An Updated Review of Fossil Pollen Evidence for the Study of the Origin, Evolution and Diversification of Caribbean Mangroves
Abstract
:1. Introduction
2. Extant Caribbean Mangroves
3. Modern and Fossil Pollen Types
Genus | Fossil Representative (Morphospecies) | Range |
---|---|---|
Acacia * | Polyadopollenites mariae Dueñas | Paleogene–Neogene |
Acrostichum | Deltoidospora adriennis (Potonié & Gelletich) Frederiksen | Cretaceous–Neogene |
Avicennia | Avicennia Retitricolporites sp. Lorente | Neogene |
Crenea | Verrutricoporites rotundiporus Van der Hammen & Wijsmtra | Neogene |
Hibiscus | Echiperiporites estelae Germeraad, Hopping & Muller | Neogene |
Laguncularia | Laguncularia | Neogene |
Nypa | Spinizocolpites echinatus Muller, S. baculatus Muller S. prominatus (McIntyre) Stover & Evans | Cretaceous–Paleogene |
Pachira | Bombacacidites baculatus Muller, Di Giacomo & Van Erve | Neogene |
Pelliciera | Psilatricolporites crassus Van der Hammen & Wijsmtra Lanagiopollis crassa (Van der Hammen & Wijmstra) Frederiksen | Paleogene–Neogene |
Rhizophora | Zonocostites ramonae Germeraad, Hopping & Muller Zonocostites spp. | Paleogene–Neogene |
4. The CARMA-F Compilation
5. Final Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rull, V. Eocene/Oligocene global disruption and the revolution of Caribbean mangroves. Persp. Pant Ecol. Evol. Syst. 2023, 59, 125733. [Google Scholar] [CrossRef]
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Saenger, P. Mangrove Ecology, Silviculture and Conservation; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Nagelkerken, I.; Blaver, S.J.N.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef]
- Laegdsgaard, P.; Johnson, C. Why do juvenile fish utilize mangrove habitats. J. Exp. Mar. Biol. Ecol. 2001, 257, 229–253. [Google Scholar] [CrossRef] [PubMed]
- Afonso, F.; Félix, P.M.; Chainho, P.; Heumüller, J.A.; de Lima, R.F.; Ribeiro, F.; Brito, A.C. Assessing ecosystem services in mangroves: Insights from São Tomé Island (Central Africa). Front. Environ. Sci. 2021, 9, 501673. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, C.; Valdés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon. A Rapid Response Assessment; UNEP, GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.; Lovelock, C.E.; Schlesinger, W.H.; Siliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Fest, B.J.; Swearer, S.E.; Arndy, S.K. A review of sediment carbon sampling methods in mangroves and their broader impacts on stock estimates for blue carbon ecosystems. Sci. Tot. Environ. 2022, 816, 151618. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Routledge: London, UK, 2010. [Google Scholar]
- Worthington, T.A.; zu Ermgassen, P.S.E.; Friess, D.A.; Krauss, K.W.; Lovelock, C.E.; Throley, J.; Tingey, R.; Woodroffe, C.E.; Bunting, P.; Cormier, N.; et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 2020, 10, 15652. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N. Global Mangrove Watch: Updated 2010 mangrove forest extent (v2.5). Remote Sens. 2022, 10, 1669. [Google Scholar] [CrossRef]
- Duke, N.C.; Meyneccke, J.-O.; Dittman, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2017, 317, 41–42. [Google Scholar] [CrossRef]
- Makowski, C.; Finkl, C.W. Threats to Mangrove Forests. Hazards, Vulnerability, and Management; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Lacerda, L.D.; Borges, R.; Ferreira, A.C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climatic change. Aquat. Cons. 2019, 29, 1347–1364. [Google Scholar]
- Lester, S.E.; Dubel, A.K.; Hernán, G.; McHenry, J.; Rassweiler, A. Spatial planning principles for marine ecosystem restoration. Front. Mar. Sci. 2020, 7, 328. [Google Scholar] [CrossRef]
- Mishra, A.K.; Farooq, S.H. Lack of ecological data hinders management of ecologically important saltmarsh ecosystems: A case study of saltmarsh plant Porterasia coarctata (Roxb.). J. Environ. Manag. 2022, 321, 115957. [Google Scholar] [CrossRef] [PubMed]
- Rull, V. Rise and fall of Caribbean mangroves. Sci. Total Environ. 2023, 885, 163851. [Google Scholar] [CrossRef] [PubMed]
- Duke, N.C. Mangrove floristics and biogeography revisited: Further deductions from biodiversity hot spots, ancestral discontinuities, and common evolutionary processes. In Mangrove Ecosystems: A Global Biogeographic Perspective; Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E., Twilley, R.R., Eds.; Springer: Berlin, Germany, 2017; pp. 17–53. [Google Scholar]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in humandriven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Rull, V. The Caribbean mangroves: An Eocene innovation with no Cretaceous precursors. Eath-Sci. Rev. 2022, 231, 104070. [Google Scholar] [CrossRef]
- Rull, V. Taxon cycles in Neotropical mangroves. Plants 2023, 12, 244. [Google Scholar] [CrossRef]
- Rull, V. The Neogene-Quaternary diversification trend in the shaping of modern caribbean mangroves. Quat. Sci. Rev. 2023, 300, 107920. [Google Scholar] [CrossRef]
- Rull, V. Responses of Caribbean mangroves to Quaternary climatic, eustatic and anthropogenic drivers of ecological change: A review. Plants 2022, 11, 3502. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M.A. Meso-Cenozoic Caribbean Paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 2006, 48, 791–827. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Lebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; de Vleesschouwer, D.; Florindo, F.; et al. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.G.; Browning, J.V.; Schmelz, W.J.; Kopp, R.E.; Mountain, G.S.; Wright, J.D. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 2020, 6, aaz1346. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge Univ Press: Cambridge, UK, 2016. [Google Scholar]
- Gentry, A.H. Phytogeographic patterns as evidence for a Choco refuge. In Biological Diversification in the Tropics; Prance, G.T., Ed.; Columbia Univ Press: New York, NY, USA, 1982; pp. 112–136. [Google Scholar]
- Dangremond, E.M.; Feller, I.C.; Sousa, W.P. Environmental tolerances of rare and common mangroves along light and salinity gradients. Oecologia 2015, 179, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Lonard, R.I.; Judd, F.W.; DeYoe, H.; Stalter, R. Biology of the mangal halophyte Conocarpus erectus L.: A review. In Handbook of Halophytes; Grigore, M.-N., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 1819–1831. [Google Scholar]
- DeYoe, H.; Lonard, R.I.; Judd, F.W.; Stalter, R.; Feller, I. Biological flora of the tropical and subtropical intertidal zone: Literature review for Rhizophora mangle L. J. Coast. Res. 2020, 36, 857–884. [Google Scholar] [CrossRef]
- Lonard, R.I.; Judd, F.W.; DeYoe, H.; Stalter, R. Biology and ecology of the halophyte Laguncularia racemosa (L.) Gaertn. f.: A review. In Handbook of Halophytes; Grigore, M.-N., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 1–6. [Google Scholar]
- Lonard, R.I.; Judd, F.W.; Summy, K.R.; DeYoe, H.; Stalter, R. The biological flora of coastal dunes and wetlands: Avicennia germinans (L.) L. J. Coast. Res. 2017, 33, 191–207. [Google Scholar] [CrossRef]
- García-Fuentes, A.; Lendínez-Barriga, M.L.; Torres-Cordero, J.A.; Ruiz-valenzuela, L.; Quesada, J.; León, Y.; Salazar-Medías, C. A study on the mangrove formations of the Neotropical-Austroamerican Kingdom. Phytocoenologia 2020, 50, 137–162. [Google Scholar] [CrossRef]
- Rull, V. Quaternary Ecology, Evolution and Biogeography; Elsevier/Academic Press: London, UK, 2020. [Google Scholar]
- Erdtman, G. Pollen Morphology and Plant Taxonomy: Angiosperms; E.J. Brill: Leiden, The Netherlands, 1986. [Google Scholar]
- Traverse, A. Paleopalynology; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Wiens, J.J.; Ackerly, D.D.; Allen, A.P.; Anacker, B.L.; Buckley, L.B.; Cornell, H.V.; Damschen, E.I.; Dvaies, T.J.; Grytnes, J.-A.; Harrison, S.P.; et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 2010, 13, 1310–1324. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Hadly, E.A.; Spaeth, P.A.; Li, C. Niche conservatism above the species level. Proc. Natl. Acad. Sci. USA 2009, 106, 19707–19714. [Google Scholar] [CrossRef]
- Lososová, Z.; Divišek, J.; Chytrý, M.; Götzenberger, L.; Těšitel, J.; Mucina, L. Macroevolutionary patterns in European vegetation. J. Veget. Sci. 2020, 32, e12942. [Google Scholar] [CrossRef]
- Gee, C.T. The mangrove palm Nypa in the geologic past of the New World. Wetl. Ecol. Manag. 2001, 9, 181–194. [Google Scholar] [CrossRef]
- Graham, A. Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica 1995, 27, 20–27. [Google Scholar] [CrossRef]
- Flenley, J.R. The Equatorial Rain Forest: A Geological History; Butterworths: London, UK, 1979. [Google Scholar]
- Morley, R.J. Origin and Evolution of Tropical Rain Forests; Wiley: Chichester, UK, 2000. [Google Scholar]
- Graham, A. A Natural History of the New World. The Ecology and Evolution of Plants in the Americas; University Chicago Press: Chicago, IL, USA, 2011. [Google Scholar]
- Li, X.; Duke, N.C.; Yang, Y.; Huang, L.; Zu, Y.; Zhang, Z.; Zhou, R.; Zhong, C.; Huang, Y.; Shi, S. Re-evaluation of phylogenetic relationships among species of the mangrove genus Avicennia from Indo-West Pacific based on multilocus analyses. PLoS ONE 2016, 11, e0164453. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.Y.Y.; Duke, N.C.; Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 2014, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Germeraad, J.H.; Hopping, C.A.; Muller, J. Palynology of Tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 1968, 6, 189–348. [Google Scholar] [CrossRef]
- Wijmstra, T.A. The identity of Psilatricolporites and Pelliciera. Acta Bot. Neerl. 1968, 17, 114–116. [Google Scholar] [CrossRef]
- Graham, A. New records of Pelliciera (Theaceae/Pellicieraceae) in the Tertiary of the Caribbean. Biotropica 1977, 9, 48–52. [Google Scholar] [CrossRef]
- Graham, S.A. Fossil records in the Lythraceae. Bot. Rev. 2013, 79, 48–145. [Google Scholar] [CrossRef]
- Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 1981, 47, 1–140. [Google Scholar] [CrossRef]
- Frederiksen, N.O. Review of early Tertiary sporomorph paleoecology. Am. Assoc. Strat. Palynol. Contr. Ser. 1985, 19, 1–92. [Google Scholar]
- Lorente, M.A. Palynology and palynofacies of the Upper Tertiary in Venezuela. Diss. Bot. 1986, 99, 1–222. [Google Scholar]
- Pocknall, D.T.; Wood, L.J.; Geen, A.F.; Harry, B.E.; Hedlund, R. Integrated paleontological studies of Pliocene to Pleistocene deposits of the Orinoco Delta, Eastern Venezuela and Trinidad. In Proceedings of the IX International Palynological Congress, Houston, TX, USA, 24–27 October 1996; American Association of Stratigraphic Palynologists Foundation: Indianapolis, IN, USA, 2001; pp. 319–326. [Google Scholar]
- Kuyl, O.S.; Muller, J.; Waterbolk, H.T. The application of palynology to oil geology with reference to western Venezuela. Geol. Mijnb. 1955, 3, 49–76. [Google Scholar]
- González de Juana, C.; Iturralde, J.M.; Picard, X. Geología de Venezuela y de sus Cuencas Petrolíferas (I and II); FONINVES: Caracas, Venezuela, 1980. [Google Scholar]
- Muller, J.; Di Giacomo, E.; Van Erve, A.W. A palynological zonation for the Cretaceous, Tertiary and Quaternary of northern South America. Am. Assoc. Strat. Palynol. Contr. Ser. 1987, 19, 7–76. [Google Scholar]
- Hoorn, C.; Wesselingh, F.P.; ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartín, I.; Sanchez-Messeguer, A.; Anderson, C.L.; Figueiredo, J.P.; et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, C.; Romero, I.; D’Apolito, C.; Bayona, G.; Duarte, E.; Louwye, S.; Escobar, J.; Luque, J.; Carrillo-Briceño, J.D.; Zapata, V.; et al. Miocene flooding events of western Amazonia. Sci. Adv. 2017, 3, e1601693. [Google Scholar] [CrossRef] [PubMed]
- Mann, P. Gulf of Mexico, Central America, and the Caribbean. In Encyclopedia of Geology; Alderton, D., Elias, S.A., Eds.; Academic Press: London, UK, 2021; pp. 47–67. [Google Scholar]
- Romito, S.; Mann, P. Tectonic terrains underlying the present-day Caribbean plate: Their tectonic origin, sedimentary thickness, subsidence histories and regional controls on hydrocarbon resources. In The Basins, Orogens, and Evolution of the Southern Gulf of Mexico and Northen Caribbean; Davidson, I., Hull, J.N.F., Pindell, J., Eds.; Geological Society of London: London, UK, 2020; pp. 343–378. [Google Scholar]
- Rull, V. Contribution of quantitative ecological methods to the interpretation of stratigraphically homogeneous pre-Quaternary sequences: A palynological example from the Oligocene of Venezuela. Palynology 2003, 27, 75–98. [Google Scholar]
- Dueñas, H.; Van der Hammen, T. Significado geológico y asociaciones palinológicas de las formaciones Diablo Inferior (Mioceno Tardío) y San Fernando Superior (Mioceno Medio), piedemonte cuenca de los Llanos Orientales, Colombia. Rev. Acad. Colomb. Cienc. 2007, 31, 481–498. [Google Scholar]
- Graham, A. Studies in Neotropical paleobotany. VI. The lower Miocene communities of Panama-the Cucaracha Formation. Ann. Missouri Bot. Gard. 1988, 75, 1467–1479. [Google Scholar] [CrossRef]
- Rull, V. Origin and Evolution of Caribbean Mangroves. A Time-Continuum Integrative Approach; Springer Nature: Cham, Switzerland, 2024; in press. [Google Scholar]
- Bermúdez, M.A.; Hoorn, C.; Bernet, M.; Carrillo, E.; Van Der Beek, P.A.; Garver, J.I.; Mora, J.L.; Mehrkian, K. The detrital record of late-Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins. Basin Res. 2017, 29 (Suppl. S1), 370–395. [Google Scholar] [CrossRef]
- Celis, S.A.; Rodríguez-Tovar, F.J.; Pardo-Trujillo, A.; García-García, F.; Giraldo-Villegas, C.A.; Gallego, F.; Plata, Á.; Trejos-Tamayo, R.; Vallejo-Hincapié, F.; Cardona, F.J. Deciphering influencing processes in a tropical delta system (middle-late Eocene? to Early Miocene, Colombian Caribbean): Signals from a well-core integrative sedimentological, ichnological, and micropaleontological analysis. J. S. Am. Earth Sci. 2023, 127, 104368. [Google Scholar] [CrossRef]
- Colmenares, O. A Palynological Study of the South-East Region of the Boscán Field, Venezuela. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 1986. [Google Scholar]
- Colmenares, O.; Teran, L. A biostratigraphic study of Paleogene sequences in southwestern Venezuela. Palynology 1993, 17, 67–89. [Google Scholar] [CrossRef]
- De la Parra, F.; Pinzon, D.; Mantilla-Duran, F.; Rodriguez, G.; Caballero, V. Marine-lacustrine systems during the Eocene in northern South America-palynological evidence from Colombia. J. S. Am. Earth Sci. 2021, 108, 103188. [Google Scholar] [CrossRef]
- Dueñas, H. Palynology of Oligocene-Miocene strata of borehole Q-E-22, Planeta Rica, northern Colombia. Rev. Palaeobot. Palynol. 1980, 30, 313–328. [Google Scholar] [CrossRef]
- Dueñas, H. Fluctuaciones del nivel del mar durante el depósito de los sedimentos basales de la Formación Ciénaga de Oro. Rev. Acad. Colomb. Cien. Exac. Fís. Nat. 1983, 15, 67–76. [Google Scholar]
- Garzon, S.; Warny, S.; Bart, P.J. A palynological and sequence-stratigraphic study of Santonian-Maastrichtian strata from the Upper Magdalena Valley basin in central Colombia. Palynology 2012, 36 (Suppl. S1), 112–133. [Google Scholar] [CrossRef]
- Graham, A. Late Cenozoic evolution of tropical lowland vegetation in Veracruz, Mexico. Evolution 1975, 29, 723–735. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. II: The Miocene communities of Veracruz, Mexico. Ann. Missouri Bot. Gard. 1976, 63, 787–842. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. IV. The Eocene communities of Panama. Ann. Missouri Bot. Gard. 1985, 72, 504–534. [Google Scholar] [CrossRef]
- Graham, A. Miocene communities and paleoenvironments of southern Costa Rica. Am. J. Bot. 1987, 74, 1501–1518. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. V. The Lower Miocene communities of Panama-the Culebra Formation. Ann. Missouri Bot. Gard. 1988, 75, 1440–1446. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. VII. The Lower Miocene communities of Panama-the La Boca Formation. Ann. Missouri Bot. Gard. 1989, 76, 50–66. [Google Scholar] [CrossRef]
- Graham, A. Late Tertiary microfossil flora from the republic of Haiti. Am. J. Bot. 1990, 77, 911–926. [Google Scholar] [CrossRef]
- Graham, A. New angiosperm records from the Caribbean Tertiary. Am. J. Bot. 1990, 77, 897–910. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. X. The Pliocene communities of Panama-composition, numerical representations, and paleocommunity paleoenvironmental reconstructions. Ann. Missouri Bot. Gard. 1991, 78, 465–476. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: Palynofloras from the Mio-Pliocene Padre Miguel Group and the Pliocene Herrería Formation. Am. J. Bot. 1998, 85, 1409–1425. [Google Scholar] [CrossRef]
- Graham, A. Studies in Neotropical paleobotany. XIII. An Oligo-Miocene palynoflora from Simojovel (Chapas, Mexico). Am. J. Bot. 1999, 86, 17–31. [Google Scholar] [CrossRef]
- Graham, A.; Dilcher, D.L. Studies in Neotropical paleobotany. XII. A palynoflora from the Pliocene Rio Banano Formation of Costa Rica and the Neogene vegetation of Mesoamerica. Am. J. Bot. 1998, 85, 1426–1438. [Google Scholar] [CrossRef]
- Graham, A.; Jarzen, D.M. Studies in Neotropicl Paleobotany. I. The Oligocene communities of Puerto Rico. Ann. Missouri Bot. Gard. 1969, 56, 308–357. [Google Scholar] [CrossRef]
- Hambalek, N.; Rull, V.; DiGiacomo, E.; Díaz de Gamero, M.L. Evolución paleoecológica y paleoambiental de la secuencia del Neógeno en el Surco de Urumaco, Estado Falcón. Estudio palinológico y litológico. Bol. Soc. Venez. Geól. 1994, 19, 7–19. [Google Scholar]
- Helenes, J.; Cabrera, D. Oligocene-Miocene palynomorph assemblages from eastern Venezuela. Palynology 2003, 27, 5–25. [Google Scholar]
- Jaramillo, C.A.; Dilcher, D.L. Middle Paleogene palynology of Central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontogr. Abt. B 2001, 258, 87–213. [Google Scholar] [CrossRef]
- Jaramillo, C.A.; Bayona, G.; Pardo-Trujillo, A.; Rueda, M.; Torres, V.; Harrington, G.J.; Mora, G. The palynology of the Cerrejón Formation (Upper Paleocene) of northern Colombia. Palynology 2007, 31, 153–189. [Google Scholar]
- Lamy, A. Plio-Pleistocene palynology and visual kerogen studies, Trinidad, W.I., with emphasis on the Columbus Basin. In Proceedings of the 1st geological conference of the Geological Society of Trinidad & Tobago, Port of Spain, Trinidad and Tobago, 10–12 July 1985; pp. 114–127. [Google Scholar]
- Montaño, P.C.; Nova, G.; Bayona, G.; Mahecha, H.; Ayala, C.; Jaramillo, C. Análisis de secuencias y procedencia en sucesiones sedimentarias de grano fino: Un ejemplo de la Formación Umir y base de la Formación Lisama, en el sector de Simacota (Santander, Colombia). Bol. Geol. 2016, 38, 51–72. [Google Scholar] [CrossRef]
- Ochoa, D.; Hoorn, C.; Jaramillo, C.; Bayona, G.; Parra, M.; De la Parra, F. The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. J. S. Am. Earth Sci. 2012, 39, 157–169. [Google Scholar] [CrossRef]
- Pardo-Trujillo, A.; Plata-Torres, A.; Ramírez, E.; Vallejo-Hincapié, F.; Trejos-Tamayo, R. Eocene to Miocene palynology of the Amagá Basin (Cauca Valley, Colombia) compared to the Caribbean region. Rev. Acad. Colomb. Cien. Exac. Fís. Nat. 2023, 47, 1–18. [Google Scholar] [CrossRef]
- Pocknall, D.T.; Erlich, R.N. Palynostratigraphy and lithostratigraphy of Upper Cretaceous and Paleogene outcrop sections, Mérida Andes (Maracaibo Basin), Western Venezuela. J. S. Am. Earth Sci. 2020, 104, 102830. [Google Scholar] [CrossRef]
- Rodríguez-Forero, G.; Oboh-Ikuenobe, F.E.; Jaramillo-Muñoz, C.; Rueda, M.J.; Cadena, E. Palynology of the Eocene Esmeraldas Formation, Middle Magdalena Valley, Colombia. Palynology 2012, 36, 96–111. [Google Scholar] [CrossRef]
- Rull, V. Paleoecología y análisis secuencial de una sección deltaica terciaria de la cuenca de Maracaibo. Bol. Soc. Ven. Geól. 1992, 46, 16–26. [Google Scholar]
- Rull, V. Oligo-Miocene palynology of the Rio Chama sequence (western Venezuela), with comments on fossil algae as paleoenvironmental indicators. Palynology 1997, 21, 213–229. [Google Scholar] [CrossRef]
- Rull, V. Sequence analysis of western Venezuelan Cretaceous to Eocene sediments using palynology: Chrono-paleoenvironmental and paleovegetational approaches. Palynology 1997, 21, 79–90. [Google Scholar] [CrossRef]
- Rull, V. Middle Eocene mangroves and vegetation changes in the Maracaibo basin, Venezuela. Palaios 1998, 13, 287–296. [Google Scholar] [CrossRef]
- Rull, V. Palaeofloristic and palaeovegetational changes across the Paleocene/Eocene boundary in northern South America. Rev. Palaeobot. Palynol. 1999, 107, 83–95. [Google Scholar] [CrossRef]
- Rull, V. Ecostratigraphic study of Paleocene and Early Eocene palynological cyclicity in northern South America. Palaios 2000, 15, 14–24. [Google Scholar] [CrossRef]
- Rull, V. A quantitative palynological record from the early Miocene of western Venezuela, with emphasis on mangroves. Palynology 2001, 25, 109–126. [Google Scholar] [CrossRef]
- Rull, V.; Poumot, C. Eocene to Miocene palynocycles from western Venezuela, and correlations with global eustatic cycles. In Proceedings of the Memorias VIII Congreso Geológico Venezolano, Porlamar, Isla de Margarita Venezuela, 16–19 November 1997; Volume 2, pp. 343–349. [Google Scholar]
- Santos, C.E. Palynostratigraphy of the Umir Formation, Middle Magdalena Valley Basin (MMVB), Colombia. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2012. [Google Scholar]
- Van der Hammen, T.; Wijmstra, T.A. A palynological study of the Tertiary and Upper Cretaceous of British Guiana. Leidse Geol. Meded. 1964, 30, 183–241. [Google Scholar]
Country/Island | Map | Mangroves (km2) |
---|---|---|
Cuba | Cu | 3597 |
Venezuela | Ve | 2847 |
Colombia | Co | 2808 |
Panama | Pa | 1536 |
Nicaragua | Ni | 747 |
Honduras | Ho | 606 |
Belize | Bz | 529 |
El Salvador | ES | 373 |
Costa Rica | CR | 371 |
Guyana | Gy | 289 |
Guatemala | Gu | 250 |
Dominican Republic | DR | 192 |
Haiti | Ht | 154 |
Jamaica | Ja | 99 |
Puerto Rico | PR | 83 |
Trinidad and Tobago | TT | 82 |
Cayman Islands (UK) | Cy | 45 |
Guadeloupe (France) | Gp | 34 |
Martinique (France) | Mr | 19 |
Antigua and Barbuda | AB | 9 |
Virgin Islands (UK/USA) | VI | 4 |
Grenada | Gr | 2 |
Saint Lucia | SL | 2 |
Anguilla (UK) | An | <1 |
Aruba | Ar | <1 |
Barbados | Bd | <1 |
Saint Kitts and Nevis | SK | <1 |
Saint Vincent and The Grenadines | VG | <1 |
Total | 14,677 |
Type | Species | Family | Plant Type | |
---|---|---|---|---|
True | Major | Avicennia bicolor Standl. * | Acanthaceae | Tree |
Avicennia germinans (L.) Stearn * | Acanthaceae | Tree | ||
Avicennia schaueriana Stapf & Leechm. ex Moldenke * | Acanthaceae | Tree | ||
Laguncularia racemosa C.F.Gaertn. * | Combretaceae | Tree | ||
Rhizophora mangle L. * | Rhizophoraceae | Tree | ||
Rhizophora racemosa (G.Mey.) Engl. * | Rhizophoraceae | Tree | ||
Minor | Acrostichum aureum L. | Pteridaceae | Fern | |
Acrostichum daneaeifolium Langsd. & Fisch. * | Pteridaceae | Fern | ||
Pelliciera benthamii (Planch. & Triana) N.C.Duke | Tetrameristaceae | Tree | ||
Pelliciera rhizophorae Planch. & Triana * | Tetrameristaceae | Tree | ||
Associate | Amphitecna latifolia (Mill.) A.H.Gentry | Bignoniaceae | Tree | |
Anemopaegma chrysoleucum (Kunth) Sandwith | Bignoniaceae | Vine | ||
Batis maritima L. | Batidaceae | Shrub | ||
Caesalpinia bonduc (L.) Roxb. | Fabaceae | Tree | ||
Conocarpus erectus L. * | Combretaceae | Tree | ||
Crenea patentinervis (Koehne) Standl. * | Lythraceae | Herb | ||
Dalbergia ecastaphyllum Taub. | Fabaceae | Tree/Shrub | ||
Dalbergia amerimnum Benth. | Fabaceae | Tree/Shrub | ||
Hibiscus tiliaceus L. | Malvaceae | Tree | ||
Hippomane mancinella L. | Euphorbiaceae | Tree | ||
Mora oleifera Duke * | Fabaceae | Tree | ||
Muellera moniliformis L.f. * | Fabaceae | Tree | ||
Pachira aquatica Aubl. | Bombacaceae | Tree | ||
Pavonia rhizophorae Killip * | Malvaceae | Shrub | ||
Pavonia spicata Cav. | Malvaceae | Shrub | ||
Phryganocydia phellosperma (Hemsl.) Sandwith | Bignoniaceae | Vine | ||
Pluchea odorata (L.) Cass. | Asteraceae | Herb | ||
Rhabdadenia biflora Müll.Arg. | Apocynaceae | Vine | ||
Rustia occidentalis (Benth.) Hemsl. | Rubiaceae | Tree/Shrub | ||
Scaevola plumieri (L.) Vahl | Goodeniaceae | Shrub | ||
Tabebuia palustris Hemsl. * | Bignoniaceae | Tree | ||
Thespesia populnea (L.) Sol. ex Corrêa | Malvaceae | Tree | ||
Thespesia populneoides (Roxb.) Kostel. | Malvaceae | Tree | ||
Tuberostylis axilaris S.F.Blake | Asteraceae | Shrub | ||
Tuberostylis rhizophorae Steetz | Asteraceae | Epiphyte |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rull, V. An Updated Review of Fossil Pollen Evidence for the Study of the Origin, Evolution and Diversification of Caribbean Mangroves. Plants 2023, 12, 3852. https://doi.org/10.3390/plants12223852
Rull V. An Updated Review of Fossil Pollen Evidence for the Study of the Origin, Evolution and Diversification of Caribbean Mangroves. Plants. 2023; 12(22):3852. https://doi.org/10.3390/plants12223852
Chicago/Turabian StyleRull, Valentí. 2023. "An Updated Review of Fossil Pollen Evidence for the Study of the Origin, Evolution and Diversification of Caribbean Mangroves" Plants 12, no. 22: 3852. https://doi.org/10.3390/plants12223852