Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Environment
2.2. Fruit Appearance and Physiological Characteristics
2.3. Measurements of the Total Soluble Solid, Acid, Phenols, Anthocyanins, and Ascorbic Acid
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fruit Appearances
3.2. Fruit Firmness, Respiration Intensity, and Storage Capacity
3.3. Soluble Solids (SS) and Titratable Acid (TA) Content
3.4. Anthocyanins, Phenolics and Vitamin C Contents
3.5. Correlation and Principal Component Analysis
3.6. Evaluation of Harvest Dates Based on Factor Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, M.M.; Chaovanalikit, A. Preliminary observations on adaptation and nutraceutical values of blue honeysuckle (Lonicera caerulea) in Oregon, USA. In Proceedings of the XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century, Toronto, ON, Canada, 11–17 August 2003; pp. 65–72. [Google Scholar]
- Plekhanova, M. Blue honeysuckle (Lonicera caerulea L.)—A new commercial berry crop for temperate climate: Genetic resources and breeding. Acta Hortic. 2000, 538, 159–164. [Google Scholar] [CrossRef]
- Svarcova, I.; Heinrich, J.; Valentova, K. Berry fruits as a source of biologically active compounds: The case of Lonicera caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2007, 151, 163–174. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Zhang, L.J.; Gao, Y.L.; Qin, D.; Huo, J.W. Two Novel Blue Honeysuckle (Lonicera caerulea L.) Cultivars: Lanjingling and Wulan. HortScience 2022, 57, 1145–1147. [Google Scholar] [CrossRef]
- Lefèvre, I.; Ziebel, J.; Guignard, C.; Sorokin, A.; Hausman, J.F. Evaluation and comparison of nutritional quality and bioactive compounds of berry fruits from Lonicera caerulea, Ribes L. species and Rubus idaeus grown in Russia. J. Berry Res. 2011, 1, 159–167. [Google Scholar] [CrossRef]
- Thompson, M.M. Introducing haskap, Japanese blue honeysuckle. J. Am. Pomol. Soc. 2006, 60, 164. [Google Scholar]
- Bors, B. Breeding of Lonicera caerulea L. for Saskatchewan and Canada. In Proceedings of the 1st Virtual International Scientific Conference on Lonicera caerulea L., Saskatoon, SK, Canada, 23 March 2009; Volume 23, pp. 88–98. [Google Scholar]
- Sobkowicz, K.; Szewczyk, A.; Ornat, B.; Bedra-Tokarz, M. Cultivation, Chemical Constituents and Utilization of Lonicera caerulea L. (Blue Honeysuckle) in Poland. In Medicinal Plants; Sustainable Development and Biodiversity; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 357–381. [Google Scholar]
- Haibing, T. Leading News: Blue Honeysuckle, Out of the “Purdah” to Welcome “Spring”. Heilongjiang Daily. 2022. Available online: http://h5.hljnews.cn/h5/detail/normal/4816392951940096 (accessed on 1 August 2023).
- Oszmianski, J.; Wojdylo, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). Lwt-Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Rupasinghe, H.; Boehm, M.; Sekhon-Loodu, S.; Parmar, I.; Bors, B.; Jamieson, A. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent. Biomolecules 2015, 5, 1079–1098. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Rop, O.; Reznicek, V.; Mlcek, J.; Jurikova, T.; Balik, J.; Sochor, J.; Kramarova, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hortic. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2018, 16, 100237. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Ma, C.; Li, X.; Wang, L. Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. Int. J. Biol. Macromol. 2020, 163, 414–422. [Google Scholar] [CrossRef]
- Liu, M.; Tan, J.J.; He, Z.Y.; He, X.; Hou, D.X.; He, J.H.; Wu, S.S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. Anim. Nutr. 2018, 4, 288–293. [Google Scholar] [CrossRef]
- Khattab, R.; Brooks, M.S.-L.; Ghanem, A. Phenolic Analyses of Haskap Berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. Int. J. Food Prop. 2016, 19, 1708–1725. [Google Scholar] [CrossRef]
- Ponder, A.; Najman, K.; Aninowski, M.; Leszczyńska, J.; Głowacka, A.; Bielarska, A.M.; Lasinskas, M.; Hallmann, E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules 2022, 27, 6083. [Google Scholar] [CrossRef]
- Katarzyna, S.; Jan, O.; Ireneusz, O.; Józef, G. Characterization of selected physico-chemical features of blue honeysuckle fruit cultivar Zielona. Pol. J. Nat. Sci. 2007, 4, 101–107. [Google Scholar]
- Jurikova, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic—A Comparative Study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosinska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Ochmian, I.; Skupien, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical Composition and Physical Characteristics of Fruits of Two Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in Relation to their Degree of Maturity and Harvest Date. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 155–162. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; A rich source of Check for some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, Y.; Zhao, Y.B.; Wang, Y.H.; Ning, C.; Ma, Y.; Meng, X.J. Polyphenol-rich blue honeysuckle extract alleviates silica particle-induced inflammatory responses and macrophage apoptosis via NRF2/HO-1 and MAPK signaling. J. Funct. Foods 2018, 46, 463–474. [Google Scholar] [CrossRef]
- Hummer, K.; Pomper, K.; Postman, J.; Graham, C.; Stover, E.; Mercure, E.; Aradhya, M.; Crisosto, C.; Ferguson, L.; Thompson, M.; et al. Emerging Fruit Crops. In Fruit Breeding; Springer: Boston, MA, USA, 2012; pp. 97–147. [Google Scholar]
- De Silva, A.B.K.H.; Rupasinghe, H.P.V. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. J. Food Compos. Anal. 2020, 88, 103402. [Google Scholar] [CrossRef]
- Dziedzic, E.; Błaszczyk, J.; Bieniasz, M.; Dziadek, K.; Kopeć, A. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Sci. Hortic. 2020, 265, 109226. [Google Scholar] [CrossRef]
- Hoppula, K.B.; Karhu, S.T. Strawberry fruit quality responses to the production environment. J. Food Agric. Environ. 2006, 4, 166–170. [Google Scholar]
- Zhang, Y.; Yang, M.; Hou, G.; Zhang, Y.; Chen, Q.; Lin, Y.; Li, M.; Wang, Y.; He, W.; Wang, X.; et al. Effect of Genotype and Harvest Date on Fruit Quality, Bioactive Compounds, and Antioxidant Capacity of Strawberry. Horticulturae 2022, 8, 348. [Google Scholar] [CrossRef]
- Cvetković, M.; Kočić, M.; Dabić Zagorac, D.; Ćirić, I.; Natić, M.; Hajder, Đ.; Životić, A.; Fotirić Akšić, M. When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times. Metabolites 2022, 12, 798. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F.; Kastelec, D. Indicators of plum maturity: When do plums become tasty? Sci. Hortic. 2014, 167, 127–134. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Wada, L.; Ou, B. Antioxidant Activity and Phenolic Content of Oregon Caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, Y.X.; Yang, S.H.; Wu, Z.X.; Shen, Y.X. Gaseous ozone treatment prolongs the shelf-life of fresh-cut kiwifruit by maintaining its ascorbic acid content. Lwt-Food Sci. Technol. 2022, 172, 114196. [Google Scholar] [CrossRef]
- IBM-Corporation. SPSS Statistics for Windows, Version 27.0; IBM-Corporation: Armonk, NY, USA, 2020.
- Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model. 2014, 54, 1552. [Google Scholar] [CrossRef]
- Yan, Y.; Dossett, M.; Castellarin, S.D. Cuticular waxes affect fruit surface color in blueberries. Plants People Planet 2023, 5, 736–751. [Google Scholar] [CrossRef]
- Ochmian, I.; Smolik, M.; Dobrowolska, A.; Rozwarski, R.; Kozos, K.; Chełpiński, P.; Ostrowska, K. The influence of harvest date on fruit quality of several cultivars of blue honeysuckle berries. Electron. J. Pol. Agric. Univ. 2013, 16, 1. [Google Scholar]
- Lee, H.J.; Suh, D.H.; Jung, E.S.; Park, H.M.; Jung, G.-Y.; Do, S.-G.; Lee, C.H. Metabolomics of Lonicera caerulea fruit during ripening and its relationship with color and antioxidant activity. Food Res. Int. 2015, 78, 343–351. [Google Scholar] [CrossRef]
- Rivera, S.; Giongo, L.; Cappai, F.; Kerckhoffs, H.; Sofkova-Bobcheva, S.; Hutchins, D.; East, A. Blueberry firmness—A review of the textural and mechanical properties used in quality evaluations. Postharvest Biol. Technol. 2022, 192, 112016. [Google Scholar] [CrossRef]
- Oh, S.B.; Muneer, S.; Kwack, Y.-B.; Shin, M.H.; Kim, J.G. Characteristic of fruit development for optimal harvest date and postharvest storability in ‘Skinny Green’ baby kiwifruit. Sci. Hortic. 2017, 222, 57–61. [Google Scholar] [CrossRef]
- Moya-León, M.A.; Mattus-Araya, E.; Herrera, R. Molecular Events Occurring During Softening of Strawberry Fruit. Front. Plant Sci. 2019, 10, 615. [Google Scholar] [CrossRef]
- Xu, G.; Qi, A.; Wang, H. ‘Yumeilan’ Northern Highbush Blueberry. HortScience 2022, 57, 506–507. [Google Scholar] [CrossRef]
- Xu, G.; Lei, L.; Wang, H. ‘Senmao 1’ Northern Highbush Blueberry. HortScience 2021, 56, 104–105. [Google Scholar] [CrossRef]
- Grajkowski, J.; Ochmian, I.; Ostrowska, K.; Rolnicza, A.; Mulinski, Z. The growth and yielding of highbush blueberry Sierra cultivar fruits (Vaccinium corymbosum L.) grown on embankments using three different organic substrates. Roczniki Akademii Rolniczej W Poznaniu Ogrodnictwo 2007, 41, 303–308. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-45f3fdae-ccd5-4cbf-8930-5069d3563e76 (accessed on 1 August 2023).
- Sarıdaş, M.A.; Ağçam, E.; Akbaş, F.C.; Akyıldiz, A.; Paydaş Kargı, S. Comparison of superior bred strawberry genotypes with popular cultivars in terms of fruit bioactive compounds over the full range of harvest dates. South Afr. J. Bot. 2022, 147, 142–152. [Google Scholar] [CrossRef]
- Deineka, V.I.; Sorokopudov, V.N.; Deineka, L.A.; Shaposhnik, E.I.; Kol’tsov, S.V. Anthocyans from fruit of some plants of the Caprifoliaceae family. Chem. Nat. Compd. 2005, 41, 162–164. [Google Scholar] [CrossRef]
- Fan, Z.L.; Wang, Z.Y.; Liu, J.R. Cold-field fruit extracts exert different antioxidant and antiproliferative activities in vitro. Food Chem. 2011, 129, 402–407. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Marianchuk, M.; Kolodziejczyk, P. Survey of bioactive components in Western Canadian berries. Can. J. Physiol. Pharmacol. 2007, 85, 1139–1152. [Google Scholar] [CrossRef]
- Pirkner, M.; Tanny, J.; Shapira, O.; Teitel, M.; Cohen, S.; Shahak, Y.; Israeli, Y. The effect of screen type on crop micro-climate, reference evapotranspiration and yield of a screenhouse banana plantation. Sci. Hortic. 2014, 180, 32–39. [Google Scholar] [CrossRef]
- Tohge, T.; Alseekh, S.; Fernie, A.R. On the regulation and function of secondary metabolism during fruit development and ripening. J. Exp. Bot. 2014, 65, 4599–4611. [Google Scholar] [CrossRef]
- Leisso, R.; Jarrett, B.; Richter, R.; Miller, Z. Fresh haskap berry postharvest quality characteristics and storage life. Can. J. Plant Sci. 2021, 101, 1051–1063. [Google Scholar] [CrossRef]
- Senger, E.; Osorio, S.; Olbricht, K.; Shaw, P.; Denoyes, B.; Davik, J.; Predieri, S.; Karhu, S.; Raubach, S.; Lippi, N.; et al. Towards smart and sustainable development of modern berry cultivars in Europe. Plant J. 2022, 111, 1238–1251. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, 1064–1070. [Google Scholar] [CrossRef]
- Cappai, F.; Benevenuto, J.; Ferrão, L.F.V.; Munoz, P. Molecular and Genetic Bases of Fruit Firmness Variation in Blueberry—A Review. Agronomy 2018, 8, 174. [Google Scholar] [CrossRef]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef]
- Kirina, I.B.; Belosokhov, F.G.; Titova, L.V.; Suraykina, I.A.; Pulpitow, V.F. Biochemical assessment of berry crops as a source of production of functional food products. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082068. [Google Scholar] [CrossRef]
- Liu, H.; Lou, S.; Qin, D.; Zhang, Y.; Xie, J.; Huo, J. Characteristics of endogenous hormones and cell wall-related enzymes activities during formation of carpopodium abscission zone in blue honeysuckle. Acta Bot. Boreali-Occident. Sin. 2019, 39, 110–120. [Google Scholar]
- Chen, J.; Ren, B.; Bian, C.; Qin, D.; Zhang, L.; Li, J.; Wei, J.; Wang, A.; Huo, J.; Gang, H. Transcriptomic and metabolomic analyses reveal molecular mechanisms associated with the natural abscission of blue honeysuckle (Lonicera caerulea L.) ripe fruits. Plant Physiol. Biochem. 2023, 199, 107740. [Google Scholar] [CrossRef]
Cultivar | Harvest Time | Length (mm) | Width (mm) | Size (cm3) | Weight (g) | L* | a* | b* |
---|---|---|---|---|---|---|---|---|
Lanjingling | 47DAF | 23.08 ± 0.86 a | 9.50 ± 0.24 a | 1.64 ± 0.11 a | 1.18 ± 0.09 a | 33.99 ± 0.98 b | −1.36 ± 0.18 a | −5.21 ± 0.24 a |
52DAF | 23.45 ± 0.15 a | 9.56 ± 0.27 a | 1.68 ± 0.10 a | 1.19 ± 0.04 a | 36.19 ± 1.35 ab | −1.38 ± 0.05 a | −5.45 ± 0.26 a | |
57DAF | 23.57 ± 0.84 a | 9.61 ± 0.34 a | 1.71 ± 0.08 a | 1.17 ± 0.11 a | 38.81 ± 1.77 a | −1.45 ± 0.37 a | −6.66 ± 0.27 b | |
62DAF | 23.78 ± 0.34 a | 9.61 ± 0.27 a | 1.73 ± 0.08 a | 1.19 ± 0.03 a | 39.45 ± 0.13 a | −1.47 ± 0.06 a | −6.77 ± 0.17 b | |
67DAF | 23.63 ± 0.22 a | 9.65 ± 0.23 a | 1.73 ± 0.10 a | 1.19 ± 0.06 a | 38.40 ± 1.46 a | −1.48 ± 0.13 a | −6.36 ± 0.03 b | |
Wulan | 46DAF | 18.30 ± 0.57 b | 10.37 ± 0.20 a | 2.06 ± 0.13 b | 1.02 ± 0.02 a | 31.98 ± 0.83 b | −1.36 ± 0.11 ab | −5.58 ± 0.55 b |
50DAF | 19.81 ± 0.05 a | 10.54 ± 0.43 a | 2.31 ± 0.19 ab | 1.04 ± 0.06 a | 28.77 ± 0.73 c | −1.04 ± 0.20 a | −4.23 ± 0.47 a | |
54DAF | 20.00 ± 0.47 a | 10.65 ± 0.14 a | 2.37 ± 0.09 ab | 1.06 ± 0.04 a | 37.24 ± 0.28 a | −1.84 ± 0.07 c | −6.80 ± 0.32 c | |
58DAF | 20.03 ± 0.29 a | 10.73 ± 0.17 a | 2.42 ± 0.12 a | 1.06 ± 0.02 a | 36.51 ± 1.18 a | −1.74 ± 0.16 bc | −7.24 ± 0.50 c | |
62DAF | 20.06 ± 0.11 a | 10.75 ± 0.08 a | 2.42 ± 0.03 a | 1.07 ± 0.02 a | 31.55 ± 1.99 bc | −1.01 ± 0.13 a | −5.40 ± 0.38 ab | |
Berel | 47DAF | 17.32 ± 0.06 a | 11.05 ± 0.12 a | 2.21 ± 0.05 a | 1.12 ± 0.01 a | 28.26 ± 1.12 c | −0.91 ± 0.10 a | −3.65 ± 0.23 a |
52DAF | 17.35 ± 0.11 a | 10.99 ± 0.29 a | 2.20 ± 0.11 a | 1.12 ± 0.03 a | 30.24 ± 0.91 c | −1.23 ± 0.09 b | −3.99 ± 0.21 a | |
57DAF | 17.37 ± 0.17 a | 11.05 ± 0.25 a | 2.22 ± 0.11 a | 1.13 ± 0.03 a | 34.58 ± 0.79 a | −1.69 ± 0.12 d | −5.24 ± 0.18 b | |
62DAF | 17.38 ± 0.06 a | 11.05 ± 0.35 a | 2.23 ± 0.14 a | 1.14 ± 0.03 a | 32.31 ± 0.17 b | −1.52 ± 0.07 cd | −4.84 ± 0.34 b | |
67DAF | 17.40 ± 0.14 a | 11.10 ± 0.26 a | 2.25 ± 0.08 a | 1.15 ± 0.01 a | 32.55 ± 0.35 b | −1.41 ± 0.01 bc | −5.06 ± 0.33 b |
Cultivar | Harvest Time | Firmness (N) | Respiration Intensity (CO2, mg/kg·h) | Shelf Life under 25 °C (Day) | Shelf Life under 4 °C (Day) |
---|---|---|---|---|---|
Lanjingling | 47DAF | 3.87 ± 0.13 a | 41.33 ± 1.30 a | 12.33 ± 2.52 a | 26.33 ± 3.51 a |
52DAF | 2.92 ± 0.15 b | 40.52 ± 3.95 a | 9.00 ± 2.65 ab | 21.33 ± 2.52 ab | |
57DAF | 2.21 ± 0.04 c | 27.94 ± 1.18 b | 8.33 ± 2.52 ab | 17.67 ± 3.06 bc | |
62DAF | 2.14 ± 0.12 c | 22.53 ± 2.23 b | 6.00 ± 2.65 ab | 14.67 ± 1.53 bc | |
67DAF | 1.44 ± 0.06 d | 12.43 ± 1.95 c | 4.33 ± 1.53 b | 11.00 ± 3.61 c | |
Wulan | 46DAF | 2.23 ± 0.06 a | 80.74 ± 2.87 a | 11.33 ± 3.21 a | 21.00 ± 1.00 a |
50DAF | 1.92 ± 0.11 b | 80.30 ± 2.65 a | 8.00 ± 3.61 ab | 19.00 ± 2.00 a | |
54DAF | 1.68 ± 0.15 b | 57.56 ± 2.23 b | 4.33 ± 1.53 b | 13.67 ± 1.15 b | |
58DAF | 1.18 ± 0.07 c | 49.30 ± 4.03 c | 3.00 ± 0.00 b | 10.67 ± 1.53 b | |
62DAF | 0.88 ± 0.03 d | 47.96 ± 2.55 c | 2.33 ± 0.58 b | 5.00 ± 1.00 c | |
Berel | 47DAF | 2.94 ± 0.02 a | 48.46 ± 1.80 a | 12.00 ± 3.00 a | 24.67 ± 2.08 a |
52DAF | 2.52 ± 0.03 b | 40.60 ± 3.17 b | 7.00 ± 1.73 ab | 16.00 ± 1.73 b | |
57DAF | 2.01 ± 0.09 c | 37.83 ± 2.31 b | 4.00 ± 1.73 b | 15.67 ± 2.08 b | |
62DAF | 1.90 ± 0.17 c | 26.06 ± 1.02 c | 4.33 ± 1.53 b | 12.67 ± 2.08 b | |
67DAF | 1.34 ± 0.02 d | 22.36 ± 2.67 c | 2.33 ± 0.58 b | 12.33 ± 2.31 b |
Cultivar | Harvest Time | Soluble Solids (SS, %) | Titratable Acid (TA, %) | SS:TA |
---|---|---|---|---|
Lanjingling | 47DAF | 15.15 ± 0.47 a | 1.52 ± 0.08 a | 10.00 ± 0.73 c |
52DAF | 15.10 ± 0.29 a | 1.18 ± 0.01 b | 12.83 ± 0.33 b | |
57DAF | 14.15 ± 0.31 a | 1.14 ± 0.08 b | 12.44 ± 0.73 b | |
62DAF | 14.44 ± 0.97 a | 1.09 ± 0.09 b | 13.28 ± 1.47 b | |
67DAF | 13.84 ± 0.37 a | 0.86 ± 0.02 c | 16.01 ± 0.78 a | |
Average | 14.54 ± 0.58 | 1.16 ± 0.23 | 12.91 ± 2.15 | |
Wulan | 46DAF | 17.23 ± 0.88 a | 2.12 ± 0.06 a | 8.13 ± 0.22 b |
50DAF | 16.13 ± 0.76 a | 1.97 ± 0.09 ab | 8.20 ± 0.46 b | |
54DAF | 16.90 ± 1.68 a | 1.91 ± 0.12 bc | 8.89 ± 1.33 ab | |
58DAF | 17.41 ± 0.51 a | 1.85 ± 0.15 bc | 9.44 ± 0.63 ab | |
62DAF | 17.65 ± 0.58 a | 1.73 ± 0.12 c | 10.23 ± 0.61 a | |
Average | 17.06 ± 0.59 | 1.92 ± 0.14 | 8.98 ± 0.88 | |
Berel | 47DAF | 12.88 ± 0.96 b | 2.23 ± 0.08 b | 5.77 ± 0.28 b |
52DAF | 13.52 ± 0.76 b | 2.06 ± 0.07 bc | 6.57 ± 0.39 ab | |
57DAF | 16.48 ± 0.08 a | 2.51 ± 0.13 a | 6.59 ± 0.31 ab | |
62DAF | 14.31 ± 0.32 b | 2.02 ± 0.09 bc | 7.08 ± 0.24 a | |
67DAF | 13.24 ± 0.13 b | 1.86 ± 0.09 c | 7.11 ± 0.43 a | |
Average | 14.09 ± 1.44 | 2.14 ± 0.24 | 6.62 ± 0.54 |
Cultivars | Harvest Time | Anthocyanins (mg/100 g) | Vitamin C (mg/100 g) | Phenolics (mg/g) |
---|---|---|---|---|
Lanjingling | 47DAF | 276.83 ± 20.07 a | 91.76 ± 0.77 bc | 37.59 ± 3.83 a |
52DAF | 250.29 ± 26.55 a | 90.22 ± 0.77 bc | 25.22 ± 0.85 b | |
57DAF | 253.41 ± 12.87 a | 92.52 ± 1.54 b | 27.58 ± 0.94 b | |
62DAF | 233.85 ± 17.92 a | 88.44 ± 1.77 c | 35.57 ± 1.53 a | |
67DAF | 254.08 ± 11.38 a | 99.68 ± 2.21 a | 28.88 ± 2.14 b | |
Average | 253.69 ± 15.34 | 92.52 ± 4.30 | 30.97 ± 5.34 | |
Wulan | 46DAF | 255.34 ± 34.41 bc | 121.16 ± 2.21 c | 36.52 ± 0.06 a |
50DAF | 236.38 ± 7.90 c | 137.27 ± 4.50 b | 33.41 ± 3.72 ab | |
54DAF | 312.23 ± 21.56 a | 191.23 ± 6.82 a | 30.55 ± 1.78 abc | |
58DAF | 305.91 ± 14.36 ab | 108.13 ± 0.89 d | 29.79 ± 3.64 bc | |
62DAF | 256.91 ± 2.19 bc | 116.82 ± 2.69 cd | 25.40 ± 1.05 c | |
Average | 273.29 ± 33.70 | 134.92 ± 33.21 | 31.14 ± 4.16 | |
Berel | 47DAF | 240.17 ± 24.09 b | 89.71 ± 0.88 c | 50.00 ± 2.78 a |
52DAF | 334.98 ± 9.54 a | 120.40 ± 7.13 a | 39.92 ± 0.62 b | |
57DAF | 308.43 ± 22.85 a | 103.78 ± 1.93 b | 38.74 ± 0.38 b | |
62DAF | 235.71 ± 13.68 b | 101.48 ± 1.17 b | 37.66 ± 2.18 b | |
67DAF | 290.74 ± 17.10 a | 107.10 ± 2.77 b | 41.28 ± 2.05 b | |
Average | 282.01 ± 43.23 | 104.49 ± 11.04 | 41.52 ± 4.93 |
Cultivar | Harvest Time | FC1 Score | FC2 Score | FC3 Score | Comprehensive Score |
---|---|---|---|---|---|
Lanjingling | 47DAF | 1.37 | 1.02 | 0.04 | 1.05 |
52DAF | 0.28 | −0.35 | 0.48 | 0.20 | |
57DAF | −0.09 | −0.08 | −0.01 | −0.08 | |
62DAF | −0.03 | −1.23 | −0.72 | −0.39 | |
67DAF | −1.53 | 0.65 | 0.20 | −0.78 | |
Wulan | 46DAF | 1.00 | −0.97 | −0.56 | 0.13 |
50DAF | 0.84 | 0.11 | −0.47 | 0.38 | |
54DAF | 0.12 | 0.22 | 1.81 | 0.46 | |
58DAF | −0.74 | 0.14 | −0.01 | −0.34 | |
62DAF | −1.22 | 0.50 | −0.77 | −0.63 | |
Berel | 47DAF | 1.44 | −1.20 | 0.26 | 0.49 |
52DAF | 0.62 | 1.57 | 0.10 | 0.82 | |
57DAF | −0.16 | 0.35 | −0.04 | 0.00 | |
62DAF | −0.85 | −0.62 | −0.10 | −0.67 | |
67DAF | −1.05 | −0.10 | −0.22 | −0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Li, S.; Zhan, Y.; Huang, Z.; Lv, J.; Liu, Y.; Quan, X.; Xiong, J.; Qin, D.; Huo, J.; et al. Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China. Plants 2023, 12, 3758. https://doi.org/10.3390/plants12213758
Yu M, Li S, Zhan Y, Huang Z, Lv J, Liu Y, Quan X, Xiong J, Qin D, Huo J, et al. Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China. Plants. 2023; 12(21):3758. https://doi.org/10.3390/plants12213758
Chicago/Turabian StyleYu, Min, Songlin Li, Ying Zhan, Zhiqiang Huang, Jinjiao Lv, Yu Liu, Xin Quan, Jinyu Xiong, Dong Qin, Junwei Huo, and et al. 2023. "Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China" Plants 12, no. 21: 3758. https://doi.org/10.3390/plants12213758
APA StyleYu, M., Li, S., Zhan, Y., Huang, Z., Lv, J., Liu, Y., Quan, X., Xiong, J., Qin, D., Huo, J., & Zhu, C. (2023). Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in China. Plants, 12(21), 3758. https://doi.org/10.3390/plants12213758