Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology
Abstract
:1. Introduction
2. Origin and Implications of Plastics in the Agricultural Environment
3. Plastics as Abiotic Stress: General Effects on Plant Physiology and Metabolism
4. MPs and NPs Induce Transcriptomics Reorganization and Modify Plant Metabolism
5. MPs and NPs Interaction with Trace Metals and Metalloids in Plants
6. Crops Affected by MPs and NPs: A Threat for the Food Chain
7. Plastic in the Environment: Research Gaps and Possible Strategies to Overcome Plastic Stress
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. Drowning in Plastics—Marine Litter and Plastic Waste Vital Graphics; Tsakona, M., Baker, E., Rucevska, I., Maes, T., Rosendahl, L., Macmillan-Lawler, M., Karen, M., Eds.; UNEP: Vernier, Switzerland, 2021; ISBN 978-92-807-3888-9. [Google Scholar]
- Citterich, F.; Lo Giudice, A.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Huang, J.; Zheng, Y.; Yang, Y.; Zhang, Y.; He, F.; Chen, H.; Quan, G.; Yan, J.; Li, T.; et al. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 2019, 184, 109612. [Google Scholar] [CrossRef]
- Ekner-Grzyb, A.; Duka, A.; Grzyb, T.; Lopes, I.; Chmielowska-Bąk, J. Plants oxidative response to nanoplastic. Front. Plant Sci. 2022, 13, 1027608. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, Z.; Yin, L.; Wen, X.; Xiao, R.; Du, L.; Zhu, L.; Liu, R.; Xu, Q.; Li, H.; et al. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: A different situation from urban WWTPs. Sci. Total Environ. 2022, 811, 152352. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wen, X.; Huang, D.; Du, C.; Deng, R.; Zhou, Z.; Tao, J.; Li, R.; Zhou, W.; Wang, Z.; et al. Interactions between microplastics/nanoplastics and vascular plants. Environ. Pollut. 2021, 290, 117999. [Google Scholar] [CrossRef]
- Geyer, R. Chapter 2—Plastic Waste and Recycling-Environmental Impact, Societal Issues, Prevention, and Solutions. In Production, Use, and Fate of Synthetic Polymers; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 13–32. [Google Scholar]
- Rezaei, M.; Riksen, M.J.P.M.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Santini, G.; Memoli, V.; Vitale, E.; Di Natale, G.; Trifuoggi, M.; Maisto, G.; Santorufo, L. Metal Release from Microplastics to Soil: Effects on Soil Enzymatic Activities and Spinach Production. Int. J. Environ. Res. Public Health 2023, 20, 3106. [Google Scholar] [CrossRef] [PubMed]
- Scarascia-Mugnozza, G.; Russo, G.; Sica, C. Plastic materials in European agriculture: Actual use and perspectives. J. Agric. Eng. 2012, 3, 15–28. [Google Scholar] [CrossRef]
- Cassou, E.M. Plastics. Agricultural Pollution: World Bank, Washington, DC. © World Bank. 2018. Available online: https://openknowledge.worldbank.org/handle/10986/29505 (accessed on 21 June 2021).
- Liu, E.K.; He, W.Q.; Yan, C.R. White revolution to white pollution—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Santini, G.; Acconcia, S.; Napoletano, M.; Memoli, V.; Santorufo, L.; Maisto, G. Unbiodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications. Environ. Pollut. 2022, 308, 119608. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Rizvi, Z.F. Impact of plastic mulching as a major source of microplastics in agroecosystems. J. Hazard. Mater. 2023, 445, 130455. [Google Scholar] [CrossRef]
- Kim, M.S.; Chang, H.; Zheng, L.; Yan, Q.; Pfleger, B.F.; Klier, J.; Nelson, K.; Majumder, E.L.; Huber, G.W. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. ACS Chem. Rev. 2023, 23, 9915–9939. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Bandmann, V.; Müller, J.D.; Köhler, T.; Homann, U. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett. 2012, 586, 3626–3632. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Qiu, T.; Duan, C.; Chen, L.; Zhao, S.; Zhang, X.; Fang, L. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. Sci. Total Environ. 2022, 852, 158353. [Google Scholar] [CrossRef]
- Arikan, B.; Alp, F.N.; Ozfidan-Konakci, C.; Yildiztugay, E.; Turan, M.; Cavusoglu, H. The impacts of nanoplastic toxicity on the accumulation, hormonal regulation and tolerance mechanisms in a potential hyperaccumulator—Lemna minor L. J. Hazard. Mater. 2022, 440, 129692. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) Differ. Types Microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef]
- Mei, X.; Dai, T.; Shen, Y. Adaptive strategy of Nitraria sibirica to transient salt, alkali and osmotic stresses via the alteration of Na+/K+ fluxes around root tips. J. For. Res. 2023, 34, 425–432. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Aqeel, M.; Khalid, N.; Nazir, A.; Alzuaibr, F.M.; Al-Mushhin, A.A.M.; Hakami, O.; Iqbal, M.F.; Chen, F.; Alamri, S.; et al. Effects of microplastics on growth and metabolism of rice (Oryza sativa L.). Chemosphere 2022, 307, 135749. [Google Scholar] [CrossRef] [PubMed]
- Koskei, K.; Munyasya, A.N.; Wang, Y.B.; Zhao, Z.Y.; Zhou, R.; Indoshi, S.N.; Wang, W.; Cheruiyot, W.K.; Mburu, D.M.; Nyende, A.B.; et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem. J. Hazard. Mater. 2021, 414, 125521. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobucar, G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Wang, Q.; Zeb, A.; Tang, J. Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.). J. Environ. Manag. 2022, 317, 115441. [Google Scholar] [CrossRef]
- Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellania, L.; Castiglione, M.R. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 2020, 149, 170–177. [Google Scholar] [CrossRef]
- Scherer, M.D.; Sposito, J.C.V.; Falco, W.F.; Grisolia, A.B.; Andrade, L.H.C.; Lima, S.M.; Machado, G.; Nascimento, V.A.; Gonçalves, D.A.; Wender, H.; et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019, 660, 459–467. [Google Scholar] [CrossRef]
- Maity, S.; Chatterjee, A.; Guchhait, R.; De, S.; Pramanick, K. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. J. Hazard. Mater. 2020, 385, 121560. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Lu, C.H.; Mai, L.; Bao, L.J.; Liu, L.Y.; Zeng, E.Y. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. J. Hazard. Mater. 2021, 401, 123412. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, X. Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets. Environ. Sci. Technol. 2017, 51, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.F.; Chao, D.Y. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. New Phytol. 2022, 236, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Zhang, H.; Li, Y.; Pu, M.; Yang, Y.; Li, C.; Lu, C.; Xu, P.; Yu, D. Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. J. Integr. Plant Biol. 2020, 62, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.J.; Begcy, K.; Sarath, G.; Walia, H. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis andvasculature development. Plant Sci. 2015, 241, 177–188. [Google Scholar] [CrossRef]
- Wu, X.; Hou, H.; Liu, Y.; Yin, S.; Bian, S.; Liang, S.; Wan, C.; Yuan, S.; Xiao, K.; Liu, B.; et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A Field Study. J. Hazard. Mater. 2022, 422, 126834. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Zhu, Y.; Li, H.; Song, X.; Shi, L. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings. Ecotoxicol. Environ. Saf. 2022, 231, 113155. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Pirredda, M.; Fajardo, C.; Costa, G.; Sánchez-Fortún, S.; Nande, M.; Mengs, G.; Martín, M. Transcriptomic and physiological effects of polyethylene microplastics on Zea mays seedlings and their role as a vector for organic pollutants. Chemosphere 2023, 322, 138167. [Google Scholar] [CrossRef]
- Malla, M.M.; Dubey, A.; Kumar, A.; Yadav, S. Unlocking the biotechnological and environmental perspectives of microplastic degradation in soil-ecosystems using metagenomics. Process Saf. Environ. Prot. 2023, 170, 372–379. [Google Scholar] [CrossRef]
- Bray, N.; Wickings, K. The roles of invertebrates in the urban soil microbiome. Front. Ecol. Evol. 2019, 7, 359. [Google Scholar] [CrossRef]
- Maresca, V.; Bellini, E.; Landi, S.; Capasso, G.; Cianciullo, P.; Carraturo, F.; Pirintsos, S.; Sorbo, S.; Sanità di Toppi, L.; Esposito, S.; et al. Biological responses to heavy metal stress in the moss Leptodictyum riparium (Hedw.) Warnst. Ecotoxicol. Environ. Saf. 2022, 229, 113078. [Google Scholar] [CrossRef]
- Landi, S.; De Lillo, A.; Nurcato, R.; Grillo, S.; Esposito, S. In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol. Biochem. 2017, 118, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Van Oosten, M.; Costa, A.; Punzo, P.; Landi, S.; Ruggiero, A.; Batelli, G.; Grillo, S. Genetics of drought stress tolerance in crop plants. In Drought Stress Tolerance in Plants; Hossain, M.A., Wani, S.H., Bhattachajee, S., Burrit, D., Phan Tran, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 2, ISBN 9783319324210. [Google Scholar] [CrossRef]
- Lentini, M.; De Lillo, A.; Paradisone, V.; Liberti, D.; Landi, S.; Esposito, S. Early responses to cadmium exposure in barley plants: Effects on biometric and physiological parameters. Acta Physiol. Plant. 2018, 40, 178. [Google Scholar] [CrossRef]
- Landi, S.; Paradisone, V.; Esposito, S. Molecular Investigation of Metalloid Stress Response in Higher Plants. In Metalloids in Plants; Deshmukh, R., Tripathi, D.K., Guerriero, G., Eds.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Li, M.; Wu, D.; Wu, D.; Guo, H.; Han, S. Influence of polyethylene-microplastic on environmental behaviors of metals in soil. Environ. Sci. Pollut. R. 2021, 28, 28329–28336. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Medynska-Juraszek, A.; Jadhav, B. Influence of different microplastic forms on pH and mobility of Cu2+ and Pb2+ in Soil. Molecules 2022, 27, 1744. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicol. Environ. Saf. 2021, 211, 111899. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Moore, F.; Keshavarzi, B.; Hopke, P.K.; Naidu, R.; Rahman, M.M.; Oleszczuk, P.; Karimi, J. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Sci. Total Environ. 2020, 744, 140984. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wu, D.; Yu, Y.; Han, S.; Sun, L.; Li, M. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere 2022, 288, 132576. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lin, X.; Yu, Y. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.). Environ. Pollut 2023, 316, 120656. [Google Scholar] [CrossRef]
- Wang, L.; Lin, B.; Wu, L.; Pan, P.; Liu, B.; Li, R. Antagonistic effect of polystyrene nanoplastics on cadmium toxicity to maize (Zea mays L.). Chemosphere 2022, 307, 135714. [Google Scholar] [CrossRef]
- Gao, M.; Bai, L.; Li, X.; Wang, S.; Song, Z. Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings. Environ. Pollut. 2022, 306, 119349. [Google Scholar] [CrossRef]
- Ozfidan-Konakci, C.; Yildiztugay, E.; Arikan, B.; Alp-Turgut, F.N.; Turan, M.; Cavusoglu, H.; Sakalak, H. Responses of individual and combined polystyrene and polymethyl methacrylate nanoplastics on hormonal content, fluorescence/photochemistry of chlorophylls and ROS scavenging capacity in Lemna minor under arsenic-induced oxidative stress. Free Radic. Biol. Med. 2023, 196, 93–107. [Google Scholar] [CrossRef]
- Mamathaxim, N.; Song, W.; Wang, Y.; Habibul, N. Effects of microplastics on arsenic uptake and distribution in rice seedlings. Sci. Total Environ. 2023, 862, 160837. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Wang, R.; Wang, R.; Zhang, P.; Ju, Q.; Xu, J. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ. Sci. Nano 2020, 7, 3587–3604. [Google Scholar] [CrossRef]
- Lian, J.; Liu, W.; Sun, Y.; Men, S.; Wu, J.; Zeb, A.; Yang, T.; Ma, L.Q.; Zhou, W. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. J. Hazard. Mater. 2022, 423, 127241. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef]
- Mamun, A.A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Olga, V.; Xue, Y.; Lv, S.; Diao, X.; Zhang, Y.; Han, Q.; Zhou, H. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere 2022, 291, 132714. [Google Scholar] [CrossRef]
- Bonanomi, M.; Salmistraro, N.; Porro, D.; Pinsino, A.; Colangelo, A.M.; Gaglio, D. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere 2022, 303, 134947. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environ. Monit. Assess. 2022, 195, 27. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and human safety: The impact of microplastics. Crit. Rev. Food Sci. Nutr. 2022, 17, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, R.; Zhang, S.; Sun, Y.; Wang, F. Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. J. Hazard. Mater. 2022, 421, 126700. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.A.D.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bacheher, J.B.; Faltin, E.; Becker, R.; Gorlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Li, R.; Zhou, J.; Wang, G. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ. Sci. Pollut. Control Ser. 2021, 28, 16042–16053. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; An, S.; Kim, L.; Byeon, Y.M.; Lee, J.; Choi, M.J.; An, Y.J. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. J. Hazard. Mater. 2022, 436, 129194. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Chao, L.; Zeb, A.; Sun, Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ. Pollut. 2021, 280, 116978. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, B.; Ye, R.; Yu, N.; Xie, Z.; Hua, Y.; Zhou, R.; Tian, B.; Dai, S. Evidence and Impacts of Nanoplastic Accumulation on Crop Grains. Adv. Sci. 2022, 9, e2202336. [Google Scholar] [CrossRef] [PubMed]
- Dainelli, M.; Pignattelli, S.; Bazihizina, N.; Falsini, S.; Papini, A.; Baccelli, I.; Mancuso, S.; Coppi, A.; Castellani, M.B.; Colzi, I.; et al. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. Sci. Total Environ. 2023, 895, 165119. [Google Scholar] [CrossRef]
- Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J. Hazard. Mater. 2022, 423, 127238. [Google Scholar] [CrossRef]
- Lian, J.; Wu, J.; Xiong, H.; Zeb, A.; Yang, T.; Su, X.; Su, L.; Liu, W. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater. 2020, 385, 121620. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. J. Hazard. Mater. 2021, 411, 125055. [Google Scholar] [CrossRef]
- Meng, F.; Yang, X.; Riksen, M.; Xu, M.; Geissen, V. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci. Total Environ. 2021, 755 Pt 2, 142516. [Google Scholar] [CrossRef]
- Hernández-Arenas, R.; Beltrán-Sanahuja, A.; Navarro-Quirant, P.; Sanz-Lazaro, C. The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants. Environ. Pollut. 2021, 268 Pt B, 115779. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhang, W.; Jiang, M.; Li, S.; Liang, G.; Bu, Q.; Xu, L.; Zhu, H.; Lu, A. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci. Total Environ. 2021, 796, 148750. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Plastic and plants. Nat. Sustain. 2020, 3, 887–888. [Google Scholar] [CrossRef]
- Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/zinc oxide nanorod photocatalysts. Catalysts 2019, 9, 819. [Google Scholar] [CrossRef]
- Lin, J.; Yan, D.; Fu, J.; Chen, Y.; Ou, H. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of microplastics. Water Res. 2020, 186, 116360. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.G.; Kim, H.H.; Chung, J.H.; Jun, J.; Lee, S.; Kim, H.M.; Jeon, S.; Park, S.G.; Bhak, J.; Ryu, C.M. The galleria mellonella hologenome supports microbiota independent metabolism of long-chain hydrocarbon beeswax. Cell Rep. 2019, 26, 2451–2464. [Google Scholar] [CrossRef]
Year | Location | Plastic Estimation | Reference |
---|---|---|---|
2012 | Worldwide | 6.5 million tons/year | [14] |
2014 | China | 1.4 million tons year * | [15] |
2015 | Worldwide | 7 to 9 million tons/year | [16] |
2019 | EU | 708.000 tons/year ** | [1] |
Plant Species | Cultivation | Plastics Type | Concentration | Trace Metal (TM) | TM Concentration | Effects on HMs Uptake | Reference |
---|---|---|---|---|---|---|---|
Brassica chinensis | Soil | Polystyrene–MPs | 0.5–2% | Cd | 10 mg kg−1 | Decreased uptake | [25] |
Oryza sativa | Soil | Polystyrene–MPs | 0.25% | As | 1.4, 24.7 and 86.3 mg kg−1 | Decreased bioavailability | [56] |
Oryza sativa | Soil | Polytetrafluorethylene–MPs | 0.5% | As | 1.4, 24.7 and 86.3 mg kg−1 | Decreased bioavailability | [56] |
Triticum aestivum | Soil | Polyethylene terephthalate–MPs | 1 g in 20 mL | Pb | 0.31 to 100.84 μg L−1 | Accumulation on PET–MPs | [57] |
Triticum aestivum | Soil | Polyethylene terephthalate–MPs | 1 g in 20 mL | Cd | 5020.65 to 599,436.62 μg L−1 | Accumulation on PET–MPs | [57] |
Brassica napus | Soil | Polyethylene–MPs | 0.01 to 0.1% of soil weight | Pb | 25–50 mg kg−1 | Increased bioaccumulation | [58] |
Brassica napus | Soil | Polyethylene–MPs | 0.01 to 0.1% of soil weight | Cu | 50–100 mg kg−1 | Increased bioaccumulation | [58] |
Lactuca sativa | Soil | Polystyrene–MPs | 100 and 1000 ng kg−1 | Cu, Pb, Cd | 82, 174.84, 42.0, 0.20 mg kg−1 | Increased uptake | [59] |
Lactuca sativa | Soil | Polystyrene–NPs | 100 and 1000 ng kg−1 | Cu, Pb, Cd | 82, 174.84, 42.0, 0.20 mg kg−1 | Increased uptake | [59] |
Zea mays | Hydroponics | Polystyrene–NPs | 10 and 100 mg L−1 | Cd | 2 mg/L and 10 mg L−1 | Antagonistic effects | [60] |
Taraxacum asiaticum | Hydroponics | Polystyrene–MPs | 1, 5 and 10 mg L−1 | Pb | 10 mg L−1 | Increased uptake | [61] |
Lemna minor | Hydroponics | Polystyrene–NPs | 100 mg L−1 | As | 100 μM | Decreased uptake | [62] |
Lemna minor | Hydroponics | Polymethyl methacrylate–NPs | 100 mg L−1 | As | 100 μM | Decreased uptake | [62] |
Lemne minor | Hydroponics | Combined–NPs | 100 mg L−1 | As | 100 μM | Decrease uptake | [62] |
Oryza sativa | Hydroponics | Polystyrene–MPs | 50 mg L−1 | As | 250 μg L−1 | No effects | [63] |
Oryza sativa | Hydroponics | Polystyrene–NPs | 50 mg L−1 | As | 250 μg L−1 | Promote accumulation | [63] |
Crops | Plastics Type | Effects | Yield | Reference |
---|---|---|---|---|
Cucumis sativus | PS | Reduction: soluble protein and sugar, vitamin C, and mineral element content; Increment: total soluble protein | 50% reduction in vitamin C and sugar content | [76] |
Pisum sativum | MP | Reduction: pods and beans for pod numbers; Increment: shoot growth Changes: amino acid profile | 20.5% reduction in bean per pod number | [77] |
Lactuca sativa | PS | Reduction: dry weight, height, leaf area, pigment content, shoot-to-root dry biomass ratios, macro- and micronutrient and amino acid content, photosynthetic performance, and chlorophyll and carotenoid content | Dry weight −27.3%; height −27.3%; leaf area −19.2% | [78] |
Oryza sativa | PS | Reduction: seed weight, nutritional quality | Seed weight −3.45% | [79] |
Arachis hypogaea | PS | Reduction: weight and total grain number per plant, nutritional quality | Empty shell number x plant +35.45% Seed-setting rate −3.02%, | [79] |
Solanum lycopersicum | PET; PVC | Reduction: shoot growth, photosynthesis, fruit development and quality | No. of fruits x plant −28%; fruits’ fresh weight −25% | [80] |
Cucurbita pepo | PP; PE; PVC; PET | Reduction: shoot growth, leaf size, chlorophyll content; photosynthetic efficiency | Fresh weight of shoots −35% | [81] |
Triticum aestivum | PS | Reduction: macro- and micronutrient content Increment: biomass and root elongation Changes: leaf metabolic profiles | Shoot biomass +87.1%; root biomass +116.5%, shoot root ratio −27.3% | [82] |
Daucus carota | PS | Reduction: biomass; soluble protein, vitamin C, soluble sugar, α-carotene, and β-carotene and chlorophyll content | Root biomass −12.7%; leaf biomass −21,4% | [83] |
Phaseolus vulgaris | LDPE | Reduction: chlorophyll content Increment: leaf area, root length, specific root nodules | No significant data obtained for fruit biomass | [84] |
Phaseolus vulgaris | Bio–MPs | Reduction: root, shoot, and fruit biomass, chlorophyll content, leaf area. Increment: root length | Fruit biomass −43% | [84] |
Solanum lycopersicum | PET; PVC | Reduction: plant number, fruit production Increment: shoot and root biomass | No. of plants −25%; no mature tomatoes; shoot biomass increase +2.21 fold change; root biomass +2.89 fold change | [85] |
Zea mays | PS | Reduction: biomass root and number of lateral roots | Root dry weight −49.4% | [86] |
Lactuca sativa | PS | Reduction: root lengths and biomass, germination | Germination index −36.0%; root dry weight −50% | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, G.; Castiglia, D.; Perrotta, M.M.; Landi, S.; Maisto, G.; Esposito, S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. Plants 2023, 12, 3717. https://doi.org/10.3390/plants12213717
Santini G, Castiglia D, Perrotta MM, Landi S, Maisto G, Esposito S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. Plants. 2023; 12(21):3717. https://doi.org/10.3390/plants12213717
Chicago/Turabian StyleSantini, Giorgia, Daniela Castiglia, Maryanna Martina Perrotta, Simone Landi, Giulia Maisto, and Sergio Esposito. 2023. "Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology" Plants 12, no. 21: 3717. https://doi.org/10.3390/plants12213717
APA StyleSantini, G., Castiglia, D., Perrotta, M. M., Landi, S., Maisto, G., & Esposito, S. (2023). Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. Plants, 12(21), 3717. https://doi.org/10.3390/plants12213717