Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Soybean Entries
2.2. Inoculum Preparation and Application
2.3. Seed Assays
2.4. Data Collection and Analysis
3. Results and Discussions
3.1. Data Distribution and Comparison of Assessed Parameters
3.2. Correlation among Assessed Parameters
3.3. Multivariate Analysis
3.4. Selection of Resistant Line
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kofsky, J.; Zhang, H.; Song, B.-H. The untapped genetic reservoir: The past, current, and future applications of the wild soybean (Glycine soja). Front. Plant Sci. 2018, 9, 949. [Google Scholar] [CrossRef]
- Hyten, D.L.; Song, Q.; Zhu, Y.; Choi, I.Y.; Nelson, R.L.; Costa, J.M.; Specht, J.E.; Shoemaker, R.C.; Cregan, P.B. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Nat. Acad. Sci. USA 2006, 103, 16666–16671. [Google Scholar] [CrossRef]
- Carter, T.E.; Hymowitz, T.; Nelson, R.L. Biogeography, local adaptation, vavilov, and genetic diversity in soybean. In Biological Resources and Migration; Boerma, R., Specht, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 47–59. [Google Scholar]
- Li, Y.H.; Qiu, L.J. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom. 2013, 14, 579. [Google Scholar] [CrossRef]
- Singh, R.J.; Hymowitz, T. Soybean genetic resources and crop improvement. Genome 1999, 42, 605–616. [Google Scholar] [CrossRef]
- Bandillo, N.; Jarquin, D.; Song, Q.; Cregan, P.; Nelson, R.L.; Specht, J.; Lorenz, A. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Qiu, L.J.; Xing, L.L.; Guo, Y.; Wang, J.; Jackson, S.A.; Chang, R.Z. A platform for soybean molecular breeding: The utilization of core collections for food security. Plant Mol. Biol. 2013, 83, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Z.; Bales, C.; Gu, C.; Difonzo, C.; Li, M.; Wang, D. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. Theor. Appl. Genet. 2017, 130, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Diers, B.W.; Arelli, P.R.; Shoemaker, R.C. Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor. Appl. Genet. 2001, 103, 561–566. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Wen, Z.; Gu, C.; An, Y.C.; Bales, C.; Wang, D. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32. Theor. Appl. Genet. 2017, 130, 2601–2615. [Google Scholar] [CrossRef]
- Zhang, H.; Kjemtrup-Lovelace, S.; Li, C.; Luo, Y.; Chen, L.P.; Song, B.H. Comparative RNA-seq analysis uncovers a complex regulatory network for soybean cyst nematode resistance in wild soybean (Glycine soja). Sci. Rep. 2017, 7, 9699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Song, Q.J.; Griffin, J.D.; Song, B.H. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol. Genet. Genom. 2017, 292, 1257–1265. [Google Scholar] [CrossRef]
- Zhang, J.P.; Singh, A.; Mueller, D.S.; Singh, A.K. Genome wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. Plant J. 2015, 84, 1124–1136. [Google Scholar] [CrossRef]
- Anderson, J.E.; Kono, T.J.; Stupar, R.M.; Kantar, M.B.; Morrell, P.L. Environmental association analyses identify candidates for abiotic stress tolerance in Glycine soja, the wild progenitor of cultivated soybeans. G3 Bethesda 2016, 6, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-S.; Zhang, J.; Li, M.-X.; Shi, L.-X. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine soja. J. Plant Growth Regul. 2017, 36, 460–471. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Kumar, M.; Xu, L.; Wan, Q.; Huang, Y.H.; Xu, Z.L.; He, X.-L.; Ma, J.-B.; Pandey, G.K.; Shao, H.-B. Genome-wide identification of major intrinsic proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci. Rep. 2017, 7, 4106. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Hu, Z. RAPD markers associated with salt tolerance in wild soybean populations. Soybean Genet. Newsl. 1999, 26. Available online: https://www.soybase.org/sgn/article.php?issueid=2&autoID=6 (accessed on 3 August 2023).
- Qiu, Y.X.; Fu, C.X.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hyten, D.L.; Niblack, T.L.; Diers, B.W. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci. 2011, 51, 934–943. [Google Scholar] [CrossRef]
- Birrenkott, G.L.; Mengistu, A.; Grau, C.R. First report of charcoal rot caused by Macrophomina phaseolina on soybeans in Wisconsin. Plant Dis. 1984, 68, 628. [Google Scholar] [CrossRef]
- Wyllie, T.D. Charcoal rot of soybean: Current status. In Soybean Diseases of the North Central Region; Wyllie, T., Scott, D., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1988; pp. 106–113. [Google Scholar]
- ElAraby, M.E.; Kurle, J.E.; Stetina, S.R. First report of charcoal rot (Macrophomina phaseolina) on soybean in Minnesota. Plant Dis. 2003, 87, 202. [Google Scholar] [CrossRef]
- Yang, X.B.; Navi, S.S. First report of charcoal rot epidemics caused by Macrophomina phaseolina in soybean in Iowa. Plant Dis. 2005, 89, 526. [Google Scholar] [CrossRef]
- Wrather, J.A.; Shannon, J.G.; Carter, T.E.; Bond, J.P.; Rupe, J.C.; Almeida, A.M.R. Reaction of drought-tolerant soybean genotypes to Macrophomina phaseolina. Plant Health Prog. 2008, 9, 1–4. [Google Scholar] [CrossRef]
- Bowen, C.R.; Schapaugh, W.T. Relationships among charcoal rot infection, yield, and stability estimates in soybean blends. Crop Sci. 1989, 29, 42–46. [Google Scholar] [CrossRef]
- Chen, S.Y.; Porter, P.M.; Orf, J.H.; Reese, C.D.; Stienstra, W.C.; Young, N.D.; Walgenbach, D.D.; Schaus, E.J.; Arlt, T.J.; Breitenbach, E.R. Soybean cyst nematode population development and associated soybean yields of resistant and susceptible cultivars in Minnesota. Plant Dis. 2001, 85, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, R.P. Soybean disease loss estimate for southern United States in 1987. Plant Dis. 1988, 72, 915. [Google Scholar]
- Sciumbato, G.L. Soybean disease loss estimate for the southern United States during 1988–1991. Plant Dis. 1993, 77, 954–956. [Google Scholar]
- Javaid, A.; Khan, I. Chemical Profile and Antifungal Activity of Leaf Extract of Tabernaemontana divaricata against Macrophomina phaseolina. Plant Prot. 2022, 6, 201–208. [Google Scholar] [CrossRef]
- Cross, C.; Wrather, A.; Fothergill, K.; Shannon, G.; Li, S.; Shumway, C.; Rupe, J. Effect of lactofen, azoxystrobin, and genotypes on charcoal rot, Phomopsis seed decay, and pod and stem blight in soybean. Plant Dis. 2012, 96, 1154–1158. [Google Scholar] [CrossRef]
- Topp, C.N.; Iyer-Pascuzzi, A.S.; Anderson, J.T.; Lee, C.R.; Zurek, P.R.; Symonova, O.; Zheng, Y.; Bucksch, A.; Mileyko, Y.; Galkovskyi, T.; et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc. Natl. Acad. Sci. USA 2013, 110, E1695–E1704. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, I.; Tecson-Mendoza, E.M.; Wissuwa, M.; Heuer, S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 2012, 488, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Jürgens, G.; Mayer, U.; Busch, M.; Lukowitz, W.; Laux, T. Pattern formation in the Arabidopsis embryo: A genetic perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1995, 350, 7. [Google Scholar]
- Kuijken, R.C.P.; van Eeuwijk, F.A.; Marcelis, L.F.M.; Bouwmeester, H.J. Root phenotyping: From component trait in the lab to breeding. J. Exp. Bot. 2015, 66, 5389–5401. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.; Lei, J. Minimax rates of estimation for sparse PCA in high dimensions. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS), Virtual Conference, 28–30 March 2022. [Google Scholar]
- Johnson, R.A.; Wichern, W.D. Applied Multivariate Statistical Analysis; Prentice-Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Gower, J.C.; Gardner—Lubbe, S.; le Roux, N.J. Understanding Biplots; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-01255-0. Available online: https://www.wiley.com/go/biplots (accessed on 6 June 2023).
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Root | 0.37 | 0.01 | 0.20 | 0.73 |
Area | 0.34 | 0.22 | −0.06 | −0.46 |
Width | 0.07 | 0.68 | −0.65 | 0.10 |
Height | 0.38 | −0.04 | 0.27 | −0.28 |
Length | 0.36 | −0.06 | −0.01 | −0.19 |
ProjArea | 0.30 | −0.25 | −0.24 | 0.02 |
SurfArea | 0.30 | −0.25 | −0.24 | 0.02 |
AvgDiam | −0.35 | −0.43 | −0.34 | −0.21 |
LenPerVol | 0.36 | −0.06 | −0.01 | −0.19 |
Volume | 0.17 | −0.42 | −0.47 | 0.21 |
Eigenvalue | 1.32 | 0.33 | 0.25 | 0.05 |
Proportion of Variance | 0.91 | 0.06 | 0.03 | 0.00 |
Cumulative Proportion | 0.91 | 0.96 | 1.00 | 1.00 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Hypocotyl | 0.40 | 0.07 | 0.05 | 0.35 |
Area | 0.33 | 0.05 | −0.28 | −0.53 |
Width | 0.19 | −0.12 | −0.84 | −0.10 |
Height | 0.35 | 0.17 | 0.41 | −0.65 |
Length | 0.38 | −0.11 | 0.05 | 0.20 |
ProjArea | 0.25 | −0.36 | 0.09 | 0.06 |
SurfArea | 0.25 | −0.36 | 0.09 | 0.06 |
AvgDiam | −0.39 | −0.60 | 0.03 | −0.27 |
LenPerVol | 0.38 | −0.11 | 0.05 | 0.20 |
Volume | 0.09 | −0.56 | 0.13 | −0.04 |
Eigenvalue | 1.03 | 0.32 | 0.23 | 0.10 |
Proportion of Variance | 0.87 | 0.08 | 0.04 | 0.01 |
Cumulative Proportion | 0.87 | 0.95 | 0.99 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacquet, S.; Li, S.; Mian, R.; Kassem, M.A.; Rashad, L.; Viera, S.; Reta, F.; Reta, J.; Yuan, J. Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth. Plants 2023, 12, 3807. https://doi.org/10.3390/plants12223807
Jacquet S, Li S, Mian R, Kassem MA, Rashad L, Viera S, Reta F, Reta J, Yuan J. Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth. Plants. 2023; 12(22):3807. https://doi.org/10.3390/plants12223807
Chicago/Turabian StyleJacquet, Shirley, Shuxian Li, Rouf Mian, My Abdelmajid Kassem, Layla Rashad, Sonia Viera, Francisco Reta, Juan Reta, and Jiazheng Yuan. 2023. "Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth" Plants 12, no. 22: 3807. https://doi.org/10.3390/plants12223807
APA StyleJacquet, S., Li, S., Mian, R., Kassem, M. A., Rashad, L., Viera, S., Reta, F., Reta, J., & Yuan, J. (2023). Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth. Plants, 12(22), 3807. https://doi.org/10.3390/plants12223807