Recent Advances in the Integrative Taxonomy of Plants
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrier, S.; Ninan, K.N.; Leadley, P.; Alkemade, R.; Acosta, L.A.; Akçakaya, H.R.; Brotons, L.; Cheung, W.; Christensen, V.; Harhash, K.A.; et al. IPBES Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services; IPBES Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services: Bonn, Germany, 2016; 32p. [Google Scholar]
- Yang, Z.L. Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers. 2011, 50, 47–58. [Google Scholar] [CrossRef]
- Pante, E.; Puillandre, N.; Viricel, A.; Arnaud-Haond, S.; Aurelle, D.; Castelin, M.; Chenuil, A.; Destombe, C.; Forcioli, D.; Valero, M.; et al. Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Mol. Ecol. 2015, 24, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zeng, W.; Wang, J.; Liu, L.; Liang, H.; Kou, Y.; Wang, H.; Fan, D.; Zhang, Z. Species delimitation of Asteropyrum (Ranunculaceae) based on morphological, molecular, and ecological variation. Front. Plant Sci. 2021, 12, 681864. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.; Dantas-Queiroz, M.V.; Palma-Silva, C. Plant species complexes as models to understand speciation and evolution: A review of South American studies. Crit. Rev. Plant Sci. 2018, 37, 54–80. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, S.; Kociolek, J.P.; Jahn, R.; Kulikovskiy, M. Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data. Sci. Rep. 2021, 11, 4266. [Google Scholar] [CrossRef]
- Kulikovskiy, M.; Genkal, S.; Maltsev, Y.; Glushchenko, A.; Kuznetsova, I.; Kapustin, D.; Gusev, E.; Martynenko, N.; Kociolek, J.P. Resurrection of the diatom genus Stephanocyclus (Coscinodiscophyceae: Stephanodiscaceae) on the basis of an integrated molecular and morphological approach. Fottea 2022, 22, 181–191. [Google Scholar] [CrossRef]
- Maltseva, S.; Bachura, Y.; Erst, T.; Kulikovskiy, M.; Maltsev, Y. Description of Desmonostoc caucasicum sp. nov. (Cyanobacteria) using an integrative taxonomic approach. Phycologia 2022, 61, 514–527. [Google Scholar] [CrossRef]
- Banaev, E.V.; Tomoshevich, M.A.; Khozyaykina, S.A.; Erst, A.A.; Erst, A.S. Integrative taxonomy of Nitraria (Nitrariaceae), description of the new enigmatic species and key to all currently known species. Plants 2023, 12, 593. [Google Scholar] [CrossRef]
- Erst, A.S.; Sukhorukov, A.P.; Mitrenina, E.Y.; Skaptsov, M.V.; Kostikova, V.A.; Chernisheva, O.A.; Troshkina, V.; Kushunina, M.; Krivenko, D.A.; Ikeda, H.; et al. An integrative taxonomic approach reveals a new species of Eranthis (Ranunculaceae) in North Asia. PhytoKeys 2020, 140, 75–100. [Google Scholar] [CrossRef]
- Erst, A.S.; Nikulin, A.Y.; Nikulin, V.Y.; Ebel, A.L.; Zibzeev, E.V.; Sharples, M.T.; Baasanmunkh, S.; Choi, H.J.A.E.; Olonova, M.V.; Pyak, A.I.; et al. Distribution analysis, updated checklist, and DNA barcodes of the endemic vascular flora of the Altai mountains, a Siberian biodiversity hotspot. Syst. Biodivers. 2022, 20, 1–30. [Google Scholar] [CrossRef]
- Kezlya, E.; Maltsev, Y.; Genkal, S.; Krivova, Z.; Kulikovskiy, M. Phylogeny and fatty acid profiles of new Pinnularia (Bacillariophyta) species from soils of Vietnam. Cells 2022, 11, 2446. [Google Scholar] [CrossRef] [PubMed]
- Novakovskaya, I.V.; Boldina, O.N.; Shadrin, D.M.; Patova, E.N. Heterochlamydomonas uralensis sp. Nov. (Chlorophyta, Chlamydomonadaceae), new species described from the mountain tundra community in the Subpolar Urals (Russia). Diversity 2023, 15, 673. [Google Scholar] [CrossRef]
- Gaysina, L.A.; Johansen, J.R.; Saraf, A.; Allaguvatova, R.Z.; Pal, S.; Singh, P. Roholtiella volcanica sp. nov., a new species of Cyanobacteria from Kamchatkan Volcanic Soils. Diversity 2022, 14, 620. [Google Scholar] [CrossRef]
- Glushchenko, A.; Kezlya, E.; Maltsev, Y.; Genkal, S.; Kociolek, J.P.; Kulikovskiy, M. Description of the soil diatom Sellaphora terrestris sp. Nov. (Bacillariophyceae, Sellaphoraceae) from Vietnam, with remarks on the phylogeny and taxonomy of Sellaphora and systematic position of Microcostatus. Plants 2022, 11, 2148. [Google Scholar] [CrossRef] [PubMed]
- Glushchenko, A.M.; Maltsev, Y.I.; Kociolek, J.P.; Kuznetsova, I.V.; Kulikovskiy, M.S. Molecular and morphological investigations of two giant diatom Cymbella species from the Transbaikal Area (Russia, Siberia) with comments on their distributions. Plants 2022, 11, 2445. [Google Scholar] [CrossRef] [PubMed]
- Bagmet, V.B.; Abdullin, S.R.; Nikulin, A.Y.; Nikulin, V.Y.; Gontcharov, A.A. Luticola tenera sp. Nov. (Diadesmidaceae, Naviculales)—A new diatom from the soil of the State Nature Reserve “Bastak” (Jewish Autonomous Region, Russia). Life 2023, 13, 1937. [Google Scholar] [CrossRef] [PubMed]
- Kollár, J.; Pinseel, E.; Vanormelingen, P.; Poulíčková, A.; Souffreau, C.; Dvořák, P.; Vyverman, W. A polyphasic approach to the delimitation of diatom species: A case study for the genus Pinnularia (Bacillariophyta). J. Phycol. 2019, 55, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhou, S.; Zhang, M.; Peng, W.; Guo, K.; Qu, X.; He, F. Spatial and local environmental factors outweigh geo-climatic gradients in structuring taxonomically and trait-based β-diversity of benthic algae. J. Biogeogr. 2021, 48, 1842–1857. [Google Scholar] [CrossRef]
- Tindall, B.J.; Rosselló-Mora, R.; Busse, H.-J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. Then and now: A systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek 2014, 106, 43–56. [Google Scholar] [CrossRef]
- Van de Vijver, B.; Ector, L.; Haan, M.; Zidarova, R. The genus Microcostatus in the Antarctic region. Diatom Res. 2010, 25, 417–429. [Google Scholar] [CrossRef]
- Stanek-Tarkowska, J.; Czyz, E.A.; Rybak, M. Description of a new diatom species—Microcostatus dexteri sp. Nov.—From terrestrial habitats in southern Poland. Phytotaxa 2021, 509, 241–247. [Google Scholar] [CrossRef]
- Kulikovskiy, M.S.; Glushchenko, A.M.; Kuznetsova, I.V.; Kociolek, J.P. Planoplatessa gen. Nov.—A new, neglected monoraphid diatom genus with a cavum. Plants 2022, 11, 2314. [Google Scholar] [CrossRef]
- Héribaud, J. Les Diatomées Fossiles d’Auvergne; 2e mém; Librairie des Sciences Naturelles: Paris, France, 1903; p. 166. [Google Scholar]
- Kulikovskiy, M.S.; Lange-Bertalot, H.; Metzeltin, D.; Witkowski, A. Lake Baikal: Hotspot of endemic diatoms I. Iconogr. Diatomol. 2012, 23, 7–608. [Google Scholar]
- Kulikovskiy, M.S.; Lange-Bertalot, H.; Kuznetsova, I.V. Lake Baikal: Hotspot of endemic diatoms II. Iconogr. Diatomol. 2015, 26, 1–657. [Google Scholar]
- Kulikovskiy, M.S.; Kociolek, J.P.; Solak, C.N.; Kuznetsova, I.V.; Glushchenko, A.M. New and interesting taxa from the diatom genus Gomphonema Ehrenberg in shallow, nearshore sites on the eastern coast of Lake Baikal. Plants 2023, 12, 1835. [Google Scholar] [CrossRef]
- Kapustin, D.; Kulikovskiy, M. Chrysosphaerella septentrionalis sp. Nov. (Chrysophyceae, Chromulinales), a new species from the Arctic including the description of Chrysosphaerellaceae, fam. Nov. Plants 2022, 11, 3166. [Google Scholar] [CrossRef] [PubMed]
- Lauterborn, R. Diagnosen neuer Protozoen aus dem Gebiete des Oberrheins. Zool. Anz. 1896, 19, 14–18. [Google Scholar]
- Martynenko, N.; Gusev, E.; Kapustin, D.; Kulikovskiy, M. A New cryptic species of the genus Mychonastes (Chlorophyceae, Sphaeropleales). Plants 2022, 11, 3363. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.A.; Flechtner, V.R. Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. J. Phycol. 2004, 40, 1127–1137. [Google Scholar] [CrossRef]
- Tang, J.; Yao, D.; Zhou, H.; Du, L.; Daroch, M. Reevaluation of Parasynechococcus-like strains and genomic analysis of their microsatellites and compound microsatellites. Plants 2022, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-L.; Kim, M.-S.; Nguyen, N.-T.N.; Nguyen, X.-T.; Cao, V.-L.; Nguyen, X.-V.; Vieira, C. Marine floral biodiversity, threats, and conservation in Vietnam: An updated review. Plants 2023, 12, 1862. [Google Scholar] [CrossRef] [PubMed]
- Villacorte, L.; Ekowati, Y.; Neu, T.; Kleijn, J.; Winters, H.; Amy, G.; Schippers, J.; Kennedy, M. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res. 2015, 73, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Yakoviichuk, A.; Krivova, Z.; Maltseva, S.; Kochubey, A.; Kulikovskiy, M.; Maltsev, Y. Antioxidant status and biotechnological potential of new Vischeria vischeri (Eustigmatophyceae) soil strains in enrichment cultures. Antioxidants 2023, 12, 654. [Google Scholar] [CrossRef]
- Lobus, N.V.; Glushchenko, A.M.; Osadchiev, A.A.; Maltsev, Y.I.; Kapustin, D.A.; Konovalova, O.P.; Kulikovskiy, M.S.; Krylov, I.N.; Drozdova, A.N. Production of fluorescent dissolved organic matter by microalgae strains from the Ob and Yenisei gulfs (Siberia). Plants 2022, 11, 3361. [Google Scholar] [CrossRef]
- Ancona, J.J.; Pinzón-Esquivel, J.P.; Ruiz-Sánchez, E.; Palma-Silva, C.; Ortiz-Díaz, J.J.; Tun-Garrido, J.; Carnevali, G.; Raigoza, N.E. Multilocus data analysis reveal the diversity of cryptic species in the Tillandsia ionantha (Bromeliaceae: Tillansiodeae) Complex. Plants 2022, 11, 1706. [Google Scholar] [CrossRef]
- Ancona, J.J.; Pinzón, J.P.; Ortiz-Díaz, J.J.; Ramírez-Morillo, I.; Tun-Garrido, J.; Palma-Silva, C.; Till, W. Botanical history and typification in the Tillandsia ionantha comaplex. Taxon 2021, 70, 1317–1326. [Google Scholar] [CrossRef]
- Pallas, P.S. Journey through Different Provinces of the Russian State: Part Three—First Half; Imperial Academy of Sciences: St. Petersburg, Russia, 1788; 655p. [Google Scholar]
- Grohar, M.C.; Medic, A.; Ivancic, T.; Veberic, R.; Jogan, J. Color variation and secondary metabolites’ footprint in a taxonomic complex of Phyteuma sp. (Campanulaceae). Plants 2022, 11, 2894. [Google Scholar] [CrossRef]
- Gawenda-Kempczyńska, D.; Olech, M.; Balcerek, M.; Nowak, R.; Załuski, T.; Załuski, D. Phenolic acids as chemotaxonomic markers able to differentiate the Euphrasia species. Phytochemistry 2022, 203, 113342. [Google Scholar] [CrossRef]
- Kunc, N.; Hudina, M.; Bavcon, J.; Vreš, B.; Luthar, Z.; Gostinčar, K.; Mikulič-Petkovšek, M.; Osterc, G.; Ravnjak, B. Characterization of the Slovene autochthonous Rose hybrid Rosa pendulina × spinosissima (Rosa reversa Waldst. and Kit) using biochemical patterns of the plant blossoms. Plants 2023, 12, 505. [Google Scholar] [CrossRef]
- Raymond, O.; Gouzy, J.; Just, J. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777. [Google Scholar] [CrossRef]
- Wagner, F.; Ott, T.; Zimmer, C.; Reichhart, V.; Vogt, R.; Oberprieler, C. ‘At the Crossroads towards Polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 2019, 223, 2039–2053. [Google Scholar] [CrossRef]
- Ott, T.; Schall, M.; Vogt, R.; Oberprieler, C. The warps and wefts of a polyploidy complex: Integrative species delimitation of the diploid Leucanthemum (Compositae, Anthemideae) representatives. Plants 2022, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.; Blatt-Janmaat, K.L.; Tkach, N.; van Dam, N.M.; Neumann, S. Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimaging. Plants 2023, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, A.P. Axyris (Chenopodiaceae s.str. or Amaranthaceae s.l.) in the Himalayas and Tibet. Willdenowia 2011, 41, 75–82. [Google Scholar] [CrossRef]
- Sukhorukov, A.P.; Shiposha, V.D.; Kushunina, M.; Zaika, M.A. Biogeography and systematics of the genus Axyris (Amaranthaceae s.l.). Plants 2022, 11, 2873. [Google Scholar] [CrossRef]
- Ge, D.; Qu, Y.; Deng, T.; Thuiller, W.; Fišer, C.; Ericson, P.G.P.; Guo, B.; de la Sancha, N.U.; von der Heyden, S.; Hou, Z.; et al. New progress in exploring the mechanisms underlying extraordinarily high biodiversity in global hotspots and their implications for conservation. Divers Distrib. 2022, 28, 2448–2458. [Google Scholar] [CrossRef]
- Wu, Z.-K.; Guo, Y.-J.; Zhang, T.; Burgess, K.S.; Zhou, W. Primula luquanensis sp. nov. (Primulaceae), a new species from southwestern China, reveals a novel floral form in the heterostyly-prevailing genus. Plants 2023, 12, 534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltsev, Y.; Erst, A. Recent Advances in the Integrative Taxonomy of Plants. Plants 2023, 12, 4097. https://doi.org/10.3390/plants12244097
Maltsev Y, Erst A. Recent Advances in the Integrative Taxonomy of Plants. Plants. 2023; 12(24):4097. https://doi.org/10.3390/plants12244097
Chicago/Turabian StyleMaltsev, Yevhen, and Andrey Erst. 2023. "Recent Advances in the Integrative Taxonomy of Plants" Plants 12, no. 24: 4097. https://doi.org/10.3390/plants12244097
APA StyleMaltsev, Y., & Erst, A. (2023). Recent Advances in the Integrative Taxonomy of Plants. Plants, 12(24), 4097. https://doi.org/10.3390/plants12244097