The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchards Description and Apple Scab Management
2.2. Pesticide Risk Assessment
2.3. Fungicide Resistance Assays
2.4. Statistical Analysis
3. Results
3.1. Long-Term Fungicide Use in Apple Orchards
3.2. Fungicide Risks on Human Health, Ecotoxicology and Environmental Fate
3.3. Sensitivity of Venturia Inaequalis Populations to Systemic Fungicides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A Farm to Fork Strategy for a Fair, Healthy, Environmentally-Friendly Food System. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 18 September 2022).
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide use in current and innovative apple orchard systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Tiirmaa, K.; Univer, T.; Univer, N. Evaluation of apple cultivars for scab resistance in Estonia. Agron. Res. 2006, 4, 413–416. [Google Scholar]
- Valiuškaitė, A.; Uselis, N.; Kviklys, D.; Lanauskas, J.; Rasiukevičiūtė, N. The effect of sustainable plant protection and apple tree management on fruit quality and yield. Zemdirb. -Agric. 2017, 104, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Rancane, R.; Eihe, M.; Jankovska, L. Adaption of simulation model RIMpro for primary apple scab control in Latvia. Acta Hortic. 2008, 803, 69–75. [Google Scholar] [CrossRef]
- Lauret, J. Innovative Strategies for the Control of Apple Scab (Venturia inaequalis [Cke.] Wint.) in Organic Apple Production. Ph.D. Thesis, The University of Liège, Liège, Belgium, March 2011. [Google Scholar]
- Masny, S. Occurrence of Venturia inaequalis races in Poland able to overcome specific apple scab resistance genes. Eur. J. Plant Pathol. 2017, 147, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF (accessed on 18 September 2022).
- Trapman, M.C.; Polfliet, M. Management of primary infections of apple scab with the simulation program RIMpro: Review of four years field trials. IOBC Bull. OILB/SROP 1997, 20, 241–250. [Google Scholar]
- Rossi, V.; Giosuè, S.; Bugiani, R. A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bull. 2007, 37, 300–308. [Google Scholar] [CrossRef]
- Blaise, P.; Arneson, P.A.; Gessler, C. A Teaching Aid on Microcomputers. Plant Dis. 1987, 71, 574–578. [Google Scholar] [CrossRef]
- Ag-Radar Apple Sites. Available online: https://extension.umaine.edu/ipm/apple/ag-radar-apple-sites/ (accessed on 18 September 2022).
- Aalbers, P.; Balkhoven, M.K.; van Burg, W.L. The WELTE scab model. Obstbau 1998, 23, 198–202. [Google Scholar]
- Acimovic, S.G.; Wallis, A.E.; Basedow, M.R. Two Years of Experience with RIMpro Apple Scab Prediction Model on Commercial Apple Farms in Eastern New York. Fruit Q. 2018, 26, 21–27. [Google Scholar]
- Garofalo, E.W.; Tuttle, A.F.; Clements, J.M.; Cooley, D.R. Discrepancies Between Direct Observation of Apple Scab Ascospore Maturation and Disease Model Forecasts in the 2014 and 2015 Growing Seasons. Fruit Notes 2016, 81, 7–21. [Google Scholar]
- Trapman, M.C. Development and evaluation of a simulation model for ascospore infections of Venturia inaequalis. Nor. J. Agric. Sci. 1994, 17, 55–67. [Google Scholar]
- Apple Scab (Venturia inaequalis) Model. Available online: https://rimpro.cloud/platform/apple-scab-venturia-inaequalis/ (accessed on 18 September 2022).
- EU Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 18 September 2022).
- List of Plant Protection Products Registered in Lithuania. Available online: https://vatis.vatzum.lt/aapSarasas (accessed on 18 September 2022).
- List of Plant Protection Products Registered in Latvia. Available online: http://registri.vaad.gov.lv/reg/aal_saraksts.aspx (accessed on 18 September 2022).
- Reus, J.; Leendertse, P.; Bockstaller, C.; Fomsgaard, I.; Gutsche, V.; Lewis, K.; Nilsson, C.; Pussemier, L.; Trevisan, M.; van der Werf, H.; et al. Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric. Ecosyst. Environ. 2002, 90, 177–187. [Google Scholar] [CrossRef]
- Oliver, D.P.; Kookana, R.S.; Anderson, J.S.; Umali, B. Field evaluation of two risk indicators for predicting likelihood of pesticide transport to surface water from two orchards. Sci. Total Environ. 2016, 571, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Kudsk, P.; Jørgensen, L.N.; Ørum, J.E. Pesticide Load—A new Danish pesticide risk indicator with multiple applications. Land Use Policy 2018, 70, 384–393. [Google Scholar] [CrossRef]
- Lewis, K.; Rainford, J.; Tzilivakis, J.; Garthwaite, D. Application of the Danish pesticide load indicator to arable agriculture in the United Kingdom. J. Environ. Qual. 2021, 50, 1110–1122. [Google Scholar] [CrossRef]
- Kunz, S.; Hinze, M.; Mögel, G.; Volk, F. Control of apple scab by curative applications of biocontrol agents. In Proceedings of the 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 18–20 February 2008. [Google Scholar]
- FRAC Code List ©*2022. Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2 (accessed on 18 September 2022).
- Pathogen Risk List. Available online: https://www.frac.info/docs/default-source/publications/pathogen-risk/frac-pathogen-list-2019.pdf (accessed on 18 September 2022).
- Wallhead, M.; Zhu, H. Decision support systems for plant disease and insect management in commercial nurseries in the Midwest: A perspective review. J. Environ. Hortic. 2017, 35, 84–92. [Google Scholar] [CrossRef]
- Maldonado-Reina, A.J.; López-Ruiz, R.; Garrido Frenich, A.; Arrebola, F.J.; Romero-González, R. Co-formulants in plant protection products: An analytical approach to their determination by gas chromatography–high resolution mass accuracy spectrometry. Talanta 2021, 234, 122641. [Google Scholar] [CrossRef] [PubMed]
- Pesticide Properties DataBase. Available online: http://sitem.herts.ac.uk/aeru/ppdb/ (accessed on 18 September 2022).
- SCI-GROW Description. Available online: https://archive.epa.gov/epa/pesticide-science-and-assessing-pesticide-risks/sci-grow-description.html (accessed on 18 September 2022).
- Abbot, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Kunz, S.; Deising, H.; Mendgen, K. Acquisition of resistance to sterol demethylation inhibitors by populations of Venturia inaequalis. Phytopathology 1997, 87, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Kunz, S.; Lutz, B.; Deising, H.; Mendgen, K. Assessment of sensitivities to anilinopyrimidine- and strobilurin-fungicides in populations of the apple scab fungus Venturia inaequalis. J. Phytopathol. 1998, 146, 231–238. [Google Scholar] [CrossRef] [Green Version]
- European Parliament Resolution of 18 December 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019IP0099&rid=10 (accessed on 18 September 2022).
- Liljeroth, E.; Lankinen, Å.; Wiik, L.; Burra, D.D.; Alexandersson, E.; Andreasson, E. Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Prot. 2016, 86, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Havlin, J.L.; Schlegel, A.J. Review of phosphite as a plant nutrient and fungicide. Soil Syst. 2021, 5, 52. [Google Scholar] [CrossRef]
- Schou, J.S. Pesticide taxes in Scandinavia. Pestic. Outlook 1999, 10, 227–229. [Google Scholar]
- List of Plant Protection Products Registered in Norway. Available online: https://www.mattilsynet.no/plantevernmidler/godk.asp?sortering=preparat&preparat=Alle&sprak=In+English (accessed on 18 September 2022).
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar] [CrossRef]
- Aćimović, S.G.; Meredith, C.L.; Raskonda, D.; Lam, K. Efficacy of New Synthetic and Soft Fungicides for Management of Apple Scab Fungus. Fruit Q. 2020, 29, 21–27. [Google Scholar]
- Shuttleworth, L.A. Alternative disease management strategies for organic apple production in the United Kingdom. CABI Agric. Biosci. 2021, 2, 34. [Google Scholar] [CrossRef]
District | Region | Farms | Planting Year | The Main Cultivars | Annual Applications * |
---|---|---|---|---|---|
Bauska, GPS 56.371554, 24.279826 | South | Farm 1 | 2000 | Auksis, Alva, Ligol, Sinap Orlovskij | 8.7 ± 1.83 |
Jēkabpils, GPS 56.274396, 25.396625 | South | Farm 2 | 1999 | Auksis, Belorusskoje Malinovoje, Lobo, Sinap Orlovskij | 5.2 ± 1.23 |
Talsi, GPS 57.396865, 22.941191 | North | Farm 3 | 2000 | Auksis, Belorusskoje Malinovoje, Lobo, Sinap Orlovskij | 6.7 ± 1.77 |
Balvi, GPS 57.226005, 27.678585 | North | Farm 4 | 2000 | Auksis, Belorusskoje Malinovoje, Sinap Orlovskij | 4.6 ± 1.17 |
Sigulda, GPS 57.132812, 24.854656 | Central | Farm 5 | 2000 | Auksis, Kovalenkovskoje Saltanat, Sinap Orlovskij | 4.6 ± 0.84 |
Valmiera, GPS 57.582202, 25.107896 | Central | Farm 6 | 2002 | Auksis, Belorusskoje Malinovoje, Ligol, Lobo | 8.0 ± 1.89 |
Active Substances | Group Name * | Activity ** | Mode of Action * | Years of Use |
---|---|---|---|---|
copper (II) hydroxide | Inorganic | Preventive | multi-site contact activity | 2012–2021 |
dithianon | Quinones | multi-site contact activity | 2012–2021 | |
captan | Phthalimides | multi-site contact activity | 2016–2021 | |
mancozeb | Dithiocarbamates | multi-site contact activity | 2012–2021 | |
kresoxim-methyl | QoI-fungicides | Locally systemic | respiration | 2015–2021 |
dodine | Guanidines | unknown mode of action | 2015–2021 | |
difenoconazole | DMI-fungicides | Systemic | sterol biosynthesis in membranes | 2012–2021 |
cyprodinil | AP-fungicides | amino acids and protein synthesis | 2012–2021 | |
potassium phosphonate | Phosphonates | host plant defence induction | 2019–2021 |
Input Parameters | Reference Active Substance | Unit | Maximum Value | PL Points |
---|---|---|---|---|
Ecotoxicology | ||||
Birds—acute LD50 | Methiocarb | mg kg−1 body weight | 5 | 1 |
Mammals—acute oral LD50 | Aluminium phosphide | mg kg−1 body weight | 8.7 | 1 |
Fish—acute 96 h LC50 | Gamma-cyhalothrin | mg L−1 water | 0.000035 | 30 |
Daphnia—acute 48 h EC50 | Gamma-cyhalothrin | mg L−1 water | 0.000045 | 30 |
Algae—acute 72 h EC50 | Bifenox | mg L−1 water | 0.00018 | 3 |
Aquatic Plants—7 day EC50 | Triasulfuron | mg L−1 water | 0.000068 | 3 |
Earthworms—14 day LC50 | Beta-cyfluthrin | mg kg−1 soil | 0.565 | 2 |
Honeybees—acute 48 h LD50 | Deltamethrin | mg bee−1 | 0.0015 | 100 |
Fish—chronic 21 day NOEC | Alpha-cypermethrin | mg L−1 water | 0.00003 | 3 |
Daphnia—chronic 21 day NOEC | Gamma-cyhalothrin | mg L−1 water | 0.0000022 | 3 |
Earthworms—chronic 14 day NOEC | Dimoxystrobin | mg kg−1 soil | 0.089 | 2 |
Environmental fate | ||||
Soil degradation—DT50 | Diquat | days | 2345 | 2.5 |
Bioaccumulation | Metaflumizone | bio-concentration factor | 7800 | 2.5 |
Mobility—SCI-GROW index | Flutriafol | SCI-GROW index | 7.09 | 20 |
Water DT50 | Epoxiconazole | days | 1000 | - |
Farms | Cultivar | Sampling Date | Difenoconazole | Cyprodinil | ||
---|---|---|---|---|---|---|
Annual Applications * | Years | Annual Applications * | Years | |||
Farm 1 | Alva | 07.2020 | 2.5 ± 0.85 | 10 | 2.0 ± 0.53 | 8 |
Farm 2 | Lobo | 07.2020 | 1.4 ± 0.55 | 5 | 2.0 ± 0.82 | 7 |
Farm 3 | Lobo | 09.2020 | 1.4 ± 0.70 | 10 | 1.5 ± 0.55 | 6 |
Farm 4 | Auksis | 07.2021 | 1.2 ± 0.45 | 5 | 1.6 ± 0.52 | 8 |
Farm 5 | Kovalenkovskoje | 07.2021 | 1.6 ± 0.53 | 9 | 1.3 ± 0.50 | 9 |
Farm 6 | Lobo | 07.2020 | 1.6 ± 0.73 | 9 | 1.9 ± 0.74 | 10 |
PLI Sub-Indicators and PLI Scores | Preventive | Locally Systemic | Systemic | ||||||
---|---|---|---|---|---|---|---|---|---|
Copper (II) Hydroxide | Mancozeb | Captan | Dithi-anon | Dodine | Kresoxim-methyl | Potassium Phosphonate | Cyprodinil | Difenoconazole | |
PLFATE | 0.13 | 0.00 | 0.05 | 0.06 | 0.03 | 0.07 | 0.96 | 0.24 | 0.29 |
PLECO | 0.21 | 0.06 | 0.02 | 0.08 | 0.29 | 0.03 | 0.01 | 0.03 | 0.61 |
PLHH | 0.22 | 0.30 | 0.77 | 0.03 | 0.12 | 0.23 | 0.08 | 0.07 | 0.37 |
Total PLI per 1 kg of AS | 0.56 | 0.36 | 0.84 | 0.17 | 0.43 | 0.34 | 1.05 | 0.34 | 1.26 |
Maximum registered fungicide dose in 2021 (kg ha−1) | 1.00 | 2.00 | 2.25 | 0.50 | 1.25 | 0.20 | 2.50 | 0.45 | 0.20 |
AS per maximum dose (g) | 500 | 1500 | 1800 | 350 | 680 | 100 | 1402.5 | 225 | 50 |
Total PLI per unit of maximum dose of AS | 0.28 | 0.54 | 1.51 | 0.06 | 0.29 | 0.03 | 1.47 | 0.08 | 0.06 |
Active Substance Concentration (mg L−1) | Baseline Sensitivity [33,34] | Venturia inaequalis Populations | |||||||
---|---|---|---|---|---|---|---|---|---|
Sensitive | Resistant | Farm 1 | Farm 2 | Farm 3 | Farm 4 | Farm 5 | Farm 6 | ||
Efficacy (%) | |||||||||
Difenoconazole, 37.5 | 100 | 100 | 75 | 68 | 90 | 97 | 68 | 93 | 88 |
Difenoconazole, 3.75 | 95 | 92 | 15 | 46 | 47 | 49 | 67 | 78 | 45 |
Cyprodinil, 150 | 99 | 100 | 54 | 77 | 80 | 98 | 91 | 90 | 58 |
Cyprodinil, 50 | 93 | 98 | 37 | 26 | 63 | 72 | 94 | 88 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancāne, R.; Valiuškaitė, A.; Zagorska, V.; Komašilovs, V.; Rasiukevičiūtė, N. The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia. Plants 2023, 12, 450. https://doi.org/10.3390/plants12030450
Rancāne R, Valiuškaitė A, Zagorska V, Komašilovs V, Rasiukevičiūtė N. The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia. Plants. 2023; 12(3):450. https://doi.org/10.3390/plants12030450
Chicago/Turabian StyleRancāne, Regīna, Alma Valiuškaitė, Viktorija Zagorska, Vitālijs Komašilovs, and Neringa Rasiukevičiūtė. 2023. "The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia" Plants 12, no. 3: 450. https://doi.org/10.3390/plants12030450
APA StyleRancāne, R., Valiuškaitė, A., Zagorska, V., Komašilovs, V., & Rasiukevičiūtė, N. (2023). The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia. Plants, 12(3), 450. https://doi.org/10.3390/plants12030450