Phytochemical Profiling and Antioxidant Capacity of Traditional Plants, Northern Thailand
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Capacity
2.2. Total Phenolic Compound and Total Flavonoid Content
2.3. Qualitative Phytochemical Profiling—LC-QTOF/MS
3. Discussion
3.1. Antioxidant Capacity
3.2. Total Phenolic Compound and Total Flavonoid Content
3.3. Qualitative Phytochemical Profiling—LC-QTOF/MS
4. Materials and Methods
4.1. Plant Collection
4.2. Extraction of Plant Sample
4.3. Characterization of Extracted by LC-QTOF-MS
4.4. DPPH Radical Scavenging Activity
4.5. ABTS Radical Scavenging Activity
4.6. Ferric Ion Reducing Antioxidant Power
4.7. Total Phenolic Compound
4.8. Total Flavonoid Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ssenku, J.E.; Okurut, S.A.; Namuli, A.; Kudamba, A.; Tugume, P.; Matovu, P.; Wasige, G.; Kafeero, H.M.; Walusansa, A. Medicinal plant use, conservation, and the associated traditional knowledge in rural communities in Eastern Uganda. Trop. Med. Health 2022, 50, 39. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J. The role of plants in traditional medicine and current therapy. J. Altern. Complement. Med. 1995, 1, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Tag, H.; Namsa, N.D.; Mandal, M.; Kalita, P.; Das, A.; Mandal, S. Antipyretic and antibacterial activity of Chloranthus erectus (Buch.-Ham.) Verdcourt leaf extract: A popular folk medicine of Arunachal Pradesh. Indian J. Pharmacol. 2010, 42, 273. [Google Scholar] [PubMed]
- Anum, F.; Alam, A.; Aftab, A.; Ali, L.; Tahir, A.; Raza, S. In vitro Phytochemical Analysis and Antioxidant Assay of Fruit Extracts of Sapindus mukorossi Gaertn. and Acacia concinna DC. RADS J. Biol. Res. Appl. Sci. 2022, 13, 50–59. [Google Scholar]
- Keardrit, K.; Rujjanawate, C.; Amornlerdpison, D. Analgesic, antipyretic and anti-inflammatory effects of Tacca chantrieri Andre. J. Med. Plant Res. 2010, 4, 1991–1995. [Google Scholar]
- Bhat, P.B.; Hegde, S.; Upadhya, V.; Hegde, G.R.; Habbu, P.V.; Mulgund, G.S. Evaluation of wound healing property of Caesalpinia mimosoides Lam. J. Ethnopharmacol. 2016, 193, 712–724. [Google Scholar] [CrossRef]
- Essien Grace, E.; Thomas Paul, S.; Udoette Ikemesit, M. In vitro antioxidant analysis and quantitative determination of phenolic and flavonoid contents of Emilia sonchifolia (L) D.C (Asteraceae) leaf extract and fractions. GSC Biol. Pharm. Sci. 2020, 11, 044–052. [Google Scholar] [CrossRef]
- Wouters, F.C.; Blanchette, B.; Gershenzon, J.; Vassao, D.G. Plant defense and herbivore counter-defense: Benzoxazinoids and insect herbivores. Phytochem. Rev. 2016, 15, 1127–1151. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Mamedov, N.; Ovidi, E.; Tiezzi, A.; Craker, L. Phytochemical and Pharmacological Properties of Medicinal Plants from Uzbekistan: A Review. J. Med. Act. Plants 2017, 5, 59–75. [Google Scholar] [CrossRef]
- Dash, G.K.; Abdullah, M.S.; Yahaya, R. Traditional Uses, Phytochemical and Pharmacological Aspects of Emilia sonchifolia (L.) DC. Int. J. Res. Ayurveda Pharm. 2015, 6, 551–556. [Google Scholar] [CrossRef]
- Tag, H.; Namsa, N.D.; Das, A.K.; Kalita, P.; Mandal, S.C. Evaluation of anti-inflammatory potential of Chloranthus erectus (Buch.-Ham.) Verd. leaf extract in rats. J. Ethnopharmacol. 2009, 126, 371–374. [Google Scholar] [CrossRef]
- Namsa, N.D.; Tag, H.; Mandal, M.; Kalita, P.; Das, A.K. An ethnobotanical study of traditional anti-inflammatory plants used by the Lohit community of Arunachal Pradesh, India. J. Ethnopharmacol. 2009, 125, 234–245. [Google Scholar] [CrossRef]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Kilburn, J.D.; Rakariyatham, N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007, 100, 1044–1048. [Google Scholar] [CrossRef]
- Sombatsiri, P.; Chairote, G. Volatile compounds from “Som Poy” (Acacia Concinna Dc.). In III WOCMAP Congress on Medicinal and Aromatic Plants–Volume 5: Quality, Efficacy, Safety, Processing and Trade in Medicinal 679; ISHS: Chiang Mai, Thailand, 2005; pp. 189–194. [Google Scholar]
- Lamponi, S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life 2021, 11, 1095. [Google Scholar] [CrossRef]
- Khanpara, K.; Renuka, V.; Harisha, C. A detailed investigation on shikakai (Acacia concinna Linn.) fruit. J. Curr. Pharm. Res. 2012, 9, 6–10. [Google Scholar]
- Zhang, L.; Li, Q.J.; Li, H.T.; Chen, J.; Li, D.Z. Genetic diversity and geographic differentiation in Tacca chantrieri (Taccaceae): An autonomous selfing plant with showy floral display. Ann. Bot. 2006, 98, 449–457. [Google Scholar] [CrossRef]
- Sophia, D.; Ragavendran, P.; Arulraj, C.; Gopalakrishnan, V.K. In vitro antioxidant activity and HPTLC determination of n-hexane extract of Emilia sonchifolia (L.) DC. J. Basic Clin. Pharm. 2011, 2, 179–183. [Google Scholar]
- Vijayalakshmi, M.; Ruckmani, K. Ferric reducing anti-oxidant power assay in plant extract. Bangladesh J. Pharmacol. 2016, 11, 570–572. [Google Scholar] [CrossRef]
- Zemry, I.H.; Hasan, N.A.; Hasbullah, N.I.; Nawahwi, M.Z.; Mohamad Azzeme, A.; Ahmad, S.N.D.; Ariffin, S. Antioxidant Potential of Chloranthus erectus (Chloranthaceae) from various solvents extract. J. Exp. Biol. Agric. Sci. 2023, 11, 75–80. [Google Scholar] [CrossRef]
- Rangsinth, P.; Prasansuklab, A.; Duangjan, C.; Gu, X.; Meemon, K.; Wink, M.; Tencomnao, T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement. Altern. Med. 2019, 19, 164. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Intasai, N.; Leelapornpisid, P. Biological activities and characterization of the pod extracts from sompoi (Acacia concinna linn) grown in northern Thailand. Int. J. Pharm. Pharm. Sci. 2015, 7, 237–241. [Google Scholar]
- Ganogpichayagrai, A.; Suksaard, C. Evaluation of proximate composition and biological activities of sompoi (Acacia concinna) leaves in Thailand. J. Adv. Pharm. Technol. Res. 2022, 13, 317–321. [Google Scholar] [PubMed]
- Steinrut, L.; Itharat, A.; Ruangnoo, S. Free radical scavenging and lipid peroxidation of Thai medicinal plants used for diabetic treatment. J. Med. Assoc. Thail. 2011, 94, S178–S182. [Google Scholar]
- Dedvisitsakul, P.; Watla-Iad, K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022, 8, e10740. [Google Scholar] [CrossRef]
- Lin, D.R.; Xiao, M.S.; Zhao, J.J.; Li, Z.H.; Xing, B.S.; Li, X.D.; Kong, M.Z.; Li, L.Y.; Zhang, Q.; Liu, Y.W.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Ishioka, Y.; Yagi, M.; Ogura, M.; Yonei, Y. Antiglycation effect of various vegetables: Inhibition of advanced glycation end product formation in glucose and human serum albumin reaction system. Glycative Stress. Res. 2015, 2, 022–034. [Google Scholar] [CrossRef]
- Hasan, N.A.; Ariffin, S.; Azzeme, A.M.; Hasbullah, N.I.; Nawahwi, M.Z.; Bin Zemry, I.H. Preliminary phytochemical screening of medicinal herb, SAMBAU PAYA (Chloranthus erectus). Mater. Today Proc. 2023, 88, 6–9. [Google Scholar] [CrossRef]
- Shaikh, I.A.; Muddapur, U.M.; Bagewadi, Z.K.; Chiniwal, S.; Ghoneim, M.M.; Mahnashi, M.H.; Alsaikhan, F.; Yaraguppi, D.; Niyonzima, F.N.; More, S.S.; et al. Characterization of Bioactive Compounds from Acacia concinna and Citrus limon, Silver Nanoparticles’ Production by A. concinna Extract, and Their Biological Properties. Molecules 2022, 27, 2715. [Google Scholar] [CrossRef]
- Fitton, A.; Benfield, P. Dopexamine hydrochloride. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in acute cardiac insufficiency. Drugs 1990, 39, 308–330. [Google Scholar] [CrossRef]
- de Vos, J.W.; Ufkes, J.G.; van den Brink, W.; van Brussel, G.H.; de Wolff, F.A. Craving patterns in methadone maintenance treatment with dextromoramide as adjuvant. Addict. Behav. 1999, 24, 707–713. [Google Scholar] [CrossRef]
- Kuhl, H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric 2005, 8, 3–63. [Google Scholar] [CrossRef]
- Leigh, D.A.; Reeves, D.S.; Simmons, K.; Thomas, A.L.; Wilkinson, P.J. Talampicillin: A new derivative of ampicillin. Br. Med. J. 1976, 1, 1378–1380. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Donohue, J.F.; Barbee, R.A.; Goldman, M.D.; Gross, N.J.; Wisniewski, M.E.; Yancey, S.W.; Zakes, B.A.; Rickard, K.A.; Anderson, W.H. Efficacy of salmeterol xinafoate in the treatment of COPD. Chest 1999, 115, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Gorsky, M.; Epstein, J.B.; Parry, J.; Epstein, M.S.; Le, N.D.; Silverman, S., Jr. The efficacy of pilocarpine and bethanechol upon saliva production in cancer patients with hyposalivation following radiation therapy. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2004, 97, 190–195. [Google Scholar] [CrossRef]
- Plosker, G.L. Acamprosate: A Review of Its Use in Alcohol Dependence. Drugs 2015, 75, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Hosie, J.; Scott, A.K.; Petrie, J.C.; Cockshott, I.D. Pharmacokinetics of epanolol after acute and chronic oral dosing in elderly patients with stable angina pectoris. Br. J. Clin. Pharmacol. 1990, 29, 333–337. [Google Scholar] [CrossRef]
- Allen, R.; O’Brien, B.M. Uses of misoprostol in obstetrics and gynecology. Rev. Obstet. Gynecol. 2009, 2, 159–168. [Google Scholar] [PubMed]
- Taen, S.; Poldinger, W. Dimethacrine (istonil), an acridane derivative with the antidepressive action. Schweiz. Med. Wochenschr. 1966, 96, 1616–1620. [Google Scholar]
- Liu, M.; Wan, X.; Yin, Y.; Li, Y.X.; Sun, F.; Zhang, Z.; Wang, Y.L. Subfertile effects of quinestrol and levonorgestrel in male rats. Reprod. Fertil. Dev. 2012, 24, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Jeeno, P.; Tongban, S.; Yana, P.; Wongta, A.; Sutan, K.; Yadoung, S.; Hongsibsong, S. Tentative Identification of Phytochemicals from Smilax glabra and Smilax corbularia Extracts by LC-QTOF/MS and Their Bioactive Potential. Plants 2022, 11, 2089. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
Sample | Extraction | Method | ||
---|---|---|---|---|
DPPH-Scavenging Activity | ABTS Radical Scavenging Activity | Ferric Ion Reducing Antioxidant Power | ||
IC50 | IC50 | mg AAE/100 g | ||
Emilia sonchifolia | Ethanol | 6.98 ± 0.93 | 27.39 | 126.69 ± 15.05 |
Methanol | 2.48 ± 0.74 | 32.68 | 101.66 ± 1.75 | |
Water | 96.03 ± 24.00 | 34.54 | 0.17 ± 0.11 | |
Chloranthus erectus | Ethanol | 6.21 ± 1.09 | 45.18 | 450.09 ± 41.29 |
Methanol | 4.00 ± 1.78 | 53.68 | 445.17 ± 33.23 | |
Water | 246.70 ± 71.60 | 19.88 | 0.23 ± 0.13 | |
Caesalpinia mimosoides | Ethanol | ND | 93.20 | 898.18 ± 0.00 |
Methanol | 0.03 ± 0.03 | 97.12 | 547.10 ± 0.00 | |
Water | 0.42 ± 0.15 | 71.21 | 20.24 ± 1.14 | |
Acacia concinna | Ethanol | 41.32 ± 2.00 | 30.29 | 129.59 ± 16.05 |
Methanol | 25.25 ± 6.56 | 78.43 | 67.86 ± 0.53 | |
Water | 471.66 ± 4.11 | 64.26 | 2.07 ± 0.02 | |
Tacca chantrieri | Ethanol | 19.74 ± 2.72 | 45.95 | 354.53 ± 5.84 |
Methanol | 12.55 ± 1.46 | 43.22 | 180.43 ± 11.67 | |
Water | 70.10 ± 62.04 | 14.57 | 0.55 ± 0.31 |
No. | Compounds Name | Molecular Formulas | RT | Matching Score (%) | m/z | Mass | Plants |
---|---|---|---|---|---|---|---|
1 | 2-Pyridylacetylglycine | C9H10N2O3 | 0.903 | 95.92 | 212.1033 | 194.0694 | Emilia sonchifolia |
2 | Dopexamine | C22H32N2O2 | 1.171 | 96.6 | 357.2538 | 356.2461 | Emilia sonchifolia |
3 | Penicillamine cysteine disulfide | C8H16N2O4S2 | 1.255 | 93.74 | 244.1701 | 243.1630 | Emilia sonchifolia |
4 | Dextromoramide | C25H32N2O2 | 1.672 | 95.07 | 415.2346 | 392.2453 | Emilia sonchifolia, Caesalpinia mimosoides |
5 | Sulfociprofloxacin | C17H18FN3O6S | 2.040 | 94.92 | 429.1240 | 411.0901 | Emilia sonchifolia |
6 | 3β,5β-Tetrahydronorethindrone glucuronide | C26H38O8 | 4.13 | 93.87 | 479.2624 | 478.2553 | Emilia sonchifolia |
7 | Pimozide | C28H29F2N3O | 4.13 | 97.97 | 479.2624 | 461.2287 | Emilia sonchifolia, Chloranthus erectus, Acacia concinna, Tacca chantrieri |
8 | Idebenone metabolite (QS-10) | C19H28O6 | 7.992 | 95.77 | 370.2226 | 352.1887 | Emilia sonchifolia, Chloranthus erectus, Caesalpinia mimosoides |
9 | Dextroamphetamine | C9H13N | 14.229 | 99.35 | 136.1122 | 135.1049 | Emilia sonchifolia, Chloranthus erectus, Caesalpinia mimosoides |
10 | Propranolol | C16H21NO2 | 14.814 | 96.63 | 260.1651 | 259.1578 | Emilia sonchifolia |
11 | Quillaic acid | C30H46O5 | 6.48 | 71.9 | 509.3257 | 486.3354 | Emilia sonchifolia, Chloranthus erectus, Caesalpinia mimosoides |
12 | Ondansetron | C18H19N3O | 0.273 | 96.16 | 311.1868 | 293.1528 | Chloranthus erectus |
13 | Fluocinolone | C21H26F2O6 | 1.477 | 98.32 | 412.1696 | 461.2287 | Chloranthus erectus Chloranthus erectus |
14 | 4′-Hydroxytamoxifen | C26H29NO2 | 1.477 | 93.78 | 388.2278 | 387.2211 | Chloranthus erectus |
15 | Talampicillin | C24H23N3O6S | 1.678 | 96.79 | 499.1647 | 481.1310 | Chloranthus erectus |
16 | Levonorgestrel acetate | C23H30O3 | 3.50 | 98.04 | 355.2271 | 354.2195 | Chloranthus erectus |
17 | Hydroxyprogesterone acetate | C23H32O4 | 4.637 | 96.31 | 395.2197 | 372.2302 | Chloranthus erectus |
18 | Bethanechol | C7H17N2O2 | 9.503 | 95.77 | 179.1625 | 161.1293 | Chloranthus erectus, Caesalpinia mimosoides |
19 | Acamprosate | C5H11NO4S | 1.08 | 97.78 | 204.0303 | 181.0410 | Caesalpinia mimosoides |
20 | 6-Methylthioguanine | C6H7N5S | 1.097 | 93.33 | 204.0393 | 352.1888 | Caesalpinia mimosoides |
21 | L-Tyrosine, 3-methoxy-a-methyl-, hydrogen sulfate | C11H15NO7S | 1.113 | 95.46 | 323.0896 | 305.0558 | Caesalpinia mimosoides |
22 | Penicillamine disulfide | C10H20N2O4S2 | 1.464 | 92.49 | 319.0748 | 296.0857 | Caesalpinia mimosoides |
23 | Salmeterol | C25H37 NO4 | 8.888 | 95.51 | 438.2620 | 415.2727 | Caesalpinia mimosoides |
24 | 3′-HydroxyIndinavir | C36H47N5O5 | 14.84 | 97.33 | 647.3916 | 629.3573 | Caesalpinia mimosoides |
25 | Senkyunolide M | C16H22O4 | 0.794 | 70.52 | 301.1417 | 278.1523 | Acacia concinna |
26 | 1-Penten-3-ol | C5H10O | 0.899 | 86.65 | 104.1065 | 86.0727 | Acacia concinna |
27 | 1-Heptadecanol | C17H36O | 0.939 | 82.27 | 274.311 | 256.2776 | Acacia concinna, Tacca chantrieri |
28 | Epanolol | C20H23N3O4 | 1.480 | 78.63 | 387.2027 | 369.1691 | Acacia concinna |
29 | Schisanhenol B | C22H26O6 | 1.482 | 97.63 | 409.1629 | 135.1050 | Acacia concinna, Tacca chantrieri |
30 | Tamoxifen N-oxide | C26H29NO2 | 1.483 | 64.06 | 410.22107 | 387.2214 | Acacia concinna, Tacca chantrieri |
31 | Misoprostol | C22H38O5 | 2.984 | 70.91 | 405.2618 | 382.2726 | Acacia concinna |
32 | Stearamide | C18H37NO | 13.269 | 85.02 | 284.2954 | 283.2881 | Acacia concinna, Tacca chantrieri |
33 | Dimetacrine | C20H26N2 | 1.547 | 95.21 | 295.2171 | 294.2101 | Tacca chantrieri |
34 | Repaglinide | C27H36N2O4 | 1.678 | 77.29 | 453.2759 | 452.2687 | Tacca chantrieri |
35 | Zoapatanol | C20H34O4 | 2.994 | 76.26 | 405.2618 | 338.2458 | Tacca chantrieri |
36 | Quinestrol | C25H32O2 | 4.285 | 70.90 | 382.2756 | 364.2417 | Tacca chantrieri |
37 | Spiroxamine | C18H35NO | 13.145 | 84.43 | 320.2565 | 297.2673 | Tacca chantrieri |
Local Name | Scientific Names (Family Names) | Medicinal Properties | |
---|---|---|---|
Pahang | Emilia sonchifolia (L.) DC. | Anti-inflammatory and analgesic potential, antioxidant [7] | |
Praya sam sib song mia | Chloranthus erectus (Buch. -Ham.) Verdc. | Anti-inflammatory [11], antipyretic, and antibacterial [3] | |
Phak puya, Nam puya | Caesalpinia mimosoides Lamk | Antimicrobial, antioxidant, wound healing [6] | |
Som Poy | Acacia concinna (Willd.) DC. | Antioxidant [4] | |
Wan Kang Khaw Dum | Tacca chantrieri André | Analgesic, antipyretic, and anti-inflammatory [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeeno, P.; Yadoung, S.; Yana, P.; Hongsibsong, S. Phytochemical Profiling and Antioxidant Capacity of Traditional Plants, Northern Thailand. Plants 2023, 12, 3956. https://doi.org/10.3390/plants12233956
Jeeno P, Yadoung S, Yana P, Hongsibsong S. Phytochemical Profiling and Antioxidant Capacity of Traditional Plants, Northern Thailand. Plants. 2023; 12(23):3956. https://doi.org/10.3390/plants12233956
Chicago/Turabian StyleJeeno, Peerapong, Sumed Yadoung, Pichamon Yana, and Surat Hongsibsong. 2023. "Phytochemical Profiling and Antioxidant Capacity of Traditional Plants, Northern Thailand" Plants 12, no. 23: 3956. https://doi.org/10.3390/plants12233956
APA StyleJeeno, P., Yadoung, S., Yana, P., & Hongsibsong, S. (2023). Phytochemical Profiling and Antioxidant Capacity of Traditional Plants, Northern Thailand. Plants, 12(23), 3956. https://doi.org/10.3390/plants12233956