Combining Ability and Reciprocal Effects for the Yield of Elite Blue Corn Lines from the Central Highlands of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Materials
2.2. Evaluation Locations, Sowing Dates, and Agronomic Management
2.3. Recorded Data
2.4. Experimental and Genetic Designs and Statistical Analyses
3. Results
3.1. Analysis of Variance of Diallel Crosses
3.2. General Combining Ability
3.3. Specific Combining Ability and Reciprocal Effects
3.4. Yield and Agronomic Characteristics of Hybrids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT (Organización De Las Naciones Unidas Para La Alimentación y La Agricultura). Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 14 September 2023).
- Palacios-Rojas, N.; McCulley, L.; Kaeppler, M.; Titcomb, T.J.; Gunaratna, N.S.; López-Ridaura, S.; Tanumihardjo, S.A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr. Rev. Food Sci. Saf. 2020, 119, 1809–1834. [Google Scholar] [CrossRef] [PubMed]
- Tiessen-Favier, A.; Escalante-Aburto, A.; Espinosa-Leal, C.; García-Lara, S. Novel combination of the biophysical, nutritional, and nutraceutical properties in subtropical pigmented maize hybrids. Plants 2022, 11, 3221. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, R.; Vera-Guzmán, A.M.; Chávez-Servia, J.L.; Aquino Bolaños, E.N.; Carrillo-Rodríguez, J.C.; Pérez-Herrera, A. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia 2019, 44, 549–556. [Google Scholar]
- Urias-Peraldí, M.; Gutiérrez-Uribe, J.A.; Preciado-Ortiz, R.E.; Cruz-Morales, A.S.; Serna-Saldívar, S.O.; García-Lara, S. Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crop Res. 2013, 141, 69–76. [Google Scholar] [CrossRef]
- Shah, T.R.; Prasad, K.; Kumar, P. Maize a potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Damián-Medina, K.; Salinas-Moreno, Y.; Milenkovic, D.; Figueroa-Yáñez, L.; Marino-Marmolejo, E.; Higuera-Ciapara, I.; Vallejo-Cardona, A.; Lugo-Cervantes, E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 2020, 6, e03632. [Google Scholar] [CrossRef]
- Arellano-Vázquez, J.L.; Tut-Couoh, C.; María-Ramírez, A.; Salinas-Moreno, Y.; Taboada-Gaytán, O.R. Maíz azul de los Valles Altos de México, I. Rendimiento de grano y caracteres agronómicos. Rev. Fitotec. Mex. 2003, 26, 101–107. [Google Scholar] [CrossRef]
- Singh, J. Field Manual of Maize Breeding Procedures; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1987; 209p. [Google Scholar]
- Sprague, G.F.; Tatum, L.A. General vs. specific combining ability in single crosses of corn. Agron. J. 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Comstock, R.E.; Robinson, H.F.; Harvey, P.H. A breeding procedures designed to make maximum use of both general and specific combining ability. Agron. J. 1949, 41, 360–367. [Google Scholar] [CrossRef]
- Carena, M.J.; Hallauer, A.R.; Miranda-Filho, J.B. Quantitative Genetics in Maize Breeding, 3rd ed.; Iowa State University Press: Ames, IA, USA, 2010; Volume XVI, 664p. [Google Scholar] [CrossRef]
- Vasal, S.K.; Srinivasan, G.; Pandey, S.; González, F.C.; Crossa, J.; Beck, D.L. Heterosis and combining ability of CIMMYT quality protein maize germplasm: I Lowland tropical. Crop Sci. 1993, 33, 46–51. [Google Scholar] [CrossRef]
- Pixley, K.; Bjarnason, M. Combining ability for yield and protein quality among modified endosperm opaque-2 tropical maize inbreeds. Crop Sci. 1993, 33, 1229–1234. [Google Scholar] [CrossRef]
- Musila, R.N.; Diallo, A.O.; Makumbi, D.; Njoroge, K. Combining ability of early-maturing quality protein maize inbred lines adapted to Eastern Africa. Field Crop Res. 2010, 119, 231–237. [Google Scholar] [CrossRef]
- Gudeta, N.G.; Dagne, W.G.; Habtamu, Z.U. Heterosis and combining ability of highland quality protein maize inbred lines. Maydica 2015, 60, 1–12. [Google Scholar]
- Jumbo, M.B.; Carena, M.J. Combining ability, maternal and reciprocal effects of elite early-maturing maize population hybrids. Euphytica 2008, 162, 325–333. [Google Scholar] [CrossRef]
- Machida, L.; Derera, J.; Tongoona, P.; Macrobert, J. Combining ability and reciprocal cross effects of elite, protein maize inbred lines in subtropical environments. Crop Sci. 2010, 50, 1708–1717. [Google Scholar] [CrossRef]
- Wegary, D.; Vivek, B.S.; Labuschagne, M.T. Combining ability of certain agronomy traits in quality protein maize under stress and non-stress environments in eastern and southern Africa. Crop Sci. 2014, 54, 1004–1014. [Google Scholar] [CrossRef]
- Kareema, M.W.; Banan, H.H.; Wajeeha, A.H. Hybrid vigor, heterosis, and genetic parameters in maize by diallel cross analysis. Int. J. App. Agric. Sci. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Hunter, R.B.; Gamble, E. Effect of cytoplasm source on the performance of double-cross hybrids in maize, Zea mays L. Crop Sci. 1968, 8, 278–280. [Google Scholar] [CrossRef]
- Vasal, S.K.; Srinivasan, G.; Vergara, A.N.; González, C.F. Heterosis y aptitud combinatoria en germoplasma de maíz de Valles Altos. Rev. Fitotec. Mex. 1995, 18, 123–139. [Google Scholar]
- Arellano-Vázquez, J.L.; Castillo-González, F.; Alcántar, G.G.; Martínez-Garza, Á. Parámetros genéticos de la eficiencia en el uso del nitrógeno en líneas de maíz de Valles Altos. In Developing Drought and Low N-Tolerant Maize: Proceedings of a Symposium; Edmeades, G.O., Bazinger, M., Mickelson, H.R., Peña-Valdivia, C.B., Eds.; CIMMYT: Texcoco, México, 1997; pp. 320–325. [Google Scholar]
- Ávila-Perches, M.A.; Rodríguez-Herrera, S.A.; Vázquez-Badillo, M.E.; Borrego-Escalante, F.; Lozano-del Río, A.J.; López-Benítez, A. Aptitud combinatoria y efectos recíprocos en líneas endogámicas de maíz de Valles Altos del centro de México. Agric. Técnica En México 2009, 35, 285–293. [Google Scholar]
- Velázquez, C.G.A.; Castillo, G.F.; Molina, G.J.D.; Arellano, V.J.L. Aptitud combinatoria y efectos recíprocos en líneas de maíz (Zea mays L.) con diferente nivel de endogamia. Agrociencia 1992, 3, 111–123. [Google Scholar]
- Wong-Romero, R.; Gutiérrez-del Río, E.; Palomo-Gil, A.; Rodríguez-Herrera, S.; Córdova-Orellana, H.; Espinoza-Banda, A.; Lozano-García, J.J. Aptitud combinatoria de componentes de rendimiento en líneas de maíz para grano en la Comarca Lagunera, México. Rev. Fitotec. Mex. 2007, 30, 181–189. [Google Scholar] [CrossRef]
- Mahan, A.L.; Muray, S.C.; Rooney, L.W.; Crosby, K.M. Combining ability for total phenols and secondary traits in a diverse set of colored (red, blue, and purple) maize. Crop Sci. 2013, 53, 1248–1255. [Google Scholar] [CrossRef]
- Wellhausen, E.J.; Roberts, L.M.; Mangelsdorf, P.C.; Hernández-Xolocotzi, E. Razas de Maíz en México: Su Origen, Características y Distribución; Folleto Técnico No. 5; Oficina de Estudios Especiales, Secretaría de Agricultura y Ganadería: México City, Mexico, 1951; 237p. [Google Scholar]
- Kato-Yamakake, T.A.; Mapes-Sánchez, C.; Mera-Ovando, L.M.; Serratos-Hernández, J.A.; Bye-Boettler, R.A. Origen y Diversificación del Maíz. Una Revisión Analítica; Universidad Nacional Autónoma de México, Comisión Nacional Para El Conocimiento y Uso de la Biodiversidad: México City, Mexico, 2009; 116p. [Google Scholar]
- Aragón, C.F.; Taba, S.; Hernández, C.J.M.; Figueroa, C.J.D.; Serrano, A.V. Actualización de la Información Sobre Maíces Criollos de Oaxaca; Libro Técnico No. 6; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias: México City, Mexico, 2006; 345p. [Google Scholar]
- Ron-Parra, J.; Hallauer, A.R. Utilization of exotic maize germplasm. Plant Breed. Rev. 1996, 14, 165–187. [Google Scholar] [CrossRef]
- Griffing, B. Concept of general and specific combining ability in relation with to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- García-Amaro, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía UNAM: México, Mexico, 2004; 246p. [Google Scholar]
- Salinas-Moreno, Y.; Arellano-Vázquez, J.L. Calidad nixtamalera y tortillera de híbridos de maíz con diferente tipo de endospermo. Rev. Fitotec. Mex. 1989, 12, 129–135. [Google Scholar]
- Zhang, Y.; Kang, M.S. Diallel-SAS: A program for Griffing’s diallel methods. In Handbook of Formulas and Software for Plant Geneticists and Breeders; Kang, M.S., Ed.; Food Products Press: New York, NY, USA, 2003; pp. 1–19. [Google Scholar]
- SAS (Statistical Analysis System). SAS/STAT Ver. 9; SAS Inst. Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Vasal, S.K.; Srinivasan, G.; Pandey, S.; Córdoba, H.S.; Han, G.C.; González-Ceniceros, F. Heterotic patterns of ninety-two white tropical CIMMYT maize lines. Maydica 1992, 37, 259–270. [Google Scholar]
- Barata, C.; Carena, M.J. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 2006, 151, 339–349. [Google Scholar] [CrossRef]
- Fleming, A.A.; Kozelnicky, G.M.; Browne, E.B. Cytoplasmic effects on agronomy characters in double cross maize hybrid. Agron. J. 1960, 52, 112–115. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Mortinson, C.A. Maternal effects in maize hybrids infected with Bipolaris maydis Shoemaker, Race T1. Crop Sci. 1975, 15, 686–689. [Google Scholar] [CrossRef]
- Pswarayi, A.; Vivek, B.S. Combining ability among CIMMYT’s early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica 2008, 162, 353–362. [Google Scholar] [CrossRef]
Line | Genealogy | Parents | Silking (d) | Grain | |
---|---|---|---|---|---|
Color | Texture | ||||
L1 | BXCC-8-7-1-2-1 | Cocotitlán 22 × Hybrid | 85 | Purple | Semicrystalline |
L2 | BXCC-3-1-3-6-4 | Cocotitlán 22 × Hybrid | 85 | Blue | Semicrystalline |
L3 | BXCC-3-1-3-2-1 | Cocotitlán 22 × hybrid | 85 | Purple | Semicrystalline |
L4 | BXCC-3-8-3-4-2 | Cocotitlán 22 × Hybrid | 85 | Blue | Floury |
L5 | BXCC-2-1-5-2-6 | Cocotitlán 22 × Hybrid | 85 | Blue | Floury |
L6 | NXOAX-168-2-1-2-2 | Nexapa × Oaxaca | 92 | Blue | Floury |
L7 | NXOAX-51-1-1-2-1 | Nexapa × Oaxaca | 90 | Blue | Floury |
L8 | NXOAX-46-l-1-1-1 | Nexapa × Oaxaca | 90 | Blue | Semicrystalline |
L9 | NXOAX-28-2-3-4-2 | Nexapa × Oaxaca | 88 | Blue | Semicrystalline |
L10 | NXOAX-19-5-l-1-2 | Nexapa × Oaxaca | 88 | Blue | Semicrystalline |
Variation Source | df | Sum of Squares | Mean Squares | F-Value | |
---|---|---|---|---|---|
Loc | 1 | 654.3 | 654.3 | 181.7 | ** |
Repetitions (Loc) | 2 | 23.4 | 11.7 | 3.3 | * |
Hybrids | 99 | 2788.7 | 28. I | 7.2 | ** |
Hybrids × Loc | 99 | 361.3 | 3.6 | 2.5 | * |
GCA | 9 | 1830.7 | 203.4 | 138.0 | ** |
SCA | 45 | 2551.1 | 56.6 | 38.4 | ** |
GCA × Loc | 9 | 57.0 | 6.3 | 4.3 | ** |
SCA × Loc | 45 | 228.7 | 5.1 | 3.5 | ** |
RE | 45 | 1965.1 | 43.6 | 29.6 | ** |
RE × Loc | 45 | 144.0 | 3.2 | 2.1 | ns |
ME | 9 | 1769.4 | 196.6 | 133.4 | ** |
Error | 198 | 291.7 | 1.47 | ||
Total | 399 | 4119.7 |
Line | GCA | Y (t ha−1) | Tassel (d) | PH (cm) | TW (kg hL−1) |
---|---|---|---|---|---|
L1 | 3.46 ** | 1.6 a | 93 b | 155 c | 70 a |
L2 | 2.80 ** | 1.2 a | 92 c | 170 b | 70 a |
L3 | 1.61 ** | 1.4 a | 93 b | 160 c | 69 a |
L4 | 2.98 ** | 2.4 a | 93 b | 180 a | 71 a |
L5 | 2.45 ** | 2.5 a | 95 b | 150 c | 69 a |
L6 | 2.90 ** | 1.5 a | 99 a | 180 a | 70 a |
L7 | 2.47 ** | 1.2 a | 94 b | 140 d | 68 a |
L8 | 2.38 ** | 1.7 a | 96 a | 180 a | 68 a |
L9 | 3.13 ** | 2.0 a | 93 b | 180 a | 68 a |
L10 | −2.00 ** | 2.4 a | 95 b | 180 a | 69 a |
Standard error | 0.857 | ||||
LSD | 1.95 | 3.0 | 6.0 | 12 |
Lines | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
♀\♂ | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 |
L1 | 1.2 ** | 1.0 ** | −1.0 ** | 2.0 ** | 1.3 ** | 0.8 * | 0.7 | 0.8 * | 2.3 ** | |
L2 | −0.6 | −2.6 * | 1.4 ** | −0.5 | 2.2 ** | 0.9 * | 1.1 ** | 1.9 ** | 2.5 ** | |
L3 | −0.8 | 0.04 | 0.5 | −0.3 | −0.5 | 1.9 ** | −0.04 | 0.8 * | −1.3 * | |
L4 | 0.2 | −0.6 | −0.5 | 1.2 ** | 0.9 ** | −0.1 | −0.02 | 1.4 ** | 3.0 ** | |
L5 | 0.3 | 0.2 | 0.2 | 0.0 | 1.2 ** | 1.4 | 0.0 | 0.9 * | 1.1 ** | |
L6 | −0.5 | −0.6 | 0.2 | 0.5 | −0.2 | 1.0 ** | 0.4 | 0.3 | 1.8 ** | |
L7 | −1.2 | 0.08 | −0.3 | 0.5 | 1.2 ** | 0.4 | 2.3 ** | 0.4 | −0.3 | |
L8 | 0.7 | 1.2 ** | −0.4 | −0.8 * | 0.1 | 1.3 ** | 0.1 | 0.4 | 1.7 ** | |
L9 | −0.5 | 0.04 | 0.0 | −0.1 | −0.6 | −0.8 | 0.4 | −0.6 | 1.5 ** | |
L10 | −26 * | −26 * | −31 ** | −26 ** | −27 ** | −26 * | −26 * | −27 * | −25 * |
Variation Source | df | Y | Tassel | PH | TW | Color |
---|---|---|---|---|---|---|
Loc | 1 | 859,758,220 ** | 20,302.0 ** | 0.7 ** | 2646.2 ns | 2.5 ns |
Blocks | 19 | 1,999,839 | 8.4 | 0.2 | 1292.1 | 1.0 |
Hybrids | 99 | 21,244,072 ** | 9.7 ** | 0.2 ** | 1165.5 ns | 2.9 ** |
Hybrids × Loc | 99 | 3,461,724 ** | 4.6 ** | 0.1 ** | 1132.4 ns | 0.9 ns |
Error | 180 | 994,307 | 2.4 | 0.03 | 1088.7 | 0.9 |
C.V. (%) | 11.6 | 1.7 | 8.0 | 45.4 | 12.0 |
Hybrid (Cross) | Y (t ha−1) | Tassel (d) | PH (cm) | TW (kg hL−1) | Color |
---|---|---|---|---|---|
2 (L2 × L1) | 11.4 | 89 | 250 | 72 | 8.5 |
10 (L6 × L1) | 11.4 | 89 | 260 | 67 | 8.3 |
7 (L1 × L5) | 11.3 | 86 | 220 | 69 | 7.2 |
26 (L6 × L2) | 11.3 | 87 | 250 | 70 | 9.9 |
8 (L5 × L1) | 11.2 | 88 | 230 | 69 | 7.7 |
59 (L4 × L10) | 11.2 | 88 | 250 | 67 | 7.2 |
31 (L2 × L9) | 11.1 | 87 | 220 | 72 | 8.5 |
32 (L9 × L2) | 11.0 | 87 | 230 | 73 | 8.8 |
12 (L7 × L1) | 10.9 | 87 | 250 | 74 | 8.8 |
16 (L9 × L1) | 10.9 | 89 | 240 | 73 | 8.0 |
22 (L4 × L2) | 10.9 | 87 | 240 | 71 | 9.9 |
29 (L2 × L8) | 10.7 | 87 | 230 | 70 | 9.1 |
57 (L4 × L9) | 10.6 | 86 | 230 | 70 | 7.4 |
58 (L9 × L4) | 10.6 | 86 | 250 | 69 | 8.0 |
25 (L2 × L6) | 10.5 | 87 | 230 | 73 | 9.4 |
60 (L10 × L4) | 10.5 | 88 | 250 | 62 | 8.0 |
13 (L1 × L8) | 10.4 | 87 | 250 | 71 | 8.3 |
79 (L7 × L8) | 10.4 | 90 | 230 | 72 | 9.9 |
4 (L3 × L1) | 10.3 | 86 | 230 | 71 | 8.5 |
9 (L1 × L6) | 10.3 | 87 | 250 | 68 | 8.0 |
18 (L10 × L1) | 10.3 | 88 | 250 | 67 | 7.7 |
88 (L10 × L8) | 10.3 | 89 | 250 | 68 | 8.8 |
34 (L10 × L2) | 10.3 | 88 | 240 | 71 | 9.6 |
51 (L4 × L6) | 10.3 | 89 | 230 | 67 | 9.9 |
33 (L2 × L10) | 10.2 | 89 | 240 | 71 | 6.6 |
80 (L8 × L7) | 10.2 | 90 | 230 | 74 | 9.9 |
LSD | 1.95 | 3.0 | 6.0 | 12 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arellano-Vázquez, J.L.; Gutiérrez-Hernández, G.F.; Ceja-Torres, L.F.; Flores-Gómez, E.; García-Ramírez, E.; Quiroz-Figueroa, F.R.; Vázquez-Lozano, P. Combining Ability and Reciprocal Effects for the Yield of Elite Blue Corn Lines from the Central Highlands of Mexico. Plants 2023, 12, 3861. https://doi.org/10.3390/plants12223861
Arellano-Vázquez JL, Gutiérrez-Hernández GF, Ceja-Torres LF, Flores-Gómez E, García-Ramírez E, Quiroz-Figueroa FR, Vázquez-Lozano P. Combining Ability and Reciprocal Effects for the Yield of Elite Blue Corn Lines from the Central Highlands of Mexico. Plants. 2023; 12(22):3861. https://doi.org/10.3390/plants12223861
Chicago/Turabian StyleArellano-Vázquez, José Luis, Germán Fernando Gutiérrez-Hernández, Luis Fernando Ceja-Torres, Estela Flores-Gómez, Elpidio García-Ramírez, Francisco Roberto Quiroz-Figueroa, and Patricia Vázquez-Lozano. 2023. "Combining Ability and Reciprocal Effects for the Yield of Elite Blue Corn Lines from the Central Highlands of Mexico" Plants 12, no. 22: 3861. https://doi.org/10.3390/plants12223861
APA StyleArellano-Vázquez, J. L., Gutiérrez-Hernández, G. F., Ceja-Torres, L. F., Flores-Gómez, E., García-Ramírez, E., Quiroz-Figueroa, F. R., & Vázquez-Lozano, P. (2023). Combining Ability and Reciprocal Effects for the Yield of Elite Blue Corn Lines from the Central Highlands of Mexico. Plants, 12(22), 3861. https://doi.org/10.3390/plants12223861