Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens
Abstract
:1. Introduction
2. Results
2.1. Endophytic Communities in the Seeds (Illumina Sequencing and Alignment)
2.2. In Planta Tests Results for Germination and Plant Weight
2.2.1. N. caerulescens
2.2.2. M. sativa
2.2.3. A. thaliana
3. Discussion
3.1. A. thaliana (Thale Cress)
3.2. M. sativa (Alfalfa)
3.3. N. caerulescens (Penny Cress)
3.4. H. annuus (Sunflower)
3.5. Z. mays, R. sativus, and C. pepo subsp. pepo (Corn, Radish, and Squash)
3.6. B. vulgaris subsp. cicla (Rainbow Chard)
4. Materials and Methods
4.1. Bacterial Isolation and Consortium Enrichment of Seed Endophytes from N. caerulescens
4.2. Seed Selection and Inoculation
4.3. DNA Extraction and Sequencing
4.4. Data Visualization and Statistical Analyses
4.5. Sowing, Germination, and Harvest
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Parmar, S.; Sharma, V.K.; White, J.F. Seed Endophytes and Their Potential Applications. In Seed Endophytes: Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030105044. [Google Scholar]
- Truyens, S.; Beckers, B.; Thijs, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. The Effects of the Growth Substrate on Cultivable and Total Endophytic Assemblages of Arabidopsis Thaliana. Plant Soil 2016, 405, 325–336. [Google Scholar] [CrossRef]
- Rodriguez, R.; Baird, A.; Cho, S.; Gray, Z.; Groover, E.; Harto, R.; Hsieh, M.; Malmberg, K.; Manglona, R.; Mercer, M.; et al. Programming Plants for Climate Resilience through Symbiogenics. In Seed Endophytes: Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030105044. [Google Scholar]
- White, J.F.; Kingsley, K.L.; Butterworth, S.; Brindisi, L.; Gatei, J.W.; Elmore, M.T.; Verma, S.K.; Yao, X.; Kowalski, K.P. Seed-Vectored Microbes: Their Roles in Improving Seedling Fitness and Competitor Plant Suppression. In Seed Endophytes: Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030105044. [Google Scholar]
- Sánchez-López, A.S.; Thijs, S.; Beckers, B.; González-Chávez, M.C.; Weyens, N.; Carrillo-González, R.; Vangronsveld, J. Community Structure and Diversity of Endophytic Bacteria in Seeds of Three Consecutive Generations of Crotalaria Pumila Growing on Metal Mine Residues. Plant Soil 2018, 422, 51–66. [Google Scholar] [CrossRef]
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants. Environ. Microbiol. Rep. 2015, 7, 40–50. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, K.; Verma, A.; White, J.F.; Verma, S.K. Functional Roles of Seed-Inhabiting Endophytes of Rice. In Seed Endophytes: Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030105044. [Google Scholar]
- Abideen, Z.; Cardinale, M.; Zulfiqar, F.; Koyro, H.W.; Rasool, S.G.; Hessini, K.; Darbali, W.; Zhao, F.; Siddique, K.H.M. Seed Endophyte Bacteria Enhance Drought Stress Tolerance in Hordeum Vulgare by Regulating, Physiological Characteristics, Antioxidants and Minerals Uptake. Front. Plant Sci. 2022, 13, 980046. [Google Scholar] [CrossRef] [PubMed]
- Mastretta, C.; Taghavi, S.; Lelie, D. Van Der International Journal of Phytoremediation Endophytic Bacteria from Seeds of Nicotiana Tabacum can Reduce. Int. J. 2010, 11, 37–41. [Google Scholar] [CrossRef]
- Langill, T.; Jorissen, L.P.; Oleńska, E.; Wójcik, M.; Vangronsveld, J.; Thijs, S. Community Profiling of Seed Endophytes from the Pb-Zn Hyperaccumulator Noccaea Caerulescens and Their Plant Growth Promotion Potential. Plants 2023, 12, 643. [Google Scholar] [CrossRef]
- Ryan, R.P.; Germaine, K.; Franks, A.; Ryan, D.J.; Dowling, D.N. Bacterial Endophytes: Recent Developments and Applications. FEMS Microbiol. Lett. 2008, 278, 1–9. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Plant Growth-Promoting Rhizobacteria Allow Reduced Rates of Chemical Fertilizers. Pap. Plant Pathol. 2009, 561, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Ernst, W.H.O.; Nelissen, H.J.M.; Ten Bookum, W.M. Combination Toxicology of Metal-Enriched Soils: Physiological Responses of a Zn- and Cd-Resistant Ecotype of Silene Vulgaris on Polymetallic Soils. Environ. Exp. Bot. 2000, 43, 55–71. [Google Scholar] [CrossRef]
- Cua, L.S.; Stein, L.Y. Characterization of Denitrifying Activity by the Alphaproteobacterium, Sphingomonas Wittichii RW1. Front. Microbiol. 2014, 5, 404. [Google Scholar] [CrossRef]
- Young, S.K.; Young, J.L.; Kim, J.H. Metabolism of Nitrodiphenyl Ether Herbicides by Dioxin-Degrading Bacterium Sphingomonas Wittichii RW1. J. Agric. Food Chem. 2008, 56, 9146–9151. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Rohée, C.; Rodrigues, A.M.S.; Stien, D.; Lebaron, P. Efficient Degradation of the Organic UV Filter Benzophenone-3 by Sphingomonas Wittichii Strain BP14P Isolated from WWTP Sludge. Sci. Total Environ. 2021, 758, 143674. [Google Scholar] [CrossRef]
- Conn, V.M.; Walker, A.R.; Franco, C.M.M. Endophytic Actinobacteria Induce Defense Pathways in Arabidopsis Thaliana. Mol. Plant-Microbe Interact. 2008, 21, 208–218. [Google Scholar] [CrossRef]
- Simonin, M.; Briand, M.; Chesneau, G.; Rochefort, A.; Marais, C.; Sarniguet, A.; Barret, M. Seed Microbiota Revealed by a Large-Scale Meta-Analysis Including 50 Plant Species. New Phytol. 2022, 234, 1448–1463. [Google Scholar] [CrossRef] [PubMed]
- Hąc-Wydro, K.; Flasiński, M. The Studies on the Toxicity Mechanism of Environmentally Hazardous Natural (IAA) and Synthetic (NAA) Auxin–The Experiments on Model Arabidopsis Thaliana and Rat Liver Plasma Membranes. Colloids Surf. B Biointerfaces 2015, 130, 53–60. [Google Scholar] [CrossRef]
- Tyc, O.; Putra, R.; Gols, R.; Harvey, J.A.; Garbeva, P. The Ecological Role of Bacterial Seed Endophytes Associated with Wild Cabbage in the United Kingdom. Microbiologyopen 2020, 9, e00954. [Google Scholar] [CrossRef]
- López, J.L.; Alvarez, F.; Príncipe, A.; Salas, M.E.; Lozano, M.J.; Draghi, W.O.; Jofré, E.; Lagares, A. Isolation, Taxonomic Analysis, and Phenotypic Characterization of Bacterial Endophytes Present in Alfalfa (Medicago Sativa) Seeds. J. Biotechnol. 2018, 267, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Saeb, A.T.M. Presence of Bacterial Virulence Gene Homologues in the Dibenzo-p-Dioxins Degrading Bacterium Sphingomonas Wittichii. Bioinformation 2016, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Johnston-Monje, D.; Raizada, M.N. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLoS ONE 2011, 6, e20396. [Google Scholar] [CrossRef]
- Roodi, D.; Millner, J.P.; McGill, C.; Johnson, R.D.; Jauregui, R.; Card, S.D. Methylobacterium, a Major Component of the Culturable Bacterial Endophyte Community of Wild Brassica Seed. PeerJ 2020, 8, e9514. [Google Scholar] [CrossRef]
- Durand, A.; Sterckeman, T.; Gonnelli, C.; Coppi, A.; Bacci, G.; Leglize, P.; Benizri, E. A Core Seed Endophytic Bacterial Community in the Hyperaccumulator Noccaea Caerulescens across 14 Sites in France. Plant Soil 2021, 459, 203–216. [Google Scholar] [CrossRef]
- Bahrami, Y.; Delbari, Y.; Buzhani, K.R.; Kakaei, E.; Mohassel, Y.; Bouk, S.; Franco, C.M.M. Endophytic Actinobacteria in Biosynthesis of Bioactive Metabolites and Their Application in Improving Crop Yield and Sustainable Agriculture. In Natural Products from Actinomycetes; Springer: Singapore, 2022. [Google Scholar]
- Boukhatem, Z.F.; Merabet, C.; Tsaki, H. Plant Growth Promoting Actinobacteria, the Most Promising Candidates as Bioinoculants? Front. Agron. 2022, 4, 849911. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, S.; Zou, Y.; Wang, J.; Song, W. Investigation on Diversity and Population Succession Dynamics of Endophytic Bacteria from Seeds of Maize (Zea Mays L., Nongda108) at Different Growth Stages. Ann. Microbiol. 2013, 63, 71–79. [Google Scholar] [CrossRef]
- Stevens, V.; Thijs, S.; Vangronsveld, J. Diversity and Plant Growth-Promoting Potential of (Un)Culturable Bacteria in the Hedera Helix Phylloplane. BMC Microbiol. 2021, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Pavani, P.; Kumar, K.; Rani, A.; Venkatesu, P.; Lee, M.J. The Influence of Sodium Phosphate Buffer on the Stability of Various Proteins: Insights into Protein-Buffer Interactions. J. Mol. Liq. 2021, 331, 115753. [Google Scholar] [CrossRef]
- Thijs, S.; De Beeck, M.O.; Beckers, B.; Truyens, S.; Stevens, V.; Van Hamme, J.D.; Weyens, N.; Vangronsveld, J. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S RRNA Gene Surveys. Front. Microbiol. 2017, 8, 494. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
Scientific Name | Common Name | Seed Image | Seed Size |
---|---|---|---|
Medicago sativa | Alfalfa | 1–2 mm | |
Arabidopsis thaliana | Thale cress | 0.3–0.5mm | |
Zea mays | Corn | 6–9 mm | |
Raphanus sativus | Radish | 1–3 mm | |
Noccaea caerulescens | Penny cress | 0.6–0.8 mm | |
Helianthus annus | Sunflower | 6–10 mm | |
Cucurbita pepo subsp. pepo | Squash | 8–14 mm | |
Beta vulgaris subsp. cicla | Rainbow chard | 1–2 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langill, T.; Wójcik, M.; Vangronsveld, J.; Thijs, S. Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens. Plants 2023, 12, 3660. https://doi.org/10.3390/plants12203660
Langill T, Wójcik M, Vangronsveld J, Thijs S. Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens. Plants. 2023; 12(20):3660. https://doi.org/10.3390/plants12203660
Chicago/Turabian StyleLangill, Tori, Małgorzata Wójcik, Jaco Vangronsveld, and Sofie Thijs. 2023. "Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens" Plants 12, no. 20: 3660. https://doi.org/10.3390/plants12203660
APA StyleLangill, T., Wójcik, M., Vangronsveld, J., & Thijs, S. (2023). Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens. Plants, 12(20), 3660. https://doi.org/10.3390/plants12203660