Chemical Composition in Juvenile and Mature Wood of Branch and Main Trunk of Leucaena leucocephala (Lam.) de Wit
Abstract
:1. Introduction
2. Results
2.1. FTIR Analysis of Wood Powder (WP) and Klason Lignin (KL)
2.2. Holocellulose and α-Cellulose Content
2.3. Sugar Composition Analysis
2.4. Lignin Content
2.5. Lignin Monomeric Composition
2.6. Structural Analysis of Lignin
2.7. Composition of Carbon, Hydrogen and Nitrogen Elements in Lignin
3. Discussion
3.1. FTIR Analysis of Wood Powder (WP) and Klason Lignin (KL)
3.2. Content and Composition of Cell Wall Polysaccharides
3.3. Lignin Content and Monomer Composition
3.4. Structural Analysis of Lignin
3.5. Variation in Chemical Composition between Branch Wood and Main Trunk Wood
4. Materials and Methods
4.1. Plant Material
4.2. FTIR Spectroscopy
4.3. Determination of Holocellulose and α-Cellulose
4.4. Determination of Lignin Content
4.5. Thioacidolysis
4.6. Determination of Hemicelluloses and Pectin
4.7. Isolation of Milled Wood Lignin (Bjorkman’s Lignin)
4.8. Acetylation of Bjorkman Lignin
4.9. 1H NMR Analysis
4.10. Statistical Analysis
4.11. Elemental Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klass, D.L. Biomass for Renewable Energy, Fuels and Chemicals; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Pramod, S.; Rao, K.S. Anatomical changes during transition from juvenile to adult wood in branch and main trunk xylem of subabul (Leucaena leucocephala (Lam.) de Wit. J. Sust. For. 2012, 31, 661–673. [Google Scholar] [CrossRef]
- Hatton, J.V.; Hunt, K. Wood density and chemical properties of secondary growth lodgepole pine. Pulp Pap. Can. 1993, 94, 140–141. [Google Scholar]
- Yen, T.F.; Braun, J.L.; Goldfarg, B.; Chang, H.M.; Kadla, J.F. Morphological and chemical variations between juvenile wood, mature wood and compression wood of loblolly pine (Pinus taeda L.). Holzforschung 2006, 60, 1–8. [Google Scholar]
- Zobel, B.J.; Van Buijitenen, J.P. Wood Variation; Its Causes and Control; Springer: Berlin, Germany; New York, NY, USA, 1989. [Google Scholar]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer: Berlin, Germany, 1998. [Google Scholar]
- Haupt, M.; Leithoff, H.; Meier, D.; Richter, H.G.; Faix, O. Heartwood extractives and natural durability of plantation-grown teak wood (Tectona grandis L.): A case study. Holz Roh-Werkst. 2003, 61, 473–474. [Google Scholar] [CrossRef]
- Dunisch, O.; Richter, H.; Koch, G. Wood properties of juvenile and mature heartwood in Robinia pseudoacasia. Wood Sci. Technol. 2010, 44, 301–313. [Google Scholar] [CrossRef]
- Chow, P.; Rolfe, G.L.; Shupe, T.F. Some chemical constituents of 10 year old American sycamore and black locust in Illinois. Wood Fiber Sci. 1996, 28, 186–193. [Google Scholar]
- Adamopoulus, S.; Vaulgaridis, E.; Passialios, C. Variation of certain chemical properties within the stem wood of black locust (Robinia pseudoacasia L.). Holz Als Roh-Werkst. 2005, 63, 327–333. [Google Scholar] [CrossRef]
- Rastogi, S.; Dwivedi, U.N. Down regulation of lignin biosynthesis in transgenic Leucaena leucocephala harbouring O-methyltransferase gene. Biotechnol. Prog. 2006, 22, 609–616. [Google Scholar] [CrossRef]
- Ma, Y.; Dickinson, N.M.; Wong, M.H. Interaction between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China. Soil Biochem. 2003, 35, 1369–1379. [Google Scholar] [CrossRef]
- Díaz, M.; García, M.M.; Eugenio, M.; Tapias, R.; Fernández, M.; López, F. Variations in fiber length and some pulp chemical properties of Leucaena varieties. Ind. Crop. Prod. 2007, 26, 142–150. [Google Scholar] [CrossRef]
- López, F.; García, M.M.; Yánez, R.; Tapias, R.; Fernández, M.; Díaz, M. Leucaena species valorization for biomass and paper production in 1 and 2 year harvest. Bioresour. Technol. 2008, 99, 4846–4853. [Google Scholar] [CrossRef] [PubMed]
- Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Harrington, K.J.; Higgins, H.G.; Michell, A.J. Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiate D. Don. Holzforschung 1964, 18, 108–113. [Google Scholar] [CrossRef]
- Lundquist, K. 1H NMR spectral studies of lignins; results regarding the occurrence of β-5 structures, β-β structures, non-cyclic benzyl aryl ethers, carbonyl groups and phenolic groups. Nord. Pulp Pap. Res. J. 1992, 1, 4–8. [Google Scholar] [CrossRef]
- Mousavioun, P.; Doherty, W. Chemical and thermal properties of fractionated bagasse soda lignin. Ind. Crop. Prod. 2010, 31, 52–58. [Google Scholar] [CrossRef]
- Jin, Z.; Jin, G.; Shao, S.; Katsumata, K.S. Lignin characteristics of bast fiber and core in kenaf, bark and wood of paper mulberry and mulberry. J. Wood Sci. 2012, 58, 144–152. [Google Scholar] [CrossRef]
- Lundquist, K.; Parker, V.D.; Rømming, C.; Husson, H.-P.; Örn, U. NMR studies of lignins. 5. investigation of non-derivatized spruce and birch lignin by 1H NMR spectroscopy. Acta Chem. Scand. 1981, B35, 497–501. [Google Scholar] [CrossRef]
- Hauteville, M.; Lundquist, K.; Unge, S.V. NMR studies of lignins. 7. 1H NMR spectroscopic investigation of the distribution of erythro and threo forms of β-O-4 structures in lignins. Acta Chem. Scand. 1986, B40, 31–35. [Google Scholar] [CrossRef]
- Lundquist, K.; Sjöholm, R.; Teien, G.; Pakkanen, T.; Servin, R.; Sternerup, H.; Wistrand, L.-G.; Nørskov, L.; Schroll, G. NMR studies of lignins. 2. Interpretation of the 1H NMR spectrum of acetylated birch lignin. Acta Chem. Scand. 1979, B33, 27–30. [Google Scholar] [CrossRef]
- Åkerholm, M.; Salmén, L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001, 42, 963–969. [Google Scholar] [CrossRef]
- Chen, H.-M.; Han, J.-J.; Cui, K.-M.; He, X.-Q. Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr. Trees 2010, 24, 533–540. [Google Scholar] [CrossRef]
- Xu, F.; Liu, C.F.; Ren, J.L.; Sun, J.X.; Sun, R.C.; Curling, S.; Fowler, P.; Baird, M.S. Fractional separation and structural characterization of chlorophyll and lignin from perennial ryegrass (L. perenne) and Cocksfoot grass (D. globerata). Sep. Sci. Technol. 2011, 42, 1809–1829. [Google Scholar] [CrossRef]
- Rana, R.; Heyser, R.L.; Finkeldey, R.; Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 2009, 44, 225–242. [Google Scholar] [CrossRef]
- Marga, F.; Gallo, A.; Hasenstein, K.H. Cell wall components affect mechanical properties: Studies with thistle flowers. Plant Physiol. Biochem. 2003, 41, 792–797. [Google Scholar] [CrossRef]
- Nazri, W.M.; Jamaludin, K.; Rudaini, M.N.; Rahim, S.; Nor-Yuziah, M.Y. Effects of chemical components on properties of oriented strand board from Leucaena leucocephala wood. J. Trop. For. Sci. 2009, 21, 353–360. [Google Scholar]
- Abe, H.; Funada, R.; Imaizumi, H.; Ohtani, J.; Fukazawa, K. Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 1995, 197, 418–421. [Google Scholar] [CrossRef]
- Funada, R.; Abe, H.; Furusawa, O.; Imaizumi, H.; Fukazawa, K.; Ohtani, J. The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol. 1997, 38, 210–212. [Google Scholar] [CrossRef]
- Sahlberg, U.; Salmen, L.; Oscarsson, A. The fibrillar orientation in the S2 layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci. Technol. 1997, 31, 77–86. [Google Scholar] [CrossRef]
- Jung, H.G.; Vogel, K.P. Influence of lignin on digestibility of forage cell wall material. J. Anim. Sci. 1986, 62, 1703–1712. [Google Scholar] [CrossRef]
- Besle, J.M.; Cornu, A.; Jouany, J.P. Roles of structural phenyl propanoids in forage cell wall digestion. J. Sci. Food Agric. 1994, 64, 171–190. [Google Scholar] [CrossRef]
- Chen, L.; Auh, C.; Chen, F.; Cheng, X.; Aljoe, H.; Dixon, R.A.; Wang, Z. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J. Agric. Food Chem. 2002, 50, 5558–5565. [Google Scholar] [CrossRef] [PubMed]
- Rencoret, J.; Guterrez, A.; Del-Rio, J.C. Lipid and lignin composition of wood from different eucalyptus species. Holzforschung 2007, 61, 174–256. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Kondo, R.; Sakai, K.; Imamura, H. The Difference of Reactivity between Syringyl Lignin and Guaiacyl Lignin in Alkaline Systems. Holzforschung 1995, 49, 423–428. [Google Scholar] [CrossRef]
- Lundquist, K.; Von Unge, S. NMR studies of lignins. 8. Examination of pyridine-d5 solutions of acetylated lignins from birch and spruce by 1H NMR spectroscopy. Acta Chem. Scand. 1986, B40, 791–797. [Google Scholar] [CrossRef]
- Lapierre, C.; Monties, B.; Guittet, E.; Lallemand, J.-Y. RMN13C Bidimensionnelle des Lignines de Peuplier: Etude des Corrélations entre Atomes de Carbone et Réexamen par la Méthode INADEQUATE des Attributions des Signaux du Spectre. Holzforschung 1987, 41, 51–58. [Google Scholar] [CrossRef]
- Lapierre, C.; Monties, B.; Rolando, C. Thioacidolysis of diazomethane-methylated pine compression wood and wheat straw in situ lignins. Holzforschung 1988, 42, 409–411. [Google Scholar] [CrossRef]
- Ede, R.M.; Brunow, G.; Simola, L.K.; Lemmetyinen, J. Two dimensional 1H-1H chemical shift correlation and J-resolved NMR studies on isolated and synthetic lignins. Holzforschung 1990, 44, 95–101. [Google Scholar] [CrossRef]
- Lai, Y.Z.; Guo, X.P. Proceedings ‘6th International Symposium on Wood and Pulping Chemistry; Appita: Melbourne, Australia, 1991; Volume 1, p. 199. [Google Scholar]
- Akiyama, T.; Matsumoto, Y.; Okuyama, T.; Meshitsuka, G. Ratio of erythro and threo forms of β-O-4 structures in tension wood lignin. Phytochemistry 2003, 64, 1157–1162. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, P.; Peng, H.; Zhao, P.; Yang, Y.; Zhang, Z. Potential of pulp production from whole-tree wood of Betula platyphylla Roth. based on wood characteristics. BioResources 2019, 14, 7015–7024. [Google Scholar] [CrossRef]
- Groover, A. Gravitropism and reaction wood of forest trees- evolutions, functions and mechanisms. New Phytol. 2016, 211, 790–802. [Google Scholar] [CrossRef]
- Lee, J.W. Introduction: An overview of advanced biofuels and bioproducts. In Advanced Biofuels and Bioproducts; Lee, J.W., Ed.; Springer Science Business Media: New York, NY, USA, 2013; pp. 3–12. [Google Scholar]
- Victor, A.; Pulidindi, I.N.; Gedanken, A. Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock. J. Environ. Manag. 2015, 162, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Kadla, J.F.; Chang, H.-M. Microanalytical method for the characterization of fiber components and morphology of woody plants. J. Agric. Food Chem. 2002, 50, 1040–1044. [Google Scholar] [CrossRef]
- Dence, C.W. The determination of Lignin. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 33–41. [Google Scholar]
- Lapierre, C.; Pollet, B.; Rolando, C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res. Chem. Intermed. 1995, 21, 397–412. [Google Scholar] [CrossRef]
- Sundberg, A.; Sundberg, K.; Lillandt, C.; Holmbom, B. Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord. Pulp Pap. Res. J. 1996, 11, 216–226. [Google Scholar]
- Bjorkman, A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Sven. Papp. 1956, 59, 477–485. [Google Scholar]
- Gosselink, R.J.A.; Abacherli, A.; Semke, H.; Malherbe, R.; Kauper, P.; Nadif, A.; Van-Dam, J.E.G. Analytical protocols for characterization of sulpher-free lignin. Ind. Crops Prod. 2004, 19, 271–281. [Google Scholar] [CrossRef]
Sample | Juvenile Wood | Mature Wood | ||
---|---|---|---|---|
Branch | Main Trunk | Branch | Main Trunk | |
Holocellulose | 68.50 ± 1.00 | * 74.50 ± 1.50 | 70.00 ± 1.20 | * 67.50 ±2.00 |
α-cellulose | 48.00 ± 1.00 | * 52.00 ± 1.20 | 46.00 ± 1.00 | * 50.00 ± 2.00 |
Component | BJW | MTJW | BMW | MTMW |
---|---|---|---|---|
Arabinose | 3.13 ± 0.40 | 3.22 ± 0.24 | * 3.60 ± 0.50 | * 3.80 ± 0.54 |
Xylose | 101.10 ± 2.8 | 106.20 ± 3.46 | 111.20 ± 5.00 | 112.30 ± 5.40 |
Galactose | 9.20 ± 1.00 | 11.50 ± 1.02 | * 14.40 ± 1.8 | * 13.90 ± 2.00 |
Glucose | 42.00 ± 16.10 | 40.60 ± 20.40 | 43.90 ± 18.80 | 42.80 ± 21.20 |
Mannose | 3.10 ± 0.10 | 3.35 ± 0.25 | * 3.85 ± 0.18 | * 3.90 ± 0.28 |
Rhamnose | 5.10 ± 0.32 | 4.21 ± 0.26 | * 2.30 ± 0.40 | * 2.21 ± 0.14 |
GlCA | 0.39 ± 0.20 | 0.53 ± 0.36 | * 0.61 ± 0.21 | * 0.68 ± 0.24 |
4-O-MeGlcA | 13.10 ± 2.0 | 13.30 ± 1.90 | * 9.50 ± 2.20 | * 9.40 ± 1.60 |
GalA | 13.60 ± 3.20 | 12.00 ± 3.50 | 15.20 ± 2.90 | * 14.90 ± 2.40 |
Total | 190.82 ± 20 | 194.91 ± 24.9 | * 204.46 ± 23.2 | * 203.79 ± 18.4 |
Sample | Juvenile Wood | Mature Wood |
---|---|---|
Branch | 20.43 ± 0.50 | * 23.33 ± 0.40 |
Main trunk | 21.29 ± 0.60 | * 24.03 ± 0.50 |
Sample | Monomeric Composition | |||
---|---|---|---|---|
Guaiacyl (G) | Syringyl (S) | S + G | S/G Ratio | |
BJW | 490.62 | 400.92 | 900.50 | 0.82 |
MTJW | 540.87 | 450.83 | 1000.60 | 0.83 |
BMW | 760.53 | 670.28 | 1430.80 | * 0.89 |
MTMW | 800.85 | 720.12 | 1520.90 | * 0.90 |
Shift δ (ppm) | Assignments |
---|---|
7.29 | Solvent (CDCl3) |
7.02, 7.20 | Aromatic proton in G-lignin [21] |
6.84, 6.93 | Aromatic proton in S-lignin [21] |
5.39 | Hα in β-5 structure and non-cyclic benzyl aryl ether [21] |
5.03 | Hα (threo) in β-O-4 structures [22] |
4.81 | Hα in β- β structure (methylene proton in cinnamyl alcohol units) [22] |
4.64 | Hβ in β-O-4 structures [22] |
4.29 | Hγ1 (erythro) in β-O-4 structures [22] |
3.81 | OCH3 (threo) in β-O-4 structures [22] |
2.23 | Aromatic acetate [23] |
2.14 | Aliphatic acetate (including some aromatic acetate) [23] |
2.00, 2.10 | CH3CO (threo) in β-O-4 structures [22] |
1.95 | Aliphatic acetate [23] |
BJW | MTJW | BMW | MTMW | |
---|---|---|---|---|
OH-OCH3 | 5.00 | 5.02 | 5.68 | 5.71 |
OH-Ar | 1.00 | 1.01 | 1.07 | 1.10 |
OH-OCH3/OH-Ar ratio | 0.19 | 0.19 | 0.20 | 0.20 |
Carbon (%) | Hydrogen (%) | Nitrogen (%) | |
---|---|---|---|
BJW | 49.18 | 4.58 | 0.39 |
MTJW | 48.45 | 4.65 | 0.40 |
BMW | 45.06 | 5.34 | 0.51 |
MTMW | 46.29 | 5.56 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivan, P.; Rao, K.S.; Rajput, K.S. Chemical Composition in Juvenile and Mature Wood of Branch and Main Trunk of Leucaena leucocephala (Lam.) de Wit. Plants 2023, 12, 3977. https://doi.org/10.3390/plants12233977
Sivan P, Rao KS, Rajput KS. Chemical Composition in Juvenile and Mature Wood of Branch and Main Trunk of Leucaena leucocephala (Lam.) de Wit. Plants. 2023; 12(23):3977. https://doi.org/10.3390/plants12233977
Chicago/Turabian StyleSivan, Pramod, Karumanchi S. Rao, and Kishore S. Rajput. 2023. "Chemical Composition in Juvenile and Mature Wood of Branch and Main Trunk of Leucaena leucocephala (Lam.) de Wit" Plants 12, no. 23: 3977. https://doi.org/10.3390/plants12233977
APA StyleSivan, P., Rao, K. S., & Rajput, K. S. (2023). Chemical Composition in Juvenile and Mature Wood of Branch and Main Trunk of Leucaena leucocephala (Lam.) de Wit. Plants, 12(23), 3977. https://doi.org/10.3390/plants12233977