Breaking Dormancy and Increasing Restoration Success of Native Penstemon Species Using Gibberellic Acid Seed Coatings and U-Shaped Furrows
Abstract
:1. Introduction
2. Results
2.1. Palmer’s Penstemon
2.2. Thickleaf Penstemon
2.3. Firecracker Penstemon
3. Discussion
3.1. GA3 Seed Coating
3.2. Planting Season
3.3. Deep, U-Shaped Furrows
3.4. Future Work
4. Materials and Methods
4.1. Study Sites
4.2. Seed Treatments
4.3. Field Planting
4.4. Statistical Analysis
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, S.C.; Shaw, N.L. Current and potential use of broadleaf herbs for reestablishing native communities. In Proceedings of the Sage-Grouse Habitat Restoration Symposium, Proc. RMRS-P-38, Boise, ID, USA, 4–7 June 2001; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. 56–61. [Google Scholar]
- Svejcar, T.; Boyd, C.; Davies, K.; Hamerlynck, E.; Svejcar, L. Challenges and limitations to native species restoration in the Great Basin, USA. Plant Ecol. 2017, 218, 81–94. [Google Scholar] [CrossRef]
- Kildisheva, O.A.; Erickson, T.E.; Madsen, M.D.; Dixon, K.W.; Merritt, D.J. Seed germination and dormancy traits of forbs and shrubs important for restoration of North American dryland ecosystems. Plant Biol. J. 2019, 21, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Shaw, N.L.; Lambert, S.M.; DeBolt, A.M.; Pellant, M. Increasing native forb seed supplies for the Great Basin. In Proceedings of the National Proceedings: Forest and Conservation Nursery Associations, Charleston, NC, USA, 12–15 July 2004; pp. 94–102. [Google Scholar]
- Rawlins, J.K.; Anderson, V.J.; Johnson, R.; Krebs, T. Optimal seeding depth of five forb species from the Great Basin. Nativ. Plants J. 2009, 10, 32–42. [Google Scholar] [CrossRef]
- Fund, A.J.; Hulvey, K.B.; Jensen, S.L.; Johnson, D.A.; Madsen, M.D.; Monaco, T.A.; Tilley, D.J.; Arora, E.; Teller, B. Basalt milkvetch responses to novel restoration treatments in the Great Basin. Rangel. Ecol. Manag. 2019, 72, 492–500. [Google Scholar] [CrossRef]
- Tilley, D.; Wolf, M.; Jolley, D.; Hirning, G. Seedling emergence and seed production of curlycup gumweed. Nativ. Plants J. 2021, 23, 299–308. [Google Scholar] [CrossRef]
- Finch-Savage, W.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Kildisheva, O.A.; Dixon, K.W.; Silveira, F.A.O.; Chapman, T.; Di Sacco, A.; Mondoni, A.; Turner, S.R.; Cross, A.T. Dormancy and germination: Making every seed count in restoration. Restor. Ecol. 2020, 28, S256–S265. [Google Scholar] [CrossRef]
- Kitchen, S.G.; Meyer, S.E. Seed germination of intermountain penstemons as influenced by stratification and GA3 treatments. J. Environ. Hort. 1991, 9, 51–56. [Google Scholar] [CrossRef]
- Lewandrowski, W.; Erickson, T.E.; Dixon, K.W.; Stevens, J.C. Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. J. Appl. Ecol. 2017, 54, 997–1007. [Google Scholar] [CrossRef]
- Larson, J.E.; Ebinger, K.R.; Suding, K.N. Water the odds? Spring rainfall and emergence-related seed traits drive plant recruitment. Oikos 2021, 130, 1665–1678. [Google Scholar] [CrossRef]
- Rogis, C.; Gibson, L.R.; Knapp, A.D.; Horton, R. Enhancing germination of eastern gamagrass seed with stratification and gibberellic acid. Crop Sci. 2004, 44, 549–552. [Google Scholar] [CrossRef]
- Payal, K.; Maikhuri, R.K.; Rao, K.S.; Kandari, L.S. Effect of gibberellic acid- and water-based pre-soaking treatments under different temperatures and photoperiods on the seed germination of Allium stracheyi Baker: An endangered alpine species of Central Himalaya, India. Plant Biosyst. 2014, 148, 1075–1084. [Google Scholar] [CrossRef]
- Bujak, C.M.; Dougher, T.A. Classification of seed dormancy and treatment of gibberellic acid to improve germination of arrowleaf balsamroot. Nativ. Plants J. 2017, 18, 32–41. [Google Scholar] [CrossRef]
- Larson, A.J.; Michaelis, D.; Madsen, M.D. Development and Use of a Slow-Release Polymer Seed Coating System to Deliver Growth Hormones for Enhancing Seed Germination and Early Plant Growth. Provisional Patent Application No. 63317605, 8 March 2022. [Google Scholar]
- Monsen, S.B.; Stevens, R. Seedbed preparation and seeding practices. Restoring West. Ranges Wildlands 2004, 1, 121–154. [Google Scholar]
- Kildisheva, O.A.; Erickson, T.E.; Kramer, A.T.; Zeldin, J.; Merritt, D.J. Optimizing physiological dormancy break of understudied cold desert perennials to improve seed-based restoration. J. Arid Environ. 2019, 170, 104001. [Google Scholar] [CrossRef]
- Madsen, M.D.; Svejcar, L.; Radke, J.; Hulet, A. Inducing rapid seed germination of native cool season grasses with solid matrix priming and seed extrusion technology. PLoS ONE 2018, 13, e0204380. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, R.; Oberkofler, I.; Peintner, U. Fungal growth and biomass development is boosted by plants in snow-covered soil. Microb. Ecol. 2012, 64, 79–90. [Google Scholar] [CrossRef]
- Boyd, C.S.; Lemos, J.A. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe. Rangel. Ecol. Manag. 2015, 68, 494–500. [Google Scholar] [CrossRef]
- Gornish, E.S.; Aanderud, Z.T.; Sheley, R.L.; Rinella, M.J.; Svejcar, T.; Englund, S.D.; James, J.J. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert. Oecologia 2015, 177, 595–606. [Google Scholar] [CrossRef]
- James, J.J.; Svejcar, T.J.; Rinella, M.J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 2011, 48, 961–969. [Google Scholar] [CrossRef]
- Hoose, B.W.; Geary, B.D.; Richardson, W.C.; Petersen, S.L.; Madsen, M.D. Improving dryland seedling recruitment using fungicide seed coatings. Ecol. Solut. Evid. 2022, 3, e12132. [Google Scholar] [CrossRef]
- Chambers, J.C. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems: Implications for restoration. Ecol. Appl. 2000, 10, 1400–1413. [Google Scholar] [CrossRef]
- Anderson, R.M.; Anderson, V.J.; Phillips, K.C.; Hansen, N.C.; Stringham, T.K.; Madsen, M.D. Furrows and, to a lesser extent, seed priming improve restoration success in the sagebrush steppe. Rangel. Ecol. Manag. 2023, 87, 167–176. [Google Scholar] [CrossRef]
- Camp, S.C. Improving Perennial Bunchgrass Seeding Success in Annual Grass Invaded Areas Using Pre-Emergent Herbicide and Furrowing Techniques. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2021. Available online: https://scholarsarchive.byu.edu/etd/8881/ (accessed on 17 May 2021).
- Ott, J.E.; Cox, R.D.; Shaw, N.L.; Newingham, B.A.; Ganguli, A.C.; Pellant, M.; Roundy, B.A.; Eggett, D.L. Postfire drill-seeding of Great Basin plants: Effects of contrasting drills on seeded and nonseeded species. Rangel. Ecol. Manag. 2016, 69, 373–385. [Google Scholar] [CrossRef]
- Hardegree, S.P.; Jones, T.A.; Roundy, B.A.; Shaw, N.L.; Monaco, T.A. Assessment of range planting as a conservation practice. Rangel. Ecol. Manag. 2016, 69, 237–247. [Google Scholar] [CrossRef]
- Jensen, S.; Christensen, W.F.; Roundy, B.; Anderson, V.J.; Kitchen, S.G.; Allphin, L. Temporal and spatial factors influence native forb emergence more than sowing depth. Rangel. Ecol. Manag. 2022, 83, 41–49. [Google Scholar] [CrossRef]
- Kramer, A.T.; Fant, J.B.; Ashley, M.V. Influences of landscape and pollinators on population genetic structure: Examples from three Penstemon (Plantaginaceae) species in the Great Basin. Am. J. Bot. 2011, 98, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Ogle, D.; Peterson, S.; St. John, L. Plant Guide for Palmer’s Penstemon (Penstemon palmeri); USDA-Natural Resources Conservation Service, Plant Materials Center: Aberdeen, ID, USA, 2013.
- Ogle, D.; Peterson, S.; St. John, L. Plant Guide for Thickleaf Penstemon (Penstemon pachyphyllus); USDA-Natural Resources Conservation Service, Plant Materials Center: Aberdeen, ID, USA, 2013.
- St. John, L.; Tilley, D.; Ogle, D. Plant Guide for Firecracker Penstemon (Penstemon eatonii); USDA-Natural Resources Conservation Service, Plant Materials Center: Aberdeen, ID, USA, 2011.
- Palzkill, D.A.; DePaul, L.; Sivilli, C. Seed germination response of Penstemon spp. to gibberellic acid. Turfgrass Ornam. Res. Summ. 1988, Series P-75, 370075. [Google Scholar]
- Meyer, S.E.; Kitchen, S.G. Habitat-correlated variation in seed germination response to chilling in Penstemon section Glabri (Scrophulariaceae). Am. Midl. Nat. 1994, 132, 349–365. [Google Scholar] [CrossRef]
- Meyer, S.E.; Kitchen, S.G.; Carlson, S.L. Seed Germination Timing Patterns in Intermountain Penstemon (Scrophulariaceae). Am. J. Bot. 1995, 82, 377–389. [Google Scholar] [CrossRef]
- Kucera, K.F.; Fant, J.B.; Jensen, S.; Landeen, M.; Orr, E.; Kramer, A.T. Genetic variation and structure change when producing and using mixed-source seed lots for restoration. Restor. Ecol. 2022, 30, e13521. [Google Scholar] [CrossRef]
- Brown, A.; Allen, P.S. Elevation impact on seed germination requirements for two Asteraceae species. Nativ. Plants J. 2023, 24, 45–53. [Google Scholar] [CrossRef]
- Herman, J.; Sultan, S. Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Front. Plant Sci. 2011, 2, 102. [Google Scholar] [CrossRef] [PubMed]
- Penfield, S.; MacGregor, D.R. Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 2017, 68, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.W.; Boyd, C.S.; Madsen, M.D.; Kerby, J.; Hulet, A. Evaluating a seed technology for sagebrush restoration across an elevation gradient: Support for bet hedging. Rangel. Ecol. Manag. 2018, 71, 19–24. [Google Scholar] [CrossRef]
- PRISM Climate Group, Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 11 July 2022).
- James, J.J.; Sheley, R.L.; Leger, E.A.; Adler, P.B.; Hardegree, S.P.; Gornish, E.S.; Rinella, M.J. Increased soil temperature and decreased precipitation during early life stages constrain grass seedling recruitment in cold desert restoration. J. Appl. Ecol. 2019, 56, 2609–2619. [Google Scholar] [CrossRef]
- Madsen, M.D.; Davies, K.W.; Boyd, C.S.; Kerby, J.D.; Svejcar, T.J. Emerging seed enhancement technologies for overcoming barriers to restoration. Restor. Ecol. 2016, 24, S77–S84. [Google Scholar] [CrossRef]
- Laker, M.C.; Nortjé, G.P. Chapter Five—Review of existing knowledge on soil crusting in South Africa. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 155, pp. 189–242. [Google Scholar]
- Smith, C.C.; Fretwell, S.D. The optimal balance between size and number of offspring. Am. Nat. 1974, 108, 499–506. [Google Scholar] [CrossRef]
- Silvertown, J.W. Phenotypic variety in seed germination behavior: The ontogeny and evolution of somatic polymorphism in seeds. Am. Nat. 1984, 124, 1–16. [Google Scholar] [CrossRef]
- Temme, D.H. Seed size variability: A consequence of variable genetic quality among offspring? Evolution 1986, 40, 414–417. [Google Scholar] [CrossRef]
- Soil Survey Staff Web Soil Survey. Web Soil Survey (WSS) Provides Soil Data and Information Produced by the National Cooperative Soil Survey; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2022.
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Halmer, P. Seed technology and seed enhancement. In Proceedings of the XXVII International Horticultural Congress-IHC2006: International Symposium on Seed Enhancement and Seedling Production 771, Seoul, Republic of Korea, 13 August 2006; pp. 17–26. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft 2015, 67, 1. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.7.2, CRAN. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 17 August 2022).
Site | Soil Map Unit | Mean Annual Precipitation (mm) | Low Mean Monthly Temperature (°C) | High Mean Monthly Temperature (°C) | Elevation (m) |
---|---|---|---|---|---|
Santaquin | Donnardo Stony Loam | 475 | −2 | 23.8 | 1560 |
Sage Valley | Juab Loam | 349 | −2.9 | 23.3 | 1500 |
Enterprise | Checkett-rock Outcrop Complex | 362 | −1.4 | 22.6 | 1620 |
Penstemon Species | 45% PVP * | Calcium Carbonate | Gibberellic Acid | Ethylcellulose | Acetone | Ethanol |
---|---|---|---|---|---|---|
---------------------------------g-------------------------------- | ----------mL-------- | |||||
Palmer’s | 47 | 200 | 0.382 | 4.62 | 50 | 10 |
Thickleaf | 52 | 300 | 0.382 | 4.62 | 50 | 10 |
Firecracker | 58 | 200 | 0.382 | 4.62 | 50 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.J.; Geary, B.; Hulet, A.; Madsen, M.D. Breaking Dormancy and Increasing Restoration Success of Native Penstemon Species Using Gibberellic Acid Seed Coatings and U-Shaped Furrows. Plants 2023, 12, 4005. https://doi.org/10.3390/plants12234005
Johnson AJ, Geary B, Hulet A, Madsen MD. Breaking Dormancy and Increasing Restoration Success of Native Penstemon Species Using Gibberellic Acid Seed Coatings and U-Shaped Furrows. Plants. 2023; 12(23):4005. https://doi.org/10.3390/plants12234005
Chicago/Turabian StyleJohnson, Amber J., Bradley Geary, April Hulet, and Matthew D. Madsen. 2023. "Breaking Dormancy and Increasing Restoration Success of Native Penstemon Species Using Gibberellic Acid Seed Coatings and U-Shaped Furrows" Plants 12, no. 23: 4005. https://doi.org/10.3390/plants12234005
APA StyleJohnson, A. J., Geary, B., Hulet, A., & Madsen, M. D. (2023). Breaking Dormancy and Increasing Restoration Success of Native Penstemon Species Using Gibberellic Acid Seed Coatings and U-Shaped Furrows. Plants, 12(23), 4005. https://doi.org/10.3390/plants12234005