PC-no osmoprotection-CP-LN-UL | NoOP | |
7 | PC-OP-CP-LN(Vial)-UL | Vial | |
Vitrification solution | 1 | PC-OP-CP(PVS2 ice 60 m)-UL | PVS2-LNC |
2 | PC-OP-CP(PVS2 ice 60 m)-LN-UL | PVS2-LN | |
3 | PC-OP-CP(A3-90% ice 60 m)-LN-UL | A3-90%-LN | |
4 | PC-OP-CP(A3-80% ice 60 m)-UL | A3-80%-LNC (Standard) | |
5 | PC-OP-CP(A3-80% ice 60 m)-LN-UL | A3-80%-LN (Standard) | |
6 | PC-OP-CP(B5-85% RT 60 m)-LN-UL | B5-85%-LN | |
Regrowth steps and medium-type | 1 | PC-OP-CP-LN-UL-RM1(2d) | RM1(2d) |
2 | PC-OP-CP-LN-UL-RM1(5d) | RM1(5d) (Standard) | |
3 | PC-OP-CP-LN-UL-RM1(5d)-RM2(9d) | RM1-RM2 (Standard) | |
4 | PC-OP-CP-LN-UL-RM1(HF,5d)-MSF(9d) | RM1(HF)-MSF | |
5 | PC-OP-CP-LN-UL-RM2(5d) | RM2(5d) | |
6 | PC-OP-CP-LN-UL-RM2(5d)-RM2(9d) | RM2-RM2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, B.; Oh, S.; Park, H.; Popova, E.; Paik, M.-J.; Kim, H. Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus. Plants 2023, 12, 3489. https://doi.org/10.3390/plants12193489
Lee H, Choi B, Oh S, Park H, Popova E, Paik M-J, Kim H. Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus. Plants. 2023; 12(19):3489. https://doi.org/10.3390/plants12193489
Chicago/Turabian StyleLee, Hyoeun, Byeongchan Choi, Songjin Oh, Hana Park, Elena Popova, Man-Jeong Paik, and Haenghoon Kim. 2023. "Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus" Plants 12, no. 19: 3489. https://doi.org/10.3390/plants12193489
APA StyleLee, H., Choi, B., Oh, S., Park, H., Popova, E., Paik, M. -J., & Kim, H. (2023). Dynamics of Organic Acids during the Droplet-Vitrification Cryopreservation Procedure Can Be a Signature of Oxidative Stress in Pogostemon yatabeanus. Plants, 12(19), 3489. https://doi.org/10.3390/plants12193489