No-Tillage System Can Improve Soybean Grain Production More Than Conventional Tillage System
Abstract
:1. Introduction
2. Results
2.1. Soil Physical and Hydraulic Properties and Root Development
2.2. Infiltration, Storage, and Availability of Water in the Soil
2.3. Soybean Yield
2.4. Correlation between Soil Physical and Hydraulic Properties, Soil Water, and Soybean Yield
3. Discussion
3.1. Soil Physical and Hydraulic Properties and Soybean Performance
3.2. Correlation between Soil Physical and Hydraulic Properties, Soil Water, and Soybean Yield
4. Materials and Methods
4.1. Location and History of the Experimental Area
4.2. Experimental Design and Conduction of the Experiment
4.3. Sampling of Soybean Roots
4.4. Soil Assessments
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-Four Years of No-Tillage and Cover Crops Improve Soil Quality and Increase Cotton Yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- Awal, R.; Safeeq, M.; Abbas, F.; Fares, S.; Deb, S.K.; Ahmad, A.; Fares, A. Soil Physical Properties Spatial Variability under Long-Term No-Tillage Corn. Agronomy 2019, 9, 750. [Google Scholar] [CrossRef]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the Long-Term Effects of Zero-Tillage on the Macroporosity of Brazilian Soils Using X-Ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Chakraborty, D. Global Meta-Analysis Suggests That No-Tillage Favourably Changes Soil Structure and Porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-Tillage and Soil Physical Environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Boydston, R.A.; Porter, L.D.; Chaves-Cordoba, B.; Khot, L.R.; Miklas, P.N. The Impact of Tillage on Pinto Bean Cultivar Response to Drought Induced by Deficit Irrigation. Soil Tillage Res. 2018, 180, 63–72. [Google Scholar] [CrossRef]
- da Silva, G.F.; Calonego, J.C.; Luperini, B.C.O.; Chamma, L.; Alves, E.R.; Rodrigues, S.A.; Putti, F.F.; da Silva, V.M.; de Almeida Silva, M. Soil—Plant Relationships in Soybean Cultivated under Conventional Tillage and Long-Term No-Tillage. Agronomy 2022, 12, 697. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage Management Impacts on Soil Compaction, Erosion and Crop Yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil Hydraulic Properties: Influence of Tillage and Cover Crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Pires, L.F.; Cássaro, F.A.M.; Auler, A.C.; Rosa, J.A.; Heck, R.J.; Roque, W.L. X-Ray Computed Tomography for Assessing the Effect of Tillage Systems on Topsoil Morphological Attributes. Soil Tillage Res. 2019, 189, 25–35. [Google Scholar] [CrossRef]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R. Soil Porosity, Permeability and Static and Dynamic Strength Parameters under Native Forest/Grassland Compared to No-Tillage Cropping. Soil Tillage Res. 2018, 177, 113–124. [Google Scholar] [CrossRef]
- Schlüter, S.; Albrecht, L.; Schwärzel, K.; Kreiselmeier, J. Long-Term Effects of Conventional Tillage and No-Tillage on Saturated and near-Saturated Hydraulic Conductivity—Can Their Prediction Be Improved by Pore Metrics Obtained with X-ray CT? Geoderma 2020, 361, 114082. [Google Scholar] [CrossRef]
- Lucas, M.; Schlüter, S.; Vogel, H.-J.; Vetterlein, D. Soil Structure Formation along an Agricultural Chronosequence. Geoderma 2019, 350, 61–72. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; da Silva, V.R.; da Luz, F.B. Age-Hardening Phenomena in an Oxisol from the Subtropical Region of Brazil. Soil. Tillage Res. 2017, 170, 27–37. [Google Scholar] [CrossRef]
- de Moraes, M.T.; da Luz, F.B.; Debiasi, H.; Franchini, J.C.; Silva, V.R. da Soil Load Support Capacity Increases with Time without Soil Mobilization as a Result of Age-Hardening Phenomenon. Soil Tillage Res. 2019, 186, 128–134. [Google Scholar] [CrossRef]
- Soratto, R.P.; Perez, A.A.G.; Fernandes, A.M. Age of No-Till System and Nitrogen Management on Common Bean Nutrition and Yield. Agron. J. 2014, 106, 809–820. [Google Scholar] [CrossRef]
- da Silva, G.F.; Matusevicius, A.P.O.; Calonego, J.C.; Chamma, L.; Luperini, B.C.O.; Alves, M.d.S.; Leite, H.M.F.; Pinto, E.d.J.; Silva, M.d.A.; Putti, F.F. Soil–Plant Relationships in Soybean Cultivated under Crop Rotation after 17 Years of No-Tillage and Occasional Chiseling. Plants 2022, 11, 2657. [Google Scholar] [CrossRef] [PubMed]
- Carmeis Filho, A.C.A.; Crusciol, C.A.C.; Guimarães, T.M.; Calonego, J.C.; Mooney, S.J. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLoS ONE 2016, 11, e0167564. [Google Scholar] [CrossRef]
- Oliveira, F.C.C.; Ferreira, G.W.D.; Souza, J.L.S.; Vieira, M.E.O.; Pedrotti, A. Soil Physical Properties and Soil Organic Carbon Content in Northeast Brazil: Long-Term Tillage Systems Effects. Sci. Agric. 2020, 77, e20180166. [Google Scholar] [CrossRef]
- Vizioli, B.; Cavalieri-Polizeli, K.M.V.; Tormena, C.A.; Barth, G. Effects of Long-Term Tillage Systems on Soil Physical Quality and Crop Yield in a Brazilian Ferralsol. Soil Tillage Res. 2021, 209, 104935. [Google Scholar] [CrossRef]
- Ferreira, C.J.B.; Tormena, C.A.; Severiano, E.D.C.; Zotarelli, L.; Betioli Júnior, E. Soil Compaction Influences Soil Physical Quality and Soybean Yield under Long-Term No-Tillage. Arch. Agron. Soil Sci. 2021, 67, 383–396. [Google Scholar] [CrossRef]
- Gamboa, C.H.; Figueiredo, G.C.; Vezzani, F.M.; Ferreira, F.C.; Bayer, C. Active Plant Biomass Inputs Influence Pore System Functioning in No-till Soils. Geoderma 2023, 434, 116477. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Yakupoğlu, T.; Dindaroğlu, T.; Terol, E.; Mora-Navarro, G.; Arabameri, A.; Radziemska, M.; Novara, A.; Kavian, A.; et al. Tillage versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 2020, 12, 1539. [Google Scholar] [CrossRef]
- Hubert, F.; Hallaire, V.; Sardini, P.; Caner, L.; Heddadj, D. Pore Morphology Changes under Tillage and No-Tillage Practices. Geoderma 2007, 142, 226–236. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Mazetto Júnior, J.C.; Silva Júnior, J.; Vieira, D.M.S.; Souza, Z.M.; Assis, R.L.; Lemes, E.M. Soil Physical Attributes and Organic Matter Accumulation under No-Tillage Systems in the Cerrado. Soil Res. 2019, 57, 712–718. [Google Scholar] [CrossRef]
- Abdollahi, L.; Munkholm, L.J. Tillage System and Cover Crop Effects on Soil Quality: I. Chemical, Mechanical, and Biological Properties. Soil Sci. Soc. Am. J. 2014, 78, 262–270. [Google Scholar] [CrossRef]
- Silva, T.S.; Pulido-Moncada, M.; Schmidt, M.R.; Katuwal, S.; Schlüter, S.; Köhne, J.M.; Mazurana, M.; Juhl Munkholm, L.; Levien, R. Soil Pore Characteristics and Gas Transport Properties of a No-Tillage System in a Subtropical Climate. Geoderma 2021, 401, 115222. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, X. Bio-Tillage: A New Perspective for Sustainable Agriculture. Soil Tillage Res. 2021, 206, 104844. [Google Scholar] [CrossRef]
- Ding, J.; Hu, W.; Wu, J.; Yang, Y.; Feng, H. Simulating the Effects of Conventional versus Conservation Tillage on Soil Water, Nitrogen Dynamics, and Yield of Winter Wheat with RZWQM2. Agric. Water Manag. 2020, 230, 105956. [Google Scholar] [CrossRef]
- Grable, A.R.; Siemer, E.G. Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots. Soil Sci. Soc. Am. J. 1968, 32, 180–186. [Google Scholar] [CrossRef]
- Calonego, J.C.; Raphael, J.P.; Rigon, J.P.; de Oliveira Neto, L.; Rosolem, C.A. Soil Compaction Management and Soybean Yields with Cover Crops under No-till and Occasional Chiseling. Eur. J. Agron. 2017, 85, 31–37. [Google Scholar] [CrossRef]
- Reichert, J.M.; Cechin, N.F.; Reinert, D.J.; Rodrigues, M.F.; Suzuki, L.E.A.S. Ground-Based Harvesting Operations of Pinus Taeda Affects Structure and Pore Functioning of Clay and Sandy Clay Soils. Geoderma 2018, 331, 38–49. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Reichert, J.M.; Mentges, M.I.; Rodrigues, M.F.; Cavalli, J.P.; Awe, G.O.; Mentges, L.R. Compressibility and Elasticity of Subtropical No-till Soils Varying in Granulometry Organic Matter, Bulk Density and Moisture. Catena 2018, 165, 345–357. [Google Scholar] [CrossRef]
- Müller, K.; Katuwal, S.; Young, I.; McLeod, M.; Moldrup, P.; de Jonge, L.W.; Clothier, B. Characterising and Linking X-Ray CT Derived Macroporosity Parameters to Infiltration in Soils with Contrasting Structures. Geoderma 2018, 313, 82–91. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.D.C.M.; de Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; de Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional Tillage in No-Tillage Systems: A Global Meta-Analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef]
- Ribeiro, P.L.; Bamberg, A.L.; Reis, D.A.; de Oliveira, A.C.B. Condições Físico-Hídricas de Planossolo Cultivado Com Soja Em Plantio Direto e Preparo Convencional. Pesqui. Agropecu. Bras. 2016, 51, 1484–1491. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, F.; Hu, T.; Zhao, K.; Gao, T.; Zhao, H.; Ning, T. Using Stable Isotopes to Quantify Water Uptake from Different Soil Layers and Water Use Efficiency of Wheat under Long-Term Tillage and Straw Return Practices. Agric. Water Manag. 2020, 229, 105933. [Google Scholar] [CrossRef]
- Pan, R.; Martinez, A.; Brito, T.; Seidel, E. Processes of Soil Infiltration and Water Retention and Strategies to Increase Their Capacity. J. Exp. Agric. Int. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Silva, E.H.F.M.; Gonçalves, A.O.; Pereira, R.A.; Fattori Júnior, I.M.; Sobenko, L.R.; Marin, F.R. Soybean Irrigation Requirements and Canopy-Atmosphere Coupling in Southern Brazil. Agric. Water Manag. 2019, 218, 1–7. [Google Scholar] [CrossRef]
- Ramezanifar, H.; Yazdanpanah, N.; Golkar Hamzee Yazd, H.; Tavousi, M.; Mahmoodabadi, M. Synergistic and Antagonistic Interactions of Soil Water Potential and Osmotic Potential Linked to Nitrogen Fertilization on Spinach Traits and Water Use Efficiency. J. Plant Nutr. 2022, 45, 389–412. [Google Scholar] [CrossRef]
- Siczek, A.; Lipiec, J. Soybean Nodulation and Nitrogen Fixation in Response to Soil Compaction and Surface Straw Mulching. Soil Tillage Res. 2011, 114, 50–56. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do Tillage Systems Influence Nitrogen Fixation in Legumes? A Review. Soil Tillage Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- Lima, R.P.; Rolim, M.M.; Toledo, M.P.S.; Tormena, C.A.; da Silva, A.R.; e Silva, I.A.C.; Pedrosa, E.M.R. Texture and Degree of Compactness Effect on the Pore Size Distribution in Weathered Tropical Soils. Soil Tillage Res. 2022, 215, 105215. [Google Scholar] [CrossRef]
- Calonego, J.C.; Rosolem, C.A. Soybean Root Growth and Yield in Rotation with Cover Crops under Chiseling and No-Till. Eur. J. Agron. 2010, 33, 242–249. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; Volume 12, ISBN 0926487221. [Google Scholar]
- Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; IAC: Campinas, Brazil, 2001. [Google Scholar]
- EMBRAPA. Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G.T., Eds.; Embrapa: Brasílis, Brazil, 2017; ISBN 9788570357717. [Google Scholar]
- Stolf, R.; Murakami, J.H.; Brugnaro, C.; Silva, L.G.; da Silva, L.C.F.; Margarido, L.A.C. Penetrômetro de Impacto Stolf—Programa Computacional de Dados Em EXCEL-VBA. Rev. Bras. Cienc. Solo 2014, 38, 774–782. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis: Physical and Mineralogical Methods; Klute, A., Ed.; America Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. ISBN 9780891180883. [Google Scholar]
- Smith, K.A.; Mullins, C.E. Soil Analysis: Physical Methods; Marcel Dekker: New York, NY, USA, 1991; ISBN 0824783611. [Google Scholar]
- Reeve, M.J.; Carter, A.D. Water Release Characteristic. In Soil Analysis: Physical Methods; Smith, K.A., Mullins, C.E., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 111–160. [Google Scholar]
- Bernardo, S.; Mantovani, E.C.; Da Silva, D.D.; Soares, A.A. Manual de Irrigação, 9th ed.; UFV: Viçosa, Brazil, 2019; ISBN 9788572696104. [Google Scholar]
- Kostiakov, A.N. On the Dynamics of the Coefficient of Water—Percolation in Soils and on the Necessity for Studying It from a Dynamic Point of View for Purposes of Ameliation. Soc. Soil Sci. 1932, 14, 17–31. [Google Scholar]
- Lewis, M.R. The Rate of Infiltration of Water in Irrigation-Practice. Trans. Am. Geophys. Union 1937, 18, 361–368. [Google Scholar] [CrossRef]
Soil Management | Soi Depth (m) | ||
---|---|---|---|
0.00–0.10 | 0.10–0.20 | 0.20–0.40 | |
Soil penetration resistance (MPa) | |||
Conventional tillage | 0.71 ± 0.48 bB | 1.62 ± 0.57 bB | 3.52 ± 1.30 aA |
No-tillage | 4.11 ± 0.69 aAB | 4.40 ± 0.70 aA | 3.33 ± 0.73 aB |
Soil bulk density (g cm−3) | |||
Conventional tillage | 1.04 ± 0.09 bB | 1.27 ± 0.04 aA | 1.24 ± 0.03 aA |
No-tillage | 1.30 ± 0.05 aAB | 1.35 ± 0.03 aA | 1.26 ± 0,07 aB |
Maximum available water capacity (cm3 cm−3) | |||
Conventional tillage | 0.054 ± 0.08 aB | 0.069 ± 0.05 aA | 0.047 ± 0.08 bC |
No-tillage | 0.047 ± 0.06 bB | 0.037 ± 0.03 bC | 0.066 ± 0.06 aA |
Soybean root dry biomass (kg ha−1) | |||
Conventional tillage | 1110 ± 48.44 aA | 136 ± 13.62 bB | 49 ± 11.47 aB |
No-tillage | 1316 ± 57.19 aA | 1009 ± 94.00 aA | 13 ± 16.39 aB |
Treatment | Macroporosity | Microporosity | Total Porosity |
---|---|---|---|
cm3 cm−3 | |||
Soil management | |||
Conventional tillage | 0.09 ± 0.02 a | 0.44 ± 0.02 a | 0.53 ± 0.02 a |
No-tillage | 0.06 ± 0.02 b | 0.44 ± 0.02 a | 0.50 ± 0.02 a |
Depth (m) | |||
0.00–0.10 | 0.09 ± 0.02 a | 0.43 ± 0.02 a | 0.52 ± 0.01 a |
0.10–0.20 | 0.07 ± 0.02 a | 0.44 ± 0.02 a | 0.51 ± 0.01 a |
0.20–0.40 | 0.07 ± 0.02 a | 0.44 ± 0.02 a | 0.51 ± 0.01 a |
Variables | RDB | PR | TP | Mp | mp | Bd | MWC | SY | IA |
---|---|---|---|---|---|---|---|---|---|
0.00–0.10 m | |||||||||
PR | 0.431 ns | ||||||||
Tp | −0.195 ns | −0.786 * | |||||||
Mp | 0.013 ns | −0.828 * | 0.899 ** | ||||||
mp | −0.456 ns | 0.143 ns | 0.166 ns | −0.283 ns | |||||
Bd | 0.077 ns | 0.704 ns | −0.670 ns | −0.741 * | 0.201 ns | ||||
MWC | −0.333 ns | −0.905 ** | 0.804 * | 0.882 ** | −0.255 ns | −0.835 * | |||
SY | −0.224 ns | −0.116 ns | −0.161 ns | −0.095 ns | −0.138 ns | −0.348 ns | 0.208 ns | ||
WI | 0.304 ns | 0.850 ** | −0.689 ns | −0.785 * | 0.260 ns | 0.785 * | −0.938 ** | −0.475 ns | |
WSS | −0.349 ns | 0.483 ns | 0.605 ns | −0.807 * | 0.493 ns | 0.437 ns | −0.562 ns | −0.006 ns | 0.588 ns |
0.10–0.20 m | |||||||||
PR | 0.847** | ||||||||
Tp | −0.015 ns | 0.231 ns | |||||||
Mp | −0.104 ns | −0.155 ns | 0.236 ns | ||||||
mp | 0.082 ns | −0.025 ns | 0.497 ns | −0.725 * | |||||
Bd | 0.451 ns | 0.601 ns | −0.527 ns | −0.692 ns | 0.244 ns | ||||
MWC | −0.932 ** | −0.967 ** | 0.159 ns | 0.158 ns | −0.029 ns | −0.632 ns | |||
SY | −0.291 ns | −0.143 ns | −0.087 ns | 0.781 * | −0.758 * | −0.447 ns | 0.208 ns | ||
WI | 0.941 ** | 0.888 ** | −0.158 ns | 0.349 ns | 0.199 ns | 0.644 ns | −0.938 ** | −0.475 ns | |
WSS | −0.250 ns | −0.565 ns | −0.091 ns | −0.189 ns | 0.104 ns | −0.079 ns | 0.434 ns | −0.066 ns | −0.260 ns |
0.20–0.40 m | |||||||||
PR | −0.641 ns | ||||||||
Tp | −0.366 ns | 0.515 ns | |||||||
Mp | 0.463 ns | 0.444 ns | 0.818 * | ||||||
mp | 0.100 ns | 0.372 ns | 0.771 * | 0.264 ns | |||||
Bd | 0.164 ns | 0.326 ns | 0.097 ns | −0.358 ns | 0.559 ns | ||||
MWC | 0.893 ** | −0.299 ns | −0.199 ns | −0.429 ns | 0.141 ns | 0.169 ns | |||
SY | −0.104 ns | −0.268 ns | −0.161 ns | −0.069 ns | −0.193 ns | 0.197 ns | −0.208 ns | ||
WI | 0.875 ** | −0.271 ns | −0.115 ns | −0.291 ns | 0.129 ns | −0.070 ns | 0.939 ** | −0.475 ns | |
WSS | 0.516 ns | 0.224 ns | 0.563 ns | 0.886 ** | −0.036 ns | −0.586 ns | −0.638 ns | −0.096 ns | −0.455 ns |
Management System | pH(CaCl2) | Presin | S | H + Al | Ca | Mg | K | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|
mg dm−3 | mmolc dm−3 | g kg−1 | ||||||||
Conventional tillage | 5.0 | 61.2 | 3.6 | 36.3 | 39.5 | 12.7 | 4.7 | 147 | 239 | 614 |
No-tillage | 5.4 | 84.4 | 4.4 | 29.6 | 43.5 | 14.8 | 3.3 |
Year | Management System | Crop Sequence Fall–Winter/Spring–Summer | |||
---|---|---|---|---|---|
Conventional Tillage | No-Tillage | ||||
Fall | Spring | Fall | Spring | ||
1985/86 | Plowing + harrowing | Plowing + harrowing | Plowing + harrowing | No-tillage | Wheat/soybean |
1986/87 to 1994/95 | Plowing + harrowing | Plowing + harrowing | No-tillage | No-tillage | Wheat/soybean |
1995/96 to 1998/99 | Without soil mobilization | Without soil mobilization | No-tillage | No-tillage | Fallow/fallow |
1999/00 | Plowing + harrowing | Plowing + harrowing | No-tillage | No-tillage | Black oat/maize |
2000/01 and 2001/02 | Without soil mobilization | Without soil mobilization | No-tillage | No-tillage | Fallow/fallow |
2002/03 and 2003/04 | Plowing + harrowing | Plowing + harrowing | No-tillage | No-tillage | Black oat/millet-bean |
2004/05 and 2005/06 | Plowing + harrowing | Plowing + harrowing | No-tillage | No-tillage | Black oat/maize |
2006/07 | Without soil mobilization | Without soil mobilization | No-tillage | No-tillage | Fallow/soybean |
2007/08 | Plowing + harrowing | Without soil mobilization | No-tillage | No-tillage | Yellow oat/bean |
2008/09 | Plowing + harrowing | Without soil mobilization | No-tillage | No-tillage | Yellow oat/bean |
2009/10 to 2011/12 | Plowing + harrowing | Without soil mobilization | No-tillage | No-tillage | Black oat/maize + brachiaria |
2012/13 | Without soil mobilization | Plowing + harrowing | No-tillage | No-tillage | Brachiaria/soybean |
2013/14 | Without soil mobilization | Plowing + harrowing | No-tillage | No-tillage | Wheat/soybean |
2014/15 | Without soil mobilization | Plowing + harrowing | No-tillage | No-tillage | Safflower/soybean |
2015/16 | Without soil mobilization | Plowing + harrowing | No-tillage | No-tillage | Safflower/maize |
2016/17 | Plowing + harrowing | Without soil mobilization | No-tillage | No-tillage | Black oat/maize |
2017/18 | Plowing + harrowing | Without soil mobilization | No-tillage | No-tillage | Black oat/soybean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.F.d.; Calonego, J.C.; Luperini, B.C.O.; Silveira, V.B.; Chamma, L.; Soratto, R.P.; Putti, F.F. No-Tillage System Can Improve Soybean Grain Production More Than Conventional Tillage System. Plants 2023, 12, 3762. https://doi.org/10.3390/plants12213762
Silva GFd, Calonego JC, Luperini BCO, Silveira VB, Chamma L, Soratto RP, Putti FF. No-Tillage System Can Improve Soybean Grain Production More Than Conventional Tillage System. Plants. 2023; 12(21):3762. https://doi.org/10.3390/plants12213762
Chicago/Turabian StyleSilva, Gustavo Ferreira da, Juliano Carlos Calonego, Bruno Cesar Ottoboni Luperini, Vinicius Brasil Silveira, Larissa Chamma, Rogério Peres Soratto, and Fernando Ferrari Putti. 2023. "No-Tillage System Can Improve Soybean Grain Production More Than Conventional Tillage System" Plants 12, no. 21: 3762. https://doi.org/10.3390/plants12213762
APA StyleSilva, G. F. d., Calonego, J. C., Luperini, B. C. O., Silveira, V. B., Chamma, L., Soratto, R. P., & Putti, F. F. (2023). No-Tillage System Can Improve Soybean Grain Production More Than Conventional Tillage System. Plants, 12(21), 3762. https://doi.org/10.3390/plants12213762