Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions
Abstract
:1. Introduction
2. Results
2.1. Super-Nodulating Plants Are More Photosynthetically Responsive to Elevated CO2
2.2. Super-Nodulating Plants have Increased Biomass and Leaf Nitrogen Content under Elevated CO2 Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Growth Conditions
4.3. Photosynthetic Activity
4.4. Biochemical Assays
4.5. Measurement of Total Nitrogen and Carbon
4.6. Statistical Analyses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Singer, S.D.; Chatterton, S.; Soolanayakanahally, R.Y.; Subedi, U.; Chen, G.; Acharya, S.N. Potential effects of a high CO2 future on leguminous species. Plant-Environ. Interact. 2020, 1, 67–94. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [PubMed]
- Kant, S.; Seneweera, S.; Rodin, J.; Materne, M.; Burch, D.; Rothstein, S.J.; Spangenberg, G. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Front. Plant Sci. 2012, 3, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leakey, A.; Ainsworth, E.A.; Bernacchi, C.; Rogers, A.; Long, S.; Ort, D.R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef] [PubMed]
- Tausz, M.; Tausz-Posch, S.; Norton, R.M.; Fitzgerald, G.J.; Nicolas, M.E.; Seneweera, S. Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ. Exp. Bot. 2013, 88, 71–80. [Google Scholar] [CrossRef]
- Sulieman, S.; Thao, N.P.; Tran, L.-S.P. Does elevated CO2 provide real benefits for N2-fixing leguminous symbioses? In Legume Nitrogen Fixation in a Changing Environment; Sulieman, S., Tran, L.-S.P., Eds.; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Reich, P.B.; Tilman, D.; Craine, J.; Ellsworth, D.; Tjoelker, M.G.; Knops, J.; Wedin, D.; Naeem, S.; Bahauddin, D.; Goth, J.; et al. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytol. 2001, 150, 435–448. [Google Scholar]
- Lee, T.D.; Tjoelker, M.; Reich, P.; Russelle, M.P. Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: Dependence on soil N supply. Plant Soil 2003, 255, 475–486. [Google Scholar] [CrossRef]
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.D.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.A.; Dickstein, R.; Udvardi, M.K. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell 2020, 32, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Udvardi, M.; Poole, P.S. Transport and Metabolism in Legume-Rhizobia Symbioses. Annu. Rev. Plant Biol. 2013, 64, 781–805. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, P.M.; González, E.M.; Aparicio-Tejo, P.M.; Arrese-Igor, C. Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol. Plant. 2001, 113, 33–40. [Google Scholar] [CrossRef]
- Fischinger, S.A.; Hristozkova, M.; Mainassara, Z.-A.; Schulze, J. Elevated CO2 concentration around alfalfa nodules increases N2 fixation. J. Exp. Bot. 2010, 61, 121–130. [Google Scholar] [CrossRef]
- Lüscher, A.; Hartwig, U.A.; Suter, D.; Nösberger, J. Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Glob. Chang. Biol. 2000, 6, 655–662. [Google Scholar] [CrossRef]
- Nakamura, T.; Koike, T.; Lei, T.; Ohashi, K.; Shinano, T.; Tadano, T. The Effect of CO2 Enrichment on the Growth of Nodulated and Non-Nodulated Isogenic Types of Soybean Raised Under Two Nitrogen Concentrations. Photosynthetica 1999, 37, 61–70. [Google Scholar] [CrossRef]
- Evans, J.R.; Clarke, V.C. The nitrogen cost of photosynthesis. J. Exp. Bot. 2019, 70, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Beschow, H.; Adgo, E.; Merbach, W. Efficiency of N2 fixation in Vicia faba L. in combination with different Rhizobium leguminosarum strains. J. Plant Nutr. Soil Sci. 2000, 163, 367–373. [Google Scholar]
- Vance, C.P.; Heichel, G.C. Carbon in N2 fixation: Limitation or exquiste adaptation? Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 373–392. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Mens, C.; Hastwell, A.H.; Zhang, M.; Su, H.; Jones, C.H.; Chu, X.; Gresshoff, P.M. Legume nodulation: The host controls the party. Plant Cell Environ. 2019, 42, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, E.L.; Kassaw, T.K.; Smith, L.S.; Marsh, J.F.; Oldroyd, G.E.; Long, S.R.; Frugoli, J.A. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol. 2011, 157, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Shinohara, H.; Mori, T.; Matsubayashi, Y.; Kawaguchi, M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 2013, 4, 2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, S.; Schnabel, E.; Frugoli, J. The Medicago truncatula CLAVATA3-LIKE CLE12/13 signaling peptides regulate nodule number depending on the CORYNE but not the COMPACT ROOT ARCHITECTURE2 receptor. Plant Signal. Behav. 2019, 14, 1598730. [Google Scholar] [CrossRef]
- Mortier, V.; Herder, G.D.; Whitford, R.; Van de Velde, W.; Rombauts, S.; D’Haeseleer, K.; Holsters, M.; Goormachtig, S. CLE Peptides Control Medicago truncatula Nodulation Locally and Systemically. Plant Physiol. 2010, 153, 222–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassaw, T.; Nowak, S.; Schnabel, E.; Frugoli, J. ROOT DETERMINED NODULATION1 Is Required for M. truncatula CLE12, But Not CLE13, Peptide Signaling through the SUNN Receptor Kinase. Plant Physiol. 2017, 174, 2445–2456. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, E.; Journet, E.-P.; de Carvalho-Niebel, F.; Duc, G.; Frugoli, J. The Medicago truncatula SUNN Gene Encodes a CLV1-like Leucine-rich Repeat Receptor Kinase that Regulates Nodule Number and Root Length. Plant Mol. Biol. 2005, 58, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.; Nicotra, A.B.; Mathesius, U. Genes controlling legume nodule numbers affect phenotypic plasticity responses to nitrogen in the presence and absence of rhizobia. Plant Cell Environ. 2019, 42, 1747–1757. [Google Scholar] [CrossRef]
- Novák, K. On the efficiency of legume supernodulating mutants. Ann. Appl. Biol. 2010, 157, 321–342. [Google Scholar] [CrossRef]
- Ben Amor, B.; Shaw, S.; Oldroyd, G.E.D.; Maillet, F.; Penmetsa, R.V.; Cook, D.; Long, S.R.; Dénarié, J.; Gough, C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 2003, 34, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Watt, M.; Mathesius, U. The Autoregulation Gene SUNN Mediates Changes in Root Organ Formation in Response to Nitrogen through Alteration of Shoot-to-Root Auxin Transport. Plant Physiol. 2012, 159, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Miao, S.; Jin, J.; Mathesius, U.; Tang, C. Differential responses of the sunn4 and rdn1-1 super-nodulation mutants of Medicago truncatula to elevated atmospheric CO2. Ann. Bot. 2021, 128, 441–452. [Google Scholar] [CrossRef]
- Ermakova, M.; Lopez-Calcagno, P.E.; Raines, C.A.; Furbank, R.T.; von Caemmerer, S. Overexpression of the Rieske FeS protein of the Cytochrome b6f complex increases C4 photosynthesis in Setaria viridis. Commun. Biol. 2019, 2, 314. [Google Scholar] [CrossRef] [Green Version]
- Simkin, A.J.; McAusland, L.; Lawson, T.; Raines, C.A. Overexpression of the RieskeFeS Protein Increases Electron Transport Rates and Biomass Yield. Plant Physiol. 2017, 175, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Parry, M.A.J.; Andralojc, P.J.; Mitchell, R.; Madgwick, P.J.; Keys, A.J. Manipulation of Rubisco: The amount, activity, function and regulation. J. Exp. Bot. 2003, 54, 1321–1333. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, F.; Hao, L.; Yu, J.; Guo, L.; Zhou, H.; Ma, C.; Zhang, X.; Xu, M. Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol. 2019, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Zhang, X.; Li, L.; Lam, S.K.; Pan, G. Changes in plant C, N and P ratios under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Sci. Rep. 2019, 9, 5424. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.P.; Gresshoff, P.M.; Pate, J.S.; Day, D.A. Interactions between Irradiance Levels, Nodulation and Nitrogenase Activity of Soybean cv. Bragg and a Supernodulating Mutant. J. Plant Physiol. 1990, 136, 172–179. [Google Scholar] [CrossRef]
- Becanamwo, M.; Harper, J. Response of a hypernodulating soybean mutant to increased photosynthate supply. Plant Sci. 1997, 124, 119–129. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Davey, P.A.; Bernacchi, C.J.; Dermody, O.C.; Heaton, E.A.; Moore, D.J.; Morgan, P.B.; Naidu, S.L.; Yoo Ra, H.S.; Zhu, X.G.; et al. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob. Chang. Biol. 2002, 8, 695–709. [Google Scholar] [CrossRef]
- Singh, S.K.; Barnaby, J.; Reddy, V.R.; Sicher, R.C. Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment. Front. Plant Sci. 2016, 7, 1967. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, Z.; Jin, J.; Zhang, Q.; Wang, G.; Liu, C.; Wu, J.; Wang, C.; Liu, X. Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. Front. Plant Sci. 2018, 9, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, R.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; ACIAR Monograph No. 136: Canberra, Australia, 2008; 258p. [Google Scholar]
- Bergersen, F. The growth of rhizobium in synthetic media. Aust. J. Biol. Sci. 1961, 14, 349. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 2007, 30, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Ruuska, S.; Andrews, T.J.; Badger, M.R.; Hudson, G.S.; Laisk, A.; Price, G.D.; Von Caemmerer, S. The interplay between limiting processes in C3 photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis. Funct. Plant Biol. 1998, 25, 859–870. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chapter 34. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
Genotype and Treatment | ||||||||
---|---|---|---|---|---|---|---|---|
aCO2 A17 | eCO2 A17 | aCO2 nfp1 | eCO2 nfp1 | aCO2 rdn1-1 | eCO2 rdn1-1 | aCO2 sunn4 | eCO2 sunn4 | |
Vcmax (µmol m−2 s−1) * | 68 ± 2.6 A | 92 ± 4.4 a | 52 A | 41 ± 6.1 b | 76 ± 1.4 A | 120 ± 4.8 c | 81 ± 5.3 A | 114 ± 8.6 c |
J (µmol m−2 s−1) * | 154 ± 8.8 A | 173 ± 8.9 a | 118 A | 103 ± 8.0 b | 161 ± 3.2 A | 239 ± 12 c | 172 ± 10 A | 154 ± 8.8 c |
Stomatal conductance at 400 ppm (mol m−2 s−1) * | 0.52 ± 0.02 A | 0.41 ± 0.06 a | 0.38 A | 0.32 ± 0.05 a | 0.45 ± 0.02 A | 0.51 ± 0.08 a | 0.47 ± 0.04 A | 0.44 ± 0.04 a |
Electron transport rate/4 at 400 ppm (µmol m−2 s−1) * | 42 ± 4.1 A | 37 ± 4.2 a | 23 AB | 29 ± 4.3 a | 48 ± 2.4 AC | 59 ± 1.8 b | 51 ± 1.5 AC | 64 ± 3.0 b |
Active Rubisco content (µmol LSU m−2) # | 28 ± 2.8 A | 30 ± 3.4 a | 27 AB | 17 ± 3.4 b | - | - | 44 ± 0.94 B | 44 ± 0.86 c |
[Chlorophyll A] (µg g−1 FW) # | 80 ± 5.3 A | 156 ± 1.8 a | 63 A | 65 b | - | - | 87 ± 13 A | 123 ± 5.4 c |
Specific leaf area (m−2 g) * | 0.035 ± 0.003 A | 0.021 ± 0.003 a | 0.027 A | 0.025 ± 0.003 a | 0.026 ± 0.004 A | 0.029 ± 0.002 a | 0.030 ± 0.002 A | 0.023 ± 0.004 a |
Above-ground biomass (g) † | 0.28 ± 0.058 A | 0.83 ± 0.125 a | 0.070 ± 0.018 A | 0.22 ± 0.027 b | 0.31 ± 0.093 A | 1.12 ± 0.19 c | 0.23 ± 0.031 A | 0.94 ± 0.072 c |
Relative Rieske protein content ‡ | 0.72 ± 0.15 A | 0.83 ± 0.068 a | - | 0.46 a | - | - | 0.89 ± 0.03 A | 1.38 ± 0.10 b |
Relative Rubisco protein content ‡ | 0.70 ± 0.16 A | 0.73 ± 0.077 a | - | 0.48 a | - | - | 0.75 ± 0.071 A | 1.05 ± 0.11 a |
%N in leaves * | 4.57 ± 0.67 A | 3.05 ± 0.46 a | 2.80 A | 2.34 ± 0.44 a | 5.18 ± 0.21 A | 5.36 ± 0.15 b | 5.23 ± 0.08 A | 5.38 ± 0.36 b |
%C in leaves * | 43.9 ± 1.3 A | 41.1 ± 0.3 ab | 41.0 A | 40.3 ± 0.5 a | 43.7 ± 0.3 A | 42.7 ± 0.5 b | 44.1 ± 0.4 A | 42.9 ± 0.4 b |
C:N ratio in leaves * | 9.61 ± 1.48 A | 13.5 ± 2.0 ab | 14.6 A | 17.2 ± 3.1 a | 8.45 ± 0.36 A | 7.95 ± 0.22 b | 8.43 ± 0.14 A | 7.96 ± 0.53 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.Y.; Massey, B.; Mathesius, U.; Clarke, V.C. Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions. Plants 2023, 12, 441. https://doi.org/10.3390/plants12030441
Zhang RY, Massey B, Mathesius U, Clarke VC. Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions. Plants. 2023; 12(3):441. https://doi.org/10.3390/plants12030441
Chicago/Turabian StyleZhang, Rose Y., Baxter Massey, Ulrike Mathesius, and Victoria C. Clarke. 2023. "Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions" Plants 12, no. 3: 441. https://doi.org/10.3390/plants12030441
APA StyleZhang, R. Y., Massey, B., Mathesius, U., & Clarke, V. C. (2023). Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions. Plants, 12(3), 441. https://doi.org/10.3390/plants12030441